1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ppc64 code to implement the kexec_file_load syscall 4 * 5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) 6 * Copyright (C) 2004 IBM Corp. 7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation 8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) 9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) 10 * Copyright (C) 2020 IBM Corporation 11 * 12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. 13 * Heavily modified for the kernel by 14 * Hari Bathini, IBM Corporation. 15 */ 16 17 #include <linux/kexec.h> 18 #include <linux/of_fdt.h> 19 #include <linux/libfdt.h> 20 #include <linux/of_device.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <asm/setup.h> 25 #include <asm/drmem.h> 26 #include <asm/firmware.h> 27 #include <asm/kexec_ranges.h> 28 #include <asm/crashdump-ppc64.h> 29 #include <asm/prom.h> 30 31 struct umem_info { 32 u64 *buf; /* data buffer for usable-memory property */ 33 u32 size; /* size allocated for the data buffer */ 34 u32 max_entries; /* maximum no. of entries */ 35 u32 idx; /* index of current entry */ 36 37 /* usable memory ranges to look up */ 38 unsigned int nr_ranges; 39 const struct range *ranges; 40 }; 41 42 const struct kexec_file_ops * const kexec_file_loaders[] = { 43 &kexec_elf64_ops, 44 NULL 45 }; 46 47 /** 48 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes 49 * regions like opal/rtas, tce-table, initrd, 50 * kernel, htab which should be avoided while 51 * setting up kexec load segments. 52 * @mem_ranges: Range list to add the memory ranges to. 53 * 54 * Returns 0 on success, negative errno on error. 55 */ 56 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) 57 { 58 int ret; 59 60 ret = add_tce_mem_ranges(mem_ranges); 61 if (ret) 62 goto out; 63 64 ret = add_initrd_mem_range(mem_ranges); 65 if (ret) 66 goto out; 67 68 ret = add_htab_mem_range(mem_ranges); 69 if (ret) 70 goto out; 71 72 ret = add_kernel_mem_range(mem_ranges); 73 if (ret) 74 goto out; 75 76 ret = add_rtas_mem_range(mem_ranges); 77 if (ret) 78 goto out; 79 80 ret = add_opal_mem_range(mem_ranges); 81 if (ret) 82 goto out; 83 84 ret = add_reserved_mem_ranges(mem_ranges); 85 if (ret) 86 goto out; 87 88 /* exclude memory ranges should be sorted for easy lookup */ 89 sort_memory_ranges(*mem_ranges, true); 90 out: 91 if (ret) 92 pr_err("Failed to setup exclude memory ranges\n"); 93 return ret; 94 } 95 96 /** 97 * get_usable_memory_ranges - Get usable memory ranges. This list includes 98 * regions like crashkernel, opal/rtas & tce-table, 99 * that kdump kernel could use. 100 * @mem_ranges: Range list to add the memory ranges to. 101 * 102 * Returns 0 on success, negative errno on error. 103 */ 104 static int get_usable_memory_ranges(struct crash_mem **mem_ranges) 105 { 106 int ret; 107 108 /* 109 * Early boot failure observed on guests when low memory (first memory 110 * block?) is not added to usable memory. So, add [0, crashk_res.end] 111 * instead of [crashk_res.start, crashk_res.end] to workaround it. 112 * Also, crashed kernel's memory must be added to reserve map to 113 * avoid kdump kernel from using it. 114 */ 115 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); 116 if (ret) 117 goto out; 118 119 ret = add_rtas_mem_range(mem_ranges); 120 if (ret) 121 goto out; 122 123 ret = add_opal_mem_range(mem_ranges); 124 if (ret) 125 goto out; 126 127 ret = add_tce_mem_ranges(mem_ranges); 128 out: 129 if (ret) 130 pr_err("Failed to setup usable memory ranges\n"); 131 return ret; 132 } 133 134 /** 135 * get_crash_memory_ranges - Get crash memory ranges. This list includes 136 * first/crashing kernel's memory regions that 137 * would be exported via an elfcore. 138 * @mem_ranges: Range list to add the memory ranges to. 139 * 140 * Returns 0 on success, negative errno on error. 141 */ 142 static int get_crash_memory_ranges(struct crash_mem **mem_ranges) 143 { 144 phys_addr_t base, end; 145 struct crash_mem *tmem; 146 u64 i; 147 int ret; 148 149 for_each_mem_range(i, &base, &end) { 150 u64 size = end - base; 151 152 /* Skip backup memory region, which needs a separate entry */ 153 if (base == BACKUP_SRC_START) { 154 if (size > BACKUP_SRC_SIZE) { 155 base = BACKUP_SRC_END + 1; 156 size -= BACKUP_SRC_SIZE; 157 } else 158 continue; 159 } 160 161 ret = add_mem_range(mem_ranges, base, size); 162 if (ret) 163 goto out; 164 165 /* Try merging adjacent ranges before reallocation attempt */ 166 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) 167 sort_memory_ranges(*mem_ranges, true); 168 } 169 170 /* Reallocate memory ranges if there is no space to split ranges */ 171 tmem = *mem_ranges; 172 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { 173 tmem = realloc_mem_ranges(mem_ranges); 174 if (!tmem) 175 goto out; 176 } 177 178 /* Exclude crashkernel region */ 179 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); 180 if (ret) 181 goto out; 182 183 /* 184 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL 185 * regions are exported to save their context at the time of 186 * crash, they should actually be backed up just like the 187 * first 64K bytes of memory. 