1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ppc64 code to implement the kexec_file_load syscall 4 * 5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) 6 * Copyright (C) 2004 IBM Corp. 7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation 8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) 9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) 10 * Copyright (C) 2020 IBM Corporation 11 * 12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. 13 * Heavily modified for the kernel by 14 * Hari Bathini, IBM Corporation. 15 */ 16 17 #include <linux/kexec.h> 18 #include <linux/of_fdt.h> 19 #include <linux/libfdt.h> 20 #include <linux/of_device.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <asm/drmem.h> 25 #include <asm/kexec_ranges.h> 26 #include <asm/crashdump-ppc64.h> 27 28 struct umem_info { 29 u64 *buf; /* data buffer for usable-memory property */ 30 u32 size; /* size allocated for the data buffer */ 31 u32 max_entries; /* maximum no. of entries */ 32 u32 idx; /* index of current entry */ 33 34 /* usable memory ranges to look up */ 35 unsigned int nr_ranges; 36 const struct crash_mem_range *ranges; 37 }; 38 39 const struct kexec_file_ops * const kexec_file_loaders[] = { 40 &kexec_elf64_ops, 41 NULL 42 }; 43 44 /** 45 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes 46 * regions like opal/rtas, tce-table, initrd, 47 * kernel, htab which should be avoided while 48 * setting up kexec load segments. 49 * @mem_ranges: Range list to add the memory ranges to. 50 * 51 * Returns 0 on success, negative errno on error. 52 */ 53 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) 54 { 55 int ret; 56 57 ret = add_tce_mem_ranges(mem_ranges); 58 if (ret) 59 goto out; 60 61 ret = add_initrd_mem_range(mem_ranges); 62 if (ret) 63 goto out; 64 65 ret = add_htab_mem_range(mem_ranges); 66 if (ret) 67 goto out; 68 69 ret = add_kernel_mem_range(mem_ranges); 70 if (ret) 71 goto out; 72 73 ret = add_rtas_mem_range(mem_ranges); 74 if (ret) 75 goto out; 76 77 ret = add_opal_mem_range(mem_ranges); 78 if (ret) 79 goto out; 80 81 ret = add_reserved_mem_ranges(mem_ranges); 82 if (ret) 83 goto out; 84 85 /* exclude memory ranges should be sorted for easy lookup */ 86 sort_memory_ranges(*mem_ranges, true); 87 out: 88 if (ret) 89 pr_err("Failed to setup exclude memory ranges\n"); 90 return ret; 91 } 92 93 /** 94 * get_usable_memory_ranges - Get usable memory ranges. This list includes 95 * regions like crashkernel, opal/rtas & tce-table, 96 * that kdump kernel could use. 97 * @mem_ranges: Range list to add the memory ranges to. 98 * 99 * Returns 0 on success, negative errno on error. 100 */ 101 static int get_usable_memory_ranges(struct crash_mem **mem_ranges) 102 { 103 int ret; 104 105 /* 106 * Early boot failure observed on guests when low memory (first memory 107 * block?) is not added to usable memory. So, add [0, crashk_res.end] 108 * instead of [crashk_res.start, crashk_res.end] to workaround it. 109 * Also, crashed kernel's memory must be added to reserve map to 110 * avoid kdump kernel from using it. 111 */ 112 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); 113 if (ret) 114 goto out; 115 116 ret = add_rtas_mem_range(mem_ranges); 117 if (ret) 118 goto out; 119 120 ret = add_opal_mem_range(mem_ranges); 121 if (ret) 122 goto out; 123 124 ret = add_tce_mem_ranges(mem_ranges); 125 out: 126 if (ret) 127 pr_err("Failed to setup usable memory ranges\n"); 128 return ret; 129 } 130 131 /** 132 * get_crash_memory_ranges - Get crash memory ranges. This list includes 133 * first/crashing kernel's memory regions that 134 * would be exported via an elfcore. 135 * @mem_ranges: Range list to add the memory ranges to. 136 * 137 * Returns 0 on success, negative errno on error. 