188 */ 189 ret = add_rtas_mem_range(mem_ranges); 190 if (ret) 191 goto out; 192 193 ret = add_opal_mem_range(mem_ranges); 194 if (ret) 195 goto out; 196 197 /* create a separate program header for the backup region */ 198 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); 199 if (ret) 200 goto out; 201 202 sort_memory_ranges(*mem_ranges, false); 203 out: 204 if (ret) 205 pr_err("Failed to setup crash memory ranges\n"); 206 return ret; 207 } 208 209 /** 210 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes 211 * memory regions that should be added to the 212 * memory reserve map to ensure the region is 213 * protected from any mischief. 214 * @mem_ranges: Range list to add the memory ranges to. 215 * 216 * Returns 0 on success, negative errno on error. 217 */ 218 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) 219 { 220 int ret; 221 222 ret = add_rtas_mem_range(mem_ranges); 223 if (ret) 224 goto out; 225 226 ret = add_tce_mem_ranges(mem_ranges); 227 if (ret) 228 goto out; 229 230 ret = add_reserved_mem_ranges(mem_ranges); 231 out: 232 if (ret) 233 pr_err("Failed to setup reserved memory ranges\n"); 234 return ret; 235 } 236 237 /** 238 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole 239 * in the memory regions between buf_min & buf_max 240 * for the buffer. If found, sets kbuf->mem. 241 * @kbuf: Buffer contents and memory parameters. 242 * @buf_min: Minimum address for the buffer. 243 * @buf_max: Maximum address for the buffer. 244 * 245 * Returns 0 on success, negative errno on error. 246 */ 247 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, 248 u64 buf_min, u64 buf_max) 249 { 250 int ret = -EADDRNOTAVAIL; 251 phys_addr_t start, end; 252 u64 i; 253 254 for_each_mem_range_rev(i, &start, &end) { 255 /* 256 * memblock uses [start, end) convention while it is 257 * [start, end] here. Fix the off-by-one to have the 258 * same convention. 259 */ 260 end -= 1; 261 262 if (start > buf_max) 263 continue; 264 265 /* Memory hole not found */ 266 if (end < buf_min) 267 break; 268 269 /* Adjust memory region based on the given range */ 270 if (start < buf_min) 271 start = buf_min; 272 if (end > buf_max) 273 end = buf_max; 274 275 start = ALIGN(start, kbuf->buf_align); 276 if (start < end && (end - start + 1) >= kbuf->memsz) { 277 /* Suitable memory range found. Set kbuf->mem */ 278 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, 279 kbuf->buf_align); 280 ret = 0; 281 break; 282 } 283 } 284 285 return ret; 286 } 287 288 /** 289 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a 290 * suitable buffer with top down approach. 291 * @kbuf: Buffer contents and memory parameters. 292 * @buf_min: Minimum address for the buffer. 293 * @buf_max: Maximum address for the buffer. 294 * @emem: Exclude memory ranges. 295 * 296 * Returns 0 on success, negative errno on error. 297 */ 298 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, 299 u64 buf_min, u64 buf_max, 300 const struct crash_mem *emem) 301 { 302 int i, ret = 0, err = -EADDRNOTAVAIL; 303 u64 start, end, tmin, tmax; 304 305 tmax = buf_max; 306 for (i = (emem->nr_ranges - 1); i >= 0; i--) { 307 start = emem->ranges[i].start; 308 end = emem->ranges[i].end; 309 310 if (start > tmax) 311 continue; 312 313 if (end < tmax) { 314 tmin = (end < buf_min ? buf_min : end + 1); 315 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 316 if (!ret) 317 return 0; 318 } 319 320 tmax = start - 1; 321 322 if (tmax < buf_min) { 323 ret = err; 324 break; 325 } 326 ret = 0; 327 } 328 329 if (!ret) { 330 tmin = buf_min; 331 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 332 } 333 return ret; 334 } 335 336 /** 337 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole 338 * in the memory regions between buf_min & buf_max 339 * for the buffer. If found, sets kbuf->mem. 340 * @kbuf: Buffer contents and memory parameters. 341 * @buf_min: Minimum address for the buffer. 342 * @buf_max: Maximum address for the buffer. 343 * 344 * Returns 0 on success, negative errno on error. 