138 */ 139 static int get_crash_memory_ranges(struct crash_mem **mem_ranges) 140 { 141 phys_addr_t base, end; 142 struct crash_mem *tmem; 143 u64 i; 144 int ret; 145 146 for_each_mem_range(i, &base, &end) { 147 u64 size = end - base; 148 149 /* Skip backup memory region, which needs a separate entry */ 150 if (base == BACKUP_SRC_START) { 151 if (size > BACKUP_SRC_SIZE) { 152 base = BACKUP_SRC_END + 1; 153 size -= BACKUP_SRC_SIZE; 154 } else 155 continue; 156 } 157 158 ret = add_mem_range(mem_ranges, base, size); 159 if (ret) 160 goto out; 161 162 /* Try merging adjacent ranges before reallocation attempt */ 163 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) 164 sort_memory_ranges(*mem_ranges, true); 165 } 166 167 /* Reallocate memory ranges if there is no space to split ranges */ 168 tmem = *mem_ranges; 169 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { 170 tmem = realloc_mem_ranges(mem_ranges); 171 if (!tmem) 172 goto out; 173 } 174 175 /* Exclude crashkernel region */ 176 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); 177 if (ret) 178 goto out; 179 180 /* 181 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL 182 * regions are exported to save their context at the time of 183 * crash, they should actually be backed up just like the 184 * first 64K bytes of memory. 185 */ 186 ret = add_rtas_mem_range(mem_ranges); 187 if (ret) 188 goto out; 189 190 ret = add_opal_mem_range(mem_ranges); 191 if (ret) 192 goto out; 193 194 /* create a separate program header for the backup region */ 195 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); 196 if (ret) 197 goto out; 198 199 sort_memory_ranges(*mem_ranges, false); 200 out: 201 if (ret) 202 pr_err("Failed to setup crash memory ranges\n"); 203 return ret; 204 } 205 206 /** 207 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes 208 * memory regions that should be added to the 209 * memory reserve map to ensure the region is 210 * protected from any mischief. 211 * @mem_ranges: Range list to add the memory ranges to. 212 * 213 * Returns 0 on success, negative errno on error. 214 */ 215 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) 216 { 217 int ret; 218 219 ret = add_rtas_mem_range(mem_ranges); 220 if (ret) 221 goto out; 222 223 ret = add_tce_mem_ranges(mem_ranges); 224 if (ret) 225 goto out; 226 227 ret = add_reserved_mem_ranges(mem_ranges); 228 out: 229 if (ret) 230 pr_err("Failed to setup reserved memory ranges\n"); 231 return ret; 232 } 233 234 /** 235 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole 236 * in the memory regions between buf_min & buf_max 237 * for the buffer. If found, sets kbuf->mem. 238 * @kbuf: Buffer contents and memory parameters. 239 * @buf_min: Minimum address for the buffer. 240 * @buf_max: Maximum address for the buffer. 241 * 242 * Returns 0 on success, negative errno on error. 243 */ 244 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, 245 u64 buf_min, u64 buf_max) 246 { 247 int ret = -EADDRNOTAVAIL; 248 phys_addr_t start, end; 249 u64 i; 250 251 for_each_mem_range_rev(i, &start, &end) { 252 /* 253 * memblock uses [start, end) convention while it is 254 * [start, end] here. Fix the off-by-one to have the 255 * same convention. 256 */ 257 end -= 1; 258 259 if (start > buf_max) 260 continue; 261 262 /* Memory hole not found */ 263 if (end < buf_min) 264 break; 265 266 /* Adjust memory region based on the given range */ 267 if (start < buf_min) 268 start = buf_min; 269 if (end > buf_max) 270 end = buf_max; 271 272 start = ALIGN(start, kbuf->buf_align); 273 if (start < end && (end - start + 1) >= kbuf->memsz) { 274 /* Suitable memory range found. Set kbuf->mem */ 275 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, 276 kbuf->buf_align); 277 ret = 0; 278 break; 279 } 280 } 281 282 return ret; 283 } 284 285 /** 286 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a 287 * suitable buffer with top down approach. 288 * @kbuf: Buffer contents and memory parameters. 289 * @buf_min: Minimum address for the buffer. 290 * @buf_max: Maximum address for the buffer. 291 * @emem: Exclude memory ranges. 292 * 293 * Returns 0 on success, negative errno on error. 294 */ 295 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, 296 u64 buf_min, u64 buf_max, 297 const struct crash_mem *emem) 298 { 299 int i, ret = 0, err = -EADDRNOTAVAIL; 300 u64 start, end, tmin, tmax; 301 302 tmax = buf_max; 303 for (i = (emem->nr_ranges - 1); i >= 0; i--) { 304 start = emem->ranges[i].start; 305 end = emem->ranges[i].end; 306 307 if (start > tmax) 308 continue; 309 310 if (end < tmax) { 311 tmin = (end < buf_min ? buf_min : end + 1); 312 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 313 if (!ret) 314 return 0; 315 } 316 317 tmax = start - 1; 318 319 if (tmax < buf_min) { 320 ret = err; 321 break; 322 } 323 ret = 0; 324 } 325 326 if (!ret) { 327 tmin = buf_min; 328 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 329 } 330 return ret; 331 } 332 333 /** 334 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole 335 * in the memory regions between buf_min & buf_max 336 * for the buffer. If found, sets kbuf->mem. 337 * @kbuf: Buffer contents and memory parameters. 338 * @buf_min: Minimum address for the buffer. 339 * @buf_max: Maximum address for the buffer. 340 * 341 * Returns 0 on success, negative errno on error. 342 */ 343 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, 344 u64 buf_min, u64 buf_max) 345 { 346 int ret = -EADDRNOTAVAIL; 347 phys_addr_t start, end; 348 u64 i; 349 350 for_each_mem_range(i, &start, &end) { 351 /* 352 * memblock uses [start, end) convention while it is 353 * [start, end] here. Fix the off-by-one to have the 354 * same convention. 355 */ 356 end -= 1; 357 358 if (end < buf_min) 359 continue; 360 361 /* Memory hole not found */ 362 if (start > buf_max) 363 break; 364 365 /* Adjust memory region based on the given range */ 366 if (start < buf_min) 367 start = buf_min; 368 if (end > buf_max) 369 end = buf_max; 370 371 start = ALIGN(start, kbuf->buf_align); 372 if (start < end && (end - start + 1) >= kbuf->memsz) { 373 /* Suitable memory range found. Set kbuf->mem */ 374 kbuf->mem = start; 375 ret = 0; 376 break; 377 } 378 } 379 380 return ret; 381 } 382 383 /** 384 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a 385 * suitable buffer with bottom up approach. 386 * @kbuf: Buffer contents and memory parameters. 387 * @buf_min: Minimum address for the buffer. 388 * @buf_max: Maximum address for the buffer. 389 * @emem: Exclude memory ranges. 390 * 391 * Returns 0 on success, negative errno on error. 392 */ 393 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, 394 u64 buf_min, u64 buf_max, 395 const struct crash_mem *emem) 396 { 397 int i, ret = 0, err = -EADDRNOTAVAIL; 398 u64 start, end, tmin, tmax; 399 400 tmin = buf_min; 401 for (i = 0; i < emem->nr_ranges; i++) { 402 start = emem->ranges[i].start; 403 end = emem->ranges[i].end; 404 405 if (end < tmin) 406 continue; 407 408 if (start > tmin) { 409 tmax = (start > buf_max ? buf_max : start - 1); 410 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 411 if (!ret) 412 return 0; 413 } 414 415 tmin = end + 1; 416 417 if (tmin > buf_max) { 418 ret = err; 419 break; 420 } 421 ret = 0; 422 } 423 424 if (!ret) { 425 tmax = buf_max; 426 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 427 } 428 return ret; 429 } 430 431 /** 432 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries 433 * @um_info: Usable memory buffer and ranges info. 434 * @cnt: No. of entries to accommodate. 435 * 436 * Frees up the old buffer if memory reallocation fails. 