345 */ 346 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, 347 u64 buf_min, u64 buf_max) 348 { 349 int ret = -EADDRNOTAVAIL; 350 phys_addr_t start, end; 351 u64 i; 352 353 for_each_mem_range(i, &start, &end) { 354 /* 355 * memblock uses [start, end) convention while it is 356 * [start, end] here. Fix the off-by-one to have the 357 * same convention. 358 */ 359 end -= 1; 360 361 if (end < buf_min) 362 continue; 363 364 /* Memory hole not found */ 365 if (start > buf_max) 366 break; 367 368 /* Adjust memory region based on the given range */ 369 if (start < buf_min) 370 start = buf_min; 371 if (end > buf_max) 372 end = buf_max; 373 374 start = ALIGN(start, kbuf->buf_align); 375 if (start < end && (end - start + 1) >= kbuf->memsz) { 376 /* Suitable memory range found. Set kbuf->mem */ 377 kbuf->mem = start; 378 ret = 0; 379 break; 380 } 381 } 382 383 return ret; 384 } 385 386 /** 387 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a 388 * suitable buffer with bottom up approach. 389 * @kbuf: Buffer contents and memory parameters. 390 * @buf_min: Minimum address for the buffer. 391 * @buf_max: Maximum address for the buffer. 392 * @emem: Exclude memory ranges. 393 * 394 * Returns 0 on success, negative errno on error. 395 */ 396 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, 397 u64 buf_min, u64 buf_max, 398 const struct crash_mem *emem) 399 { 400 int i, ret = 0, err = -EADDRNOTAVAIL; 401 u64 start, end, tmin, tmax; 402 403 tmin = buf_min; 404 for (i = 0; i < emem->nr_ranges; i++) { 405 start = emem->ranges[i].start; 406 end = emem->ranges[i].end; 407 408 if (end < tmin) 409 continue; 410 411 if (start > tmin) { 412 tmax = (start > buf_max ? buf_max : start - 1); 413 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 414 if (!ret) 415 return 0; 416 } 417 418 tmin = end + 1; 419 420 if (tmin > buf_max) { 421 ret = err; 422 break; 423 } 424 ret = 0; 425 } 426 427 if (!ret) { 428 tmax = buf_max; 429 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 430 } 431 return ret; 432 } 433 434 /** 435 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries 436 * @um_info: Usable memory buffer and ranges info. 437 * @cnt: No. of entries to accommodate. 438 * 439 * Frees up the old buffer if memory reallocation fails. 440 * 441 * Returns buffer on success, NULL on error. 442 */ 443 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) 444 { 445 u32 new_size; 446 u64 *tbuf; 447 448 if ((um_info->idx + cnt) <= um_info->max_entries) 449 return um_info->buf; 450 451 new_size = um_info->size + MEM_RANGE_CHUNK_SZ; 452 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); 453 if (tbuf) { 454 um_info->buf = tbuf; 455 um_info->size = new_size; 456 um_info->max_entries = (um_info->size / sizeof(u64)); 457 } 458 459 return tbuf; 460 } 461 462 /** 463 * add_usable_mem - Add the usable memory ranges within the given memory range 464 * to the buffer 465 * @um_info: Usable memory buffer and ranges info. 466 * @base: Base address of memory range to look for. 467 * @end: End address of memory range to look for. 468 * 469 * Returns 0 on success, negative errno on error. 470 */ 471 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) 472 { 473 u64 loc_base, loc_end; 474 bool add; 475 int i; 476 477 for (i = 0; i < um_info->nr_ranges; i++) { 478 add = false; 479 loc_base = um_info->ranges[i].start; 480 loc_end = um_info->ranges[i].end; 481 if (loc_base >= base && loc_end <= end) 482 add = true; 483 else if (base < loc_end && end > loc_base) { 484 if (loc_base < base) 485 loc_base = base; 486 if (loc_end > end) 487 loc_end = end; 488 add = true; 489 } 490 491 if (add) { 492 if (!check_realloc_usable_mem(um_info, 2)) 493 return -ENOMEM; 494 495 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); 496 um_info->buf[um_info->idx++] = 497 cpu_to_be64(loc_end - loc_base + 1); 498 } 499 } 500 501 return 0; 502 } 503 504 /** 505 * kdump_setup_usable_lmb - This is a callback function that gets called by 506 * walk_drmem_lmbs for every LMB to set its 507 * usable memory ranges. 508 * @lmb: LMB info. 509 * @usm: linux,drconf-usable-memory property value. 510 * @data: Pointer to usable memory buffer and ranges info. 511 * 512 * Returns 0 on success, negative errno on error. 513 */ 514 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, 515 void *data) 516 { 517 struct umem_info *um_info; 518 int tmp_idx, ret; 519 u64 base, end; 520 521 /* 522 * kdump load isn't supported on kernels already booted with 523 * linux,drconf-usable-memory property. 524 */ 525 if (*usm) { 526 pr_err("linux,drconf-usable-memory property already exists!"); 527 return -EINVAL; 528 } 529 530 um_info = data; 531 tmp_idx = um_info->idx; 532 if (!check_realloc_usable_mem(um_info, 1)) 533 return -ENOMEM; 534 535 um_info->idx++; 536 base = lmb->base_addr; 537 end = base + drmem_lmb_size() - 1; 538 ret = add_usable_mem(um_info, base, end); 539 if (!ret) { 540 /* 541 * Update the no. of ranges added. Two entries (base & size) 542 * for every range added. 543 */ 544 um_info->buf[tmp_idx] = 545 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); 546 } 547 548 return ret; 549 } 550 551 #define NODE_PATH_LEN 256 552 /** 553 * add_usable_mem_property - Add usable memory property for the given 554 * memory node. 555 * @fdt: Flattened device tree for the kdump kernel. 556 * @dn: Memory node. 557 * @um_info: Usable memory buffer and ranges info. 558 * 559 * Returns 0 on success, negative errno on error. 560 */ 561 static int add_usable_mem_property(void *fdt, struct device_node *dn, 562 struct umem_info *um_info) 563 { 564 int n_mem_addr_cells, n_mem_size_cells, node; 565 char path[NODE_PATH_LEN]; 566 int i, len, ranges, ret; 567 const __be32 *prop; 568 u64 base, end; 569 570 of_node_get(dn); 571 572 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { 573 pr_err("Buffer (%d) too small for memory node: %pOF\n", 574 NODE_PATH_LEN, dn); 575 return -EOVERFLOW; 576 } 577 pr_debug("Memory node path: %s\n", path); 578 579 /* Now that we know the path, find its offset in kdump kernel's fdt */ 580 node = fdt_path_offset(fdt, path); 581 if (node < 0) { 582 pr_err("Malformed device tree: error reading %s\n", path); 583 ret = -EINVAL; 584 goto out; 585 } 586 587 /* Get the address & size cells */ 588 n_mem_addr_cells = of_n_addr_cells(dn); 589 n_mem_size_cells = of_n_size_cells(dn); 590 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, 591 n_mem_size_cells); 592 593 um_info->idx = 0; 594 if (!check_realloc_usable_mem(um_info, 2)) { 595 ret = -ENOMEM; 596 goto out; 597 } 598 599 prop = of_get_property(dn, "reg", &len); 600 if (!prop || len <= 0) { 601 ret = 0; 602 goto out; 603 } 604 605 /* 606 * "reg" property represents sequence of (addr,size) tuples 607 * each representing a memory range. 608 */ 609 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 610 611 for (i = 0; i < ranges; i++) { 612 base = of_read_number(prop, n_mem_addr_cells); 613 prop += n_mem_addr_cells; 614 end = base + of_read_number(prop, n_mem_size_cells) - 1; 615 prop += n_mem_size_cells; 616 617 ret = add_usable_mem(um_info, base, end); 618 if (ret) 619 goto out; 620 } 621 622 /* 623 * No kdump kernel usable memory found in this memory node. 624 * Write (0,0) tuple in linux,usable-memory property for 625 * this region to be ignored. 626 */ 627 if (um_info->idx == 0) { 628 um_info->buf[0] = 0; 629 um_info->buf[1] = 0; 630 um_info->idx = 2; 631 } 632 633 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, 634 (um_info->idx * sizeof(u64))); 635 636 out: 637 of_node_put(dn); 638 return ret; 639 } 640 641 642 /** 643 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory 644 * and linux,drconf-usable-memory DT properties as 645 * appropriate to restrict its memory usage. 646 * @fdt: Flattened device tree for the kdump kernel. 647 * @usable_mem: Usable memory ranges for kdump kernel. 648 * 649 * Returns 0 on success, negative errno on error. 650 */ 651 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) 652 { 653 struct umem_info um_info; 654 struct device_node *dn; 655 int node, ret = 0; 656 657 if (!usable_mem) { 658 pr_err("Usable memory ranges for kdump kernel not found\n"); 659 return -ENOENT; 660 } 661 662 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 663 if (node == -FDT_ERR_NOTFOUND) 664 pr_debug("No dynamic reconfiguration memory found\n"); 665 else if (node < 0) { 666 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); 667 return -EINVAL; 668 } 669 670 um_info.buf = NULL; 671 um_info.size = 0; 672 um_info.max_entries = 0; 673 um_info.idx = 0; 674 /* Memory ranges to look up */ 675 um_info.ranges = &(usable_mem->ranges[0]); 676 um_info.nr_ranges = usable_mem->nr_ranges; 677 678 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 679 if (dn) { 680 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); 681 of_node_put(dn); 682 683 if (ret) { 684 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); 685 goto out; 686 } 687 688 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", 689 um_info.buf, (um_info.idx * sizeof(u64))); 690 if (ret) { 691 pr_err("Failed to update fdt with linux,drconf-usable-memory property"); 692 goto out; 693 } 694 } 695 696 /* 697 * Walk through each memory node and set linux,usable-memory property 698 * for the corresponding node in kdump kernel's fdt. 699 */ 700 for_each_node_by_type(dn, "memory") { 701 ret = add_usable_mem_property(fdt, dn, &um_info); 702 if (ret) { 703 pr_err("Failed to set linux,usable-memory property for %s node", 704 dn->full_name); 705 of_node_put(dn); 706 goto out; 707 } 708 } 709 710 out: 711 kfree(um_info.buf); 712 return ret; 713 } 714 715 /** 716 * load_backup_segment - Locate a memory hole to place the backup region. 