437 * 438 * Returns buffer on success, NULL on error. 439 */ 440 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) 441 { 442 u32 new_size; 443 u64 *tbuf; 444 445 if ((um_info->idx + cnt) <= um_info->max_entries) 446 return um_info->buf; 447 448 new_size = um_info->size + MEM_RANGE_CHUNK_SZ; 449 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); 450 if (tbuf) { 451 um_info->buf = tbuf; 452 um_info->size = new_size; 453 um_info->max_entries = (um_info->size / sizeof(u64)); 454 } 455 456 return tbuf; 457 } 458 459 /** 460 * add_usable_mem - Add the usable memory ranges within the given memory range 461 * to the buffer 462 * @um_info: Usable memory buffer and ranges info. 463 * @base: Base address of memory range to look for. 464 * @end: End address of memory range to look for. 465 * 466 * Returns 0 on success, negative errno on error. 467 */ 468 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) 469 { 470 u64 loc_base, loc_end; 471 bool add; 472 int i; 473 474 for (i = 0; i < um_info->nr_ranges; i++) { 475 add = false; 476 loc_base = um_info->ranges[i].start; 477 loc_end = um_info->ranges[i].end; 478 if (loc_base >= base && loc_end <= end) 479 add = true; 480 else if (base < loc_end && end > loc_base) { 481 if (loc_base < base) 482 loc_base = base; 483 if (loc_end > end) 484 loc_end = end; 485 add = true; 486 } 487 488 if (add) { 489 if (!check_realloc_usable_mem(um_info, 2)) 490 return -ENOMEM; 491 492 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); 493 um_info->buf[um_info->idx++] = 494 cpu_to_be64(loc_end - loc_base + 1); 495 } 496 } 497 498 return 0; 499 } 500 501 /** 502 * kdump_setup_usable_lmb - This is a callback function that gets called by 503 * walk_drmem_lmbs for every LMB to set its 504 * usable memory ranges. 505 * @lmb: LMB info. 506 * @usm: linux,drconf-usable-memory property value. 507 * @data: Pointer to usable memory buffer and ranges info. 508 * 509 * Returns 0 on success, negative errno on error. 510 */ 511 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, 512 void *data) 513 { 514 struct umem_info *um_info; 515 int tmp_idx, ret; 516 u64 base, end; 517 518 /* 519 * kdump load isn't supported on kernels already booted with 520 * linux,drconf-usable-memory property. 521 */ 522 if (*usm) { 523 pr_err("linux,drconf-usable-memory property already exists!"); 524 return -EINVAL; 525 } 526 527 um_info = data; 528 tmp_idx = um_info->idx; 529 if (!check_realloc_usable_mem(um_info, 1)) 530 return -ENOMEM; 531 532 um_info->idx++; 533 base = lmb->base_addr; 534 end = base + drmem_lmb_size() - 1; 535 ret = add_usable_mem(um_info, base, end); 536 if (!ret) { 537 /* 538 * Update the no. of ranges added. Two entries (base & size) 539 * for every range added. 540 */ 541 um_info->buf[tmp_idx] = 542 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); 543 } 544 545 return ret; 546 } 547 548 #define NODE_PATH_LEN 256 549 /** 550 * add_usable_mem_property - Add usable memory property for the given 551 * memory node. 552 * @fdt: Flattened device tree for the kdump kernel. 553 * @dn: Memory node. 554 * @um_info: Usable memory buffer and ranges info. 555 * 556 * Returns 0 on success, negative errno on error. 557 */ 558 static int add_usable_mem_property(void *fdt, struct device_node *dn, 559 struct umem_info *um_info) 560 { 561 int n_mem_addr_cells, n_mem_size_cells, node; 562 char path[NODE_PATH_LEN]; 563 int i, len, ranges, ret; 564 const __be32 *prop; 565 u64 base, end; 566 567 of_node_get(dn); 568 569 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { 570 pr_err("Buffer (%d) too small for memory node: %pOF\n", 571 NODE_PATH_LEN, dn); 572 return -EOVERFLOW; 573 } 574 pr_debug("Memory node path: %s\n", path); 575 576 /* Now that we know the path, find its offset in kdump kernel's