717 * @image: Kexec image. 718 * @kbuf: Buffer contents and memory parameters. 719 * 720 * Returns 0 on success, negative errno on error. 721 */ 722 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) 723 { 724 void *buf; 725 int ret; 726 727 /* 728 * Setup a source buffer for backup segment. 729 * 730 * A source buffer has no meaning for backup region as data will 731 * be copied from backup source, after crash, in the purgatory. 732 * But as load segment code doesn't recognize such segments, 733 * setup a dummy source buffer to keep it happy for now. 734 */ 735 buf = vzalloc(BACKUP_SRC_SIZE); 736 if (!buf) 737 return -ENOMEM; 738 739 kbuf->buffer = buf; 740 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 741 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; 742 kbuf->top_down = false; 743 744 ret = kexec_add_buffer(kbuf); 745 if (ret) { 746 vfree(buf); 747 return ret; 748 } 749 750 image->arch.backup_buf = buf; 751 image->arch.backup_start = kbuf->mem; 752 return 0; 753 } 754 755 /** 756 * update_backup_region_phdr - Update backup region's offset for the core to 757 * export the region appropriately. 758 * @image: Kexec image. 759 * @ehdr: ELF core header. 760 * 761 * Assumes an exclusive program header is setup for the backup region 762 * in the ELF headers 763 * 764 * Returns nothing. 765 */ 766 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) 767 { 768 Elf64_Phdr *phdr; 769 unsigned int i; 770 771 phdr = (Elf64_Phdr *)(ehdr + 1); 772 for (i = 0; i < ehdr->e_phnum; i++) { 773 if (phdr->p_paddr == BACKUP_SRC_START) { 774 phdr->p_offset = image->arch.backup_start; 775 pr_debug("Backup region offset updated to 0x%lx\n", 776 image->arch.backup_start); 777 return; 778 } 779 } 780 } 781 782 /** 783 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr 784 * segment needed to load kdump kernel. 785 * @image: Kexec image. 786 * @kbuf: Buffer contents and memory parameters. 787 * 788 * Returns 0 on success, negative errno on error. 789 */ 790 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) 791 { 792 struct crash_mem *cmem = NULL; 793 unsigned long headers_sz; 794 void *headers = NULL; 795 int ret; 796 797 ret = get_crash_memory_ranges(&cmem); 798 if (ret) 799 goto out; 800 801 /* Setup elfcorehdr segment */ 802 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); 803 if (ret) { 804 pr_err("Failed to prepare elf headers for the core\n"); 805 goto out; 806 } 807 808 /* Fix the offset for backup region in the ELF header */ 809 update_backup_region_phdr(image, headers); 810 811 kbuf->buffer = headers; 812 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 813 kbuf->bufsz = kbuf->memsz = headers_sz; 814 kbuf->top_down = false; 815 816 ret = kexec_add_buffer(kbuf); 817 if (ret) { 818 vfree(headers); 819 goto out; 820 } 821 822 image->elf_load_addr = kbuf->mem; 823 image->elf_headers_sz = headers_sz; 824 image->elf_headers = headers; 825 out: 826 kfree(cmem); 827 return ret; 828 } 829 830 /** 831 * load_crashdump_segments_ppc64 - Initialize the additional segements needed 832 * to load kdump kernel. 833 * @image: Kexec image. 834 * @kbuf: Buffer contents and memory parameters. 835 * 836 * Returns 0 on success, negative errno on error. 837 */ 838 int load_crashdump_segments_ppc64(struct kimage *image, 839 struct kexec_buf *kbuf) 840 { 841 int ret; 842 843 /* Load backup segment - first 64K bytes of the crashing kernel */ 844 ret = load_backup_segment(image, kbuf); 845 if (ret) { 846 pr_err("Failed to load backup segment\n"); 847 return ret; 848 } 849 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); 850 851 /* Load elfcorehdr segment - to export crashing kernel's vmcore */ 852 ret = load_elfcorehdr_segment(image, kbuf); 853 if (ret) { 854 pr_err("Failed to load elfcorehdr segment\n"); 855 return ret; 856 } 857 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", 858 image->elf_load_addr, kbuf->bufsz, kbuf->memsz); 859 860 return 0; 861 } 862 863 /** 864 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global 865 * variables and call setup_purgatory() to initialize 866 * common global variable. 