fdt */ 577 node = fdt_path_offset(fdt, path); 578 if (node < 0) { 579 pr_err("Malformed device tree: error reading %s\n", path); 580 ret = -EINVAL; 581 goto out; 582 } 583 584 /* Get the address & size cells */ 585 n_mem_addr_cells = of_n_addr_cells(dn); 586 n_mem_size_cells = of_n_size_cells(dn); 587 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, 588 n_mem_size_cells); 589 590 um_info->idx = 0; 591 if (!check_realloc_usable_mem(um_info, 2)) { 592 ret = -ENOMEM; 593 goto out; 594 } 595 596 prop = of_get_property(dn, "reg", &len); 597 if (!prop || len <= 0) { 598 ret = 0; 599 goto out; 600 } 601 602 /* 603 * "reg" property represents sequence of (addr,size) tuples 604 * each representing a memory range. 605 */ 606 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 607 608 for (i = 0; i < ranges; i++) { 609 base = of_read_number(prop, n_mem_addr_cells); 610 prop += n_mem_addr_cells; 611 end = base + of_read_number(prop, n_mem_size_cells) - 1; 612 prop += n_mem_size_cells; 613 614 ret = add_usable_mem(um_info, base, end); 615 if (ret) 616 goto out; 617 } 618 619 /* 620 * No kdump kernel usable memory found in this memory node. 621 * Write (0,0) tuple in linux,usable-memory property for 622 * this region to be ignored. 623 */ 624 if (um_info->idx == 0) { 625 um_info->buf[0] = 0; 626 um_info->buf[1] = 0; 627 um_info->idx = 2; 628 } 629 630 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, 631 (um_info->idx * sizeof(u64))); 632 633 out: 634 of_node_put(dn); 635 return ret; 636 } 637 638 639 /** 640 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory 641 * and linux,drconf-usable-memory DT properties as 642 * appropriate to restrict its memory usage. 643 * @fdt: Flattened device tree for the kdump kernel. 644 * @usable_mem: Usable memory ranges for kdump kernel. 645 * 646 * Returns 0 on success, negative errno on error. 647 */ 648 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) 649 { 650 struct umem_info um_info; 651 struct device_node *dn; 652 int node, ret = 0; 653 654 if (!usable_mem) { 655 pr_err("Usable memory ranges for kdump kernel not found\n"); 656 return -ENOENT; 657 } 658 659 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 660 if (node == -FDT_ERR_NOTFOUND) 661 pr_debug("No dynamic reconfiguration memory found\n"); 662 else if (node < 0) { 663 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); 664 return -EINVAL; 665 } 666 667 um_info.buf = NULL; 668 um_info.size = 0; 669 um_info.max_entries = 0; 670 um_info.idx = 0; 671 /* Memory ranges to look up */ 672 um_info.ranges = &(usable_mem->ranges[0]); 673 um_info.nr_ranges = usable_mem->nr_ranges; 674 675 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 676 if (dn) { 677 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); 678 of_node_put(dn); 679 680 if (ret) { 681 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); 682 goto out; 683 } 684 685 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", 686 um_info.buf, (um_info.idx * sizeof(u64))); 687 if (ret) { 688 pr_err("Failed to update fdt with linux,drconf-usable-memory property"); 689 goto out; 690 } 691 } 692 693 /* 694 * Walk through each memory node and set linux,usable-memory property 695 * for the corresponding node in kdump kernel's fdt. 696 */ 697 for_each_node_by_type(dn, "memory") { 698 ret = add_usable_mem_property(fdt, dn, &um_info); 699 if (ret) { 700 pr_err("Failed to set linux,usable-memory property for %s node", 701 dn->full_name); 702 goto out; 703 } 704 } 705 706 out: 707 kfree(um_info.buf); 708 return ret; 709 } 710 711 /** 712 * load_backup_segment - Locate a memory hole to place the backup region. 713 * @image: Kexec image. 714 * @kbuf: Buffer contents and memory parameters. 715 * 716 * Returns 0 on success, negative errno on error. 717 */ 718 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) 719 { 720 void *buf; 721 int ret; 722 723 /* 724 * Setup a source buffer for backup segment. 725 * 726 * A source buffer has no meaning for backup region as data will 727 * be copied from backup source, after crash, in the purgatory. 728 * But as load segment code doesn't recognize such segments, 729 * setup a dummy source buffer to keep it happy for now. 730 */ 731 buf = vzalloc(BACKUP_SRC_SIZE); 732 if (!buf) 733 return -ENOMEM; 734 735 kbuf->buffer = buf; 736 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 737 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; 738 kbuf->top_down = false; 739 740 ret = kexec_add_buffer(kbuf); 741 if (ret) { 742 vfree(buf); 743 return ret; 744 } 745 746 image->arch.backup_buf = buf; 747 image->arch.backup_start = kbuf->mem; 748 return 0; 749 } 750 751 /** 752 * update_backup_region_phdr - Update backup region's offset for the core to 753 * export the region appropriately. 754 * @image: Kexec image. 755 * @ehdr: ELF core header. 756 * 757 * Assumes an exclusive program header is setup for the backup region 758 * in the ELF headers 759 * 760 * Returns nothing. 761 */ 762 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) 763 { 764 Elf64_Phdr *phdr; 765 unsigned int i; 766 767 phdr = (Elf64_Phdr *)(ehdr + 1); 768 for (i = 0; i < ehdr->e_phnum; i++) { 769 if (phdr->p_paddr == BACKUP_SRC_START) { 770 phdr->p_offset = image->arch.backup_start; 771 pr_debug("Backup region offset updated to 0x%lx\n", 772 image->arch.backup_start); 773 return; 774 } 775 } 776 } 777 778 /** 779 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr 780 * segment needed to load kdump kernel. 781 * @image: Kexec image. 782 * @kbuf: Buffer contents and memory parameters. 783 * 784 * Returns 0 on success, negative errno on error. 785 */ 786 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) 787 { 788 struct crash_mem *cmem = NULL; 789 unsigned long headers_sz; 790 void *headers = NULL; 791 int ret; 792 793 ret = get_crash_memory_ranges(&cmem); 794 if (ret) 795 goto out; 796 797 /* Setup elfcorehdr segment */ 798 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); 799 if (ret) { 800 pr_err("Failed to prepare elf headers for the core\n"); 801 goto out; 802 } 803 804 /* Fix the offset for backup region in the ELF header */ 805 update_backup_region_phdr(image, headers); 806 807 kbuf->buffer = headers; 808 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 809 kbuf->bufsz = kbuf->memsz = headers_sz; 810 kbuf->top_down = false; 811 812 ret = kexec_add_buffer(kbuf); 813 if (ret) { 814 vfree(headers); 815 goto out; 816 } 817 818 image->arch.elfcorehdr_addr = kbuf->mem; 819 image->arch.elf_headers_sz = headers_sz; 820 image->arch.elf_headers = headers; 821 out: 822 kfree(cmem); 823 return ret; 824 } 825 826 /** 827 * load_crashdump_segments_ppc64 - Initialize the additional segements needed 828 * to load kdump kernel. 829 * @image: Kexec image. 830 * @kbuf: Buffer contents and memory parameters. 831 * 832 * Returns 0 on success, negative errno on error. 833 */ 834 int load_crashdump_segments_ppc64(struct kimage *image, 835 struct kexec_buf *kbuf) 836 { 837 int ret; 838 839 /* Load backup segment - first 64K bytes of the crashing kernel */ 840 ret = load_backup_segment(image, kbuf); 841 if (ret) { 842 pr_err("Failed to load backup segment\n"); 843 return ret; 844 } 845 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); 846 847 /* Load elfcorehdr segment - to export crashing kernel's vmcore */ 848 ret = load_elfcorehdr_segment(image, kbuf); 849 if (ret) { 850 pr_err("Failed to load elfcorehdr segment\n"); 851 return ret; 852 } 853 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", 854 image->arch.elfcorehdr_addr, kbuf->bufsz, kbuf->memsz); 855 856 return 0; 857 } 858 859 /** 860 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global 861 * variables and call setup_purgatory() to initialize 862 * common global variable. 