867 * @image: kexec image. 868 * @slave_code: Slave code for the purgatory. 869 * @fdt: Flattened device tree for the next kernel. 870 * @kernel_load_addr: Address where the kernel is loaded. 871 * @fdt_load_addr: Address where the flattened device tree is loaded. 872 * 873 * Returns 0 on success, negative errno on error. 874 */ 875 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, 876 const void *fdt, unsigned long kernel_load_addr, 877 unsigned long fdt_load_addr) 878 { 879 struct device_node *dn = NULL; 880 int ret; 881 882 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, 883 fdt_load_addr); 884 if (ret) 885 goto out; 886 887 if (image->type == KEXEC_TYPE_CRASH) { 888 u32 my_run_at_load = 1; 889 890 /* 891 * Tell relocatable kernel to run at load address 892 * via the word meant for that at 0x5c. 893 */ 894 ret = kexec_purgatory_get_set_symbol(image, "run_at_load", 895 &my_run_at_load, 896 sizeof(my_run_at_load), 897 false); 898 if (ret) 899 goto out; 900 } 901 902 /* Tell purgatory where to look for backup region */ 903 ret = kexec_purgatory_get_set_symbol(image, "backup_start", 904 &image->arch.backup_start, 905 sizeof(image->arch.backup_start), 906 false); 907 if (ret) 908 goto out; 909 910 /* Setup OPAL base & entry values */ 911 dn = of_find_node_by_path("/ibm,opal"); 912 if (dn) { 913 u64 val; 914 915 of_property_read_u64(dn, "opal-base-address", &val); 916 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, 917 sizeof(val), false); 918 if (ret) 919 goto out; 920 921 of_property_read_u64(dn, "opal-entry-address", &val); 922 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, 923 sizeof(val), false); 924 } 925 out: 926 if (ret) 927 pr_err("Failed to setup purgatory symbols"); 928 of_node_put(dn); 929 return ret; 930 } 931 932 /** 933 * get_cpu_node_size - Compute the size of a CPU node in the FDT. 934 * This should be done only once and the value is stored in 935 * a static variable. 936 * Returns the max size of a CPU node in the FDT. 937 */ 938 static unsigned int cpu_node_size(void) 939 { 940 static unsigned int size; 941 struct device_node *dn; 942 struct property *pp; 943 944 /* 945 * Don't compute it twice, we are assuming that the per CPU node size 946 * doesn't change during the system's life. 947 */ 948 if (size) 949 return size; 950 951 dn = of_find_node_by_type(NULL, "cpu"); 952 if (WARN_ON_ONCE(!dn)) { 953 // Unlikely to happen 954 return 0; 955 } 956 957 /* 958 * We compute the sub node size for a CPU node, assuming it 959 * will be the same for all. 960 */ 961 size += strlen(dn->name) + 5; 962 for_each_property_of_node(dn, pp) { 963 size += strlen(pp->name); 964 size += pp->length; 965 } 966 967 of_node_put(dn); 968 return size; 969 } 970 971 /** 972 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to 973 * setup FDT for kexec/kdump kernel. 974 * @image: kexec image being loaded. 975 * 976 * Returns the estimated extra size needed for kexec/kdump kernel FDT. 977 */ 978 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) 979 { 980 unsigned int cpu_nodes, extra_size; 981 struct device_node *dn; 982 u64 usm_entries; 983 984 if (image->type != KEXEC_TYPE_CRASH) 985 return 0; 986 987 /* 988 * For kdump kernel, account for linux,usable-memory and 989 * linux,drconf-usable-memory properties. Get an approximate on the 990 * number of usable memory entries and use for FDT size estimation. 991 */ 992 usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) + 993 (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); 994 995 extra_size = (unsigned int)(usm_entries * sizeof(u64)); 996 997 /* 998 * Get the number of CPU nodes in the current DT. This allows to 999 * reserve places for CPU nodes added since the boot time. 1000 */ 1001 cpu_nodes = 0; 1002 for_each_node_by_type(dn, "cpu") { 1003 cpu_nodes++; 1004 } 1005 1006 if (cpu_nodes > boot_cpu_node_count) 1007 extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size(); 1008 1009 return extra_size; 1010 } 1011 1012 /** 1013 * add_node_props - Reads node properties from device node structure and add 1014 * them to fdt. 1015 * @fdt: Flattened device tree of the kernel 1016 * @node_offset: offset of the node to add a property at 1017 * @dn: device node pointer 1018 * 1019 * Returns 0 on success, negative errno on error. 1020 */ 1021 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 1022 { 1023 int ret = 0; 1024 struct property *pp; 1025 1026 if (!dn) 1027 return -EINVAL; 1028 1029 for_each_property_of_node(dn, pp) { 1030 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 1031 if (ret < 0) { 1032 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 1033 return ret; 1034 } 1035 } 1036 return ret; 1037 } 1038 1039 /** 1040 * update_cpus_node - Update cpus node of flattened device tree using of_root 1041 * device node. 1042 * @fdt: Flattened device tree of the kernel. 