863 * @image: kexec image. 864 * @slave_code: Slave code for the purgatory. 865 * @fdt: Flattened device tree for the next kernel. 866 * @kernel_load_addr: Address where the kernel is loaded. 867 * @fdt_load_addr: Address where the flattened device tree is loaded. 868 * 869 * Returns 0 on success, negative errno on error. 870 */ 871 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, 872 const void *fdt, unsigned long kernel_load_addr, 873 unsigned long fdt_load_addr) 874 { 875 struct device_node *dn = NULL; 876 int ret; 877 878 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, 879 fdt_load_addr); 880 if (ret) 881 goto out; 882 883 if (image->type == KEXEC_TYPE_CRASH) { 884 u32 my_run_at_load = 1; 885 886 /* 887 * Tell relocatable kernel to run at load address 888 * via the word meant for that at 0x5c. 889 */ 890 ret = kexec_purgatory_get_set_symbol(image, "run_at_load", 891 &my_run_at_load, 892 sizeof(my_run_at_load), 893 false); 894 if (ret) 895 goto out; 896 } 897 898 /* Tell purgatory where to look for backup region */ 899 ret = kexec_purgatory_get_set_symbol(image, "backup_start", 900 &image->arch.backup_start, 901 sizeof(image->arch.backup_start), 902 false); 903 if (ret) 904 goto out; 905 906 /* Setup OPAL base & entry values */ 907 dn = of_find_node_by_path("/ibm,opal"); 908 if (dn) { 909 u64 val; 910 911 of_property_read_u64(dn, "opal-base-address", &val); 912 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, 913 sizeof(val), false); 914 if (ret) 915 goto out; 916 917 of_property_read_u64(dn, "opal-entry-address", &val); 918 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, 919 sizeof(val), false); 920 } 921 out: 922 if (ret) 923 pr_err("Failed to setup purgatory symbols"); 924 of_node_put(dn); 925 return ret; 926 } 927 928 /** 929 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel 930 * being loaded. 931 * @image: kexec image being loaded. 932 * @fdt: Flattened device tree for the next kernel. 933 * @initrd_load_addr: Address where the next initrd will be loaded. 934 * @initrd_len: Size of the next initrd, or 0 if there will be none. 935 * @cmdline: Command line for the next kernel, or NULL if there will 936 * be none. 937 * 938 * Returns 0 on success, negative errno on error. 939 */ 940 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, 941 unsigned long initrd_load_addr, 942 unsigned long initrd_len, const char *cmdline) 943 { 944 struct crash_mem *umem = NULL, *rmem = NULL; 945 int i, nr_ranges, ret; 946 947 ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline); 948 if (ret) 949 goto out; 950 951 /* 952 * Restrict memory usage for kdump kernel by setting up 953 * usable memory ranges and memory reserve map. 954 */ 955 if (image->type == KEXEC_TYPE_CRASH) { 956 ret = get_usable_memory_ranges(&umem); 957 if (ret) 958 goto out; 959 960 ret = update_usable_mem_fdt(fdt, umem); 961 if (ret) { 962 pr_err("Error setting up usable-memory property for kdump kernel\n"); 963 goto out; 964 } 965 966 /* 967 * Ensure we don't touch crashed kernel's memory except the 968 * first 64K of RAM, which will be backed up. 969 */ 970 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, 971 crashk_res.start - BACKUP_SRC_SIZE); 972 if (ret) { 973 pr_err("Error reserving crash memory: %s\n", 974 fdt_strerror(ret)); 975 goto out; 976 } 977 978 /* Ensure backup region is not used by kdump/capture kernel */ 979 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, 980 BACKUP_SRC_SIZE); 981 if (ret) { 982 pr_err("Error reserving memory for backup: %s\n", 983 fdt_strerror(ret)); 984 goto out; 985 } 986 } 987 988 /* Update memory reserve map */ 989 ret = get_reserved_memory_ranges(&rmem); 990 if (ret) 991 goto out; 992 993 nr_ranges = rmem ? rmem->nr_ranges : 0; 994 for (i = 0; i < nr_ranges; i++) { 995 u64 base, size; 996 997 base = rmem->ranges[i].start; 998 size = rmem->ranges[i].end - base + 1; 999 ret = fdt_add_mem_rsv(fdt, base, size); 1000 if (ret) { 1001 pr_err("Error updating memory reserve map: %s\n", 1002 fdt_strerror(ret)); 1003 goto out; 1004 } 1005 } 1006 1007 out: 1008 kfree(rmem); 1009 kfree(umem); 1010 return ret; 1011 } 1012 1013 /** 1014 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, 1015 * tce-table, reserved-ranges & such (exclude 1016 * memory ranges) as they can't be used for kexec 1017 * segment buffer. Sets kbuf->mem when a suitable 1018 * memory hole is found. 1019 * @kbuf: Buffer contents and memory parameters. 1020 * 1021 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. 1022 * 1023 * Returns 0 on success, negative errno on error. 1024 */ 1025 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 1026 { 1027 struct crash_mem **emem; 1028 u64 buf_min, buf_max; 1029 int ret; 1030 1031 /* Look up the exclude ranges list while locating the memory hole */ 1032 emem = &(kbuf->image->arch.exclude_ranges); 1033 if (!(*emem) || ((*emem)->nr_ranges == 0)) { 1034 pr_warn("No exclude range list. Using the default locate mem hole method\n"); 1035 return kexec_locate_mem_hole(kbuf); 1036 } 1037 1038 buf_min = kbuf->buf_min; 1039 buf_max = kbuf->buf_max; 1040 /* Segments for kdump kernel should be within crashkernel region */ 1041 if (kbuf->image->type == KEXEC_TYPE_CRASH) { 1042 buf_min = (buf_min < crashk_res.start ? 1043 crashk_res.start : buf_min); 1044 buf_max = (buf_max > crashk_res.end ? 1045 crashk_res.end : buf_max); 1046 } 1047 1048 if (buf_min > buf_max) { 1049 pr_err("Invalid buffer min and/or max values\n"); 1050 return -EINVAL; 1051 } 1052 1053 if (kbuf->top_down) 1054 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, 1055 *emem); 1056 else 1057 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, 1058 *emem); 1059 1060 /* Add the buffer allocated to the exclude list for the next lookup */ 1061 if (!ret) { 1062 add_mem_range(emem, kbuf->mem, kbuf->memsz); 1063 sort_memory_ranges(*emem, true); 1064 } else { 1065 pr_err("Failed to locate memory buffer of size %lu\n", 1066 kbuf->memsz); 1067 } 1068 return ret; 1069 } 1070 1071 /** 1072 * arch_kexec_kernel_image_probe - Does additional handling needed to setup 1073 * kexec segments. 1074 * @image: kexec image being loaded. 1075 * @buf: Buffer pointing to elf data. 1076 * @buf_len: Length of the buffer. 1077 * 1078 * Returns 0 on success, negative errno on error. 1079 */ 1080 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 1081 unsigned long buf_len) 1082 { 1083 int ret; 1084 1085 /* Get exclude memory ranges needed for setting up kexec segments */ 1086 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); 1087 if (ret) { 1088 pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); 1089 return ret; 1090 } 1091 1092 return kexec_image_probe_default(image, buf, buf_len); 1093 } 1094 1095 /** 1096 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done 1097 * while loading the image. 1098 * @image: kexec image being loaded. 1099 * 1100 * Returns 0 on success, negative errno on error. 1101 */ 1102 int arch_kimage_file_post_load_cleanup(struct kimage *image) 1103 { 1104 kfree(image->arch.exclude_ranges); 1105 image->arch.exclude_ranges = NULL; 1106 1107 vfree(image->arch.backup_buf); 1108 image->arch.backup_buf = NULL; 1109 1110 vfree(image->arch.elf_headers); 1111 image->arch.elf_headers = NULL; 1112 image->arch.elf_headers_sz = 0; 1113 1114 return kexec_image_post_load_cleanup_default(image); 1115 } 1116