1043 * 1044 * Returns 0 on success, negative errno on error. 1045 */ 1046 static int update_cpus_node(void *fdt) 1047 { 1048 struct device_node *cpus_node, *dn; 1049 int cpus_offset, cpus_subnode_offset, ret = 0; 1050 1051 cpus_offset = fdt_path_offset(fdt, "/cpus"); 1052 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 1053 pr_err("Malformed device tree: error reading /cpus node: %s\n", 1054 fdt_strerror(cpus_offset)); 1055 return cpus_offset; 1056 } 1057 1058 if (cpus_offset > 0) { 1059 ret = fdt_del_node(fdt, cpus_offset); 1060 if (ret < 0) { 1061 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); 1062 return -EINVAL; 1063 } 1064 } 1065 1066 /* Add cpus node to fdt */ 1067 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); 1068 if (cpus_offset < 0) { 1069 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); 1070 return -EINVAL; 1071 } 1072 1073 /* Add cpus node properties */ 1074 cpus_node = of_find_node_by_path("/cpus"); 1075 ret = add_node_props(fdt, cpus_offset, cpus_node); 1076 of_node_put(cpus_node); 1077 if (ret < 0) 1078 return ret; 1079 1080 /* Loop through all subnodes of cpus and add them to fdt */ 1081 for_each_node_by_type(dn, "cpu") { 1082 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 1083 if (cpus_subnode_offset < 0) { 1084 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 1085 fdt_strerror(cpus_subnode_offset)); 1086 ret = cpus_subnode_offset; 1087 goto out; 1088 } 1089 1090 ret = add_node_props(fdt, cpus_subnode_offset, dn); 1091 if (ret < 0) 1092 goto out; 1093 } 1094 out: 1095 of_node_put(dn); 1096 return ret; 1097 } 1098 1099 static int copy_property(void *fdt, int node_offset, const struct device_node *dn, 1100 const char *propname) 1101 { 1102 const void *prop, *fdtprop; 1103 int len = 0, fdtlen = 0; 1104 1105 prop = of_get_property(dn, propname, &len); 1106 fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen); 1107 1108 if (fdtprop && !prop) 1109 return fdt_delprop(fdt, node_offset, propname); 1110 else if (prop) 1111 return fdt_setprop(fdt, node_offset, propname, prop, len); 1112 else 1113 return -FDT_ERR_NOTFOUND; 1114 } 1115 1116 static int update_pci_dma_nodes(void *fdt, const char *dmapropname) 1117 { 1118 struct device_node *dn; 1119 int pci_offset, root_offset, ret = 0; 1120 1121 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1122 return 0; 1123 1124 root_offset = fdt_path_offset(fdt, "/"); 1125 for_each_node_with_property(dn, dmapropname) { 1126 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn)); 1127 if (pci_offset < 0) 1128 continue; 1129 1130 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window"); 1131 if (ret < 0) 1132 break; 1133 ret = copy_property(fdt, pci_offset, dn, dmapropname); 1134 if (ret < 0) 1135 break; 1136 } 1137 1138 return ret; 1139 } 1140 1141 /** 1142 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel 1143 * being loaded. 1144 * @image: kexec image being loaded. 1145 * @fdt: Flattened device tree for the next kernel. 1146 * @initrd_load_addr: Address where the next initrd will be loaded. 1147 * @initrd_len: Size of the next initrd, or 0 if there will be none. 1148 * @cmdline: Command line for the next kernel, or NULL if there will 1149 * be none. 1150 * 1151 * Returns 0 on success, negative errno on error. 1152 */ 1153 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, 1154 unsigned long initrd_load_addr, 1155 unsigned long initrd_len, const char *cmdline) 1156 { 1157 struct crash_mem *umem = NULL, *rmem = NULL; 1158 int i, nr_ranges, ret; 1159 1160 /* 1161 * Restrict memory usage for kdump kernel by setting up 1162 * usable memory ranges and memory reserve map. 1163 */ 1164 if (image->type == KEXEC_TYPE_CRASH) { 1165 ret = get_usable_memory_ranges(&umem); 1166 if (ret) 1167 goto out; 1168 1169 ret = update_usable_mem_fdt(fdt, umem); 1170 if (ret) { 1171 pr_err("Error setting up usable-memory property for kdump kernel\n"); 1172 goto out; 1173 } 1174 1175 /* 1176 * Ensure we don't touch crashed kernel's memory except the 1177 * first 64K of RAM, which will be backed up. 1178 */ 1179 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, 1180 crashk_res.start - BACKUP_SRC_SIZE); 1181 if (ret) { 1182 pr_err("Error reserving crash memory: %s\n", 1183 fdt_strerror(ret)); 1184 goto out; 1185 } 1186 1187 /* Ensure backup region is not used by kdump/capture kernel */ 1188 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, 1189 BACKUP_SRC_SIZE); 1190 if (ret) { 1191 pr_err("Error reserving memory for backup: %s\n", 1192 fdt_strerror(ret)); 1193 goto out; 1194 } 1195 } 1196 1197 /* Update cpus nodes information to account hotplug CPUs. */ 1198 ret = update_cpus_node(fdt); 1199 if (ret < 0) 1200 goto out; 1201 1202 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" 1203 #define DMA64_PROPNAME "linux,dma64-ddr-window-info" 1204 ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME); 1205 if (ret < 0) 1206 goto out; 1207 1208 ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME); 1209 if (ret < 0) 1210 goto out; 1211 #undef DMA64_PROPNAME 1212 #undef DIRECT64_PROPNAME 1213 1214 /* Update memory reserve map */ 1215 ret = get_reserved_memory_ranges(&rmem); 1216 if (ret) 1217 goto out; 1218 1219 nr_ranges = rmem ? rmem->nr_ranges : 0; 1220 for (i = 0; i < nr_ranges; i++) { 1221 u64 base, size; 1222 1223 base = rmem->ranges[i].start; 1224 size = rmem->ranges[i].end - base + 1; 1225 ret = fdt_add_mem_rsv(fdt, base, size); 1226 if (ret) { 1227 pr_err("Error updating memory reserve map: %s\n", 1228 fdt_strerror(ret)); 1229 goto out; 1230 } 1231 } 1232 1233 out: 1234 kfree(rmem); 1235 kfree(umem); 1236 return ret; 1237 } 1238 1239 /** 1240 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, 1241 * tce-table, reserved-ranges & such (exclude 1242 * memory ranges) as they can't be used for kexec 1243 * segment buffer. Sets kbuf->mem when a suitable 1244 * memory hole is found. 1245 * @kbuf: Buffer contents and memory parameters. 1246 * 1247 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. 1248 * 1249 * Returns 0 on success, negative errno on error. 1250 */ 1251 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 1252 { 1253 struct crash_mem **emem; 1254 u64 buf_min, buf_max; 1255 int ret; 1256 1257 /* Look up the exclude ranges list while locating the memory hole */ 1258 emem = &(kbuf->image->arch.exclude_ranges); 1259 if (!(*emem) || ((*emem)->nr_ranges == 0)) { 1260 pr_warn("No exclude range list. Using the default locate mem hole method\n"); 1261 return kexec_locate_mem_hole(kbuf); 1262 } 1263 1264 buf_min = kbuf->buf_min; 1265 buf_max = kbuf->buf_max; 1266 /* Segments for kdump kernel should be within crashkernel region */ 1267 if (kbuf->image->type == KEXEC_TYPE_CRASH) { 1268 buf_min = (buf_min < crashk_res.start ? 1269 crashk_res.start : buf_min); 1270 buf_max = (buf_max > crashk_res.end ? 1271 crashk_res.end : buf_max); 1272 } 1273 1274 if (buf_min > buf_max) { 1275 pr_err("Invalid buffer min and/or max values\n"); 1276 return -EINVAL; 1277 } 1278 1279 if (kbuf->top_down) 1280 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, 1281 *emem); 1282 else 1283 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, 1284 *emem); 1285 1286 /* Add the buffer allocated to the exclude list for the next lookup */ 1287 if (!ret) { 1288 add_mem_range(emem, kbuf->mem, kbuf->memsz); 1289 sort_memory_ranges(*emem, true); 1290 } else { 1291 pr_err("Failed to locate memory buffer of size %lu\n", 1292 kbuf->memsz); 1293 } 1294 return ret; 1295 } 1296 1297 /** 1298 * arch_kexec_kernel_image_probe - Does additional handling needed to setup 1299 * kexec segments. 1300 * @image: kexec image being loaded. 1301 * @buf: Buffer pointing to elf data. 1302 * @buf_len: Length of the buffer. 1303 * 1304 * Returns 0 on success, negative errno on error. 1305 */ 1306 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 1307 unsigned long buf_len) 1308 { 1309 int ret; 1310 1311 /* Get exclude memory ranges needed for setting up kexec segments */ 1312 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); 1313 if (ret) { 1314 pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); 1315 return ret; 1316 } 1317 1318 return kexec_image_probe_default(image, buf, buf_len); 1319 } 1320 1321 /** 1322 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done 1323 * while loading the image. 1324 * @image: kexec image being loaded. 1325 * 1326 * Returns 0 on success, negative errno on error. 1327 */ 1328 int arch_kimage_file_post_load_cleanup(struct kimage *image) 1329 { 1330 kfree(image->arch.exclude_ranges); 1331 image->arch.exclude_ranges = NULL; 1332 1333 vfree(image->arch.backup_buf); 1334 image->arch.backup_buf = NULL; 1335 1336 vfree(image->elf_headers); 1337 image->elf_headers = NULL; 1338 image->elf_headers_sz = 0; 1339 1340 kvfree(image->arch.fdt); 1341 image->arch.fdt = NULL; 1342 1343 return kexec_image_post_load_cleanup_default(image); 1344 } 1345