1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ppc64 code to implement the kexec_file_load syscall 4 * 5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) 6 * Copyright (C) 2004 IBM Corp. 7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation 8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) 9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) 10 * Copyright (C) 2020 IBM Corporation 11 * 12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. 13 * Heavily modified for the kernel by 14 * Hari Bathini, IBM Corporation. 15 */ 16 17 #include <linux/kexec.h> 18 #include <linux/of_fdt.h> 19 #include <linux/libfdt.h> 20 #include <linux/of_device.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <asm/setup.h> 25 #include <asm/drmem.h> 26 #include <asm/firmware.h> 27 #include <asm/kexec_ranges.h> 28 #include <asm/crashdump-ppc64.h> 29 30 struct umem_info { 31 u64 *buf; /* data buffer for usable-memory property */ 32 u32 size; /* size allocated for the data buffer */ 33 u32 max_entries; /* maximum no. of entries */ 34 u32 idx; /* index of current entry */ 35 36 /* usable memory ranges to look up */ 37 unsigned int nr_ranges; 38 const struct crash_mem_range *ranges; 39 }; 40 41 const struct kexec_file_ops * const kexec_file_loaders[] = { 42 &kexec_elf64_ops, 43 NULL 44 }; 45 46 /** 47 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes 48 * regions like opal/rtas, tce-table, initrd, 49 * kernel, htab which should be avoided while 50 * setting up kexec load segments. 51 * @mem_ranges: Range list to add the memory ranges to. 52 * 53 * Returns 0 on success, negative errno on error. 54 */ 55 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) 56 { 57 int ret; 58 59 ret = add_tce_mem_ranges(mem_ranges); 60 if (ret) 61 goto out; 62 63 ret = add_initrd_mem_range(mem_ranges); 64 if (ret) 65 goto out; 66 67 ret = add_htab_mem_range(mem_ranges); 68 if (ret) 69 goto out; 70 71 ret = add_kernel_mem_range(mem_ranges); 72 if (ret) 73 goto out; 74 75 ret = add_rtas_mem_range(mem_ranges); 76 if (ret) 77 goto out; 78 79 ret = add_opal_mem_range(mem_ranges); 80 if (ret) 81 goto out; 82 83 ret = add_reserved_mem_ranges(mem_ranges); 84 if (ret) 85 goto out; 86 87 /* exclude memory ranges should be sorted for easy lookup */ 88 sort_memory_ranges(*mem_ranges, true); 89 out: 90 if (ret) 91 pr_err("Failed to setup exclude memory ranges\n"); 92 return ret; 93 } 94 95 /** 96 * get_usable_memory_ranges - Get usable memory ranges. This list includes 97 * regions like crashkernel, opal/rtas & tce-table, 98 * that kdump kernel could use. 99 * @mem_ranges: Range list to add the memory ranges to. 100 * 101 * Returns 0 on success, negative errno on error. 102 */ 103 static int get_usable_memory_ranges(struct crash_mem **mem_ranges) 104 { 105 int ret; 106 107 /* 108 * Early boot failure observed on guests when low memory (first memory 109 * block?) is not added to usable memory. So, add [0, crashk_res.end] 110 * instead of [crashk_res.start, crashk_res.end] to workaround it. 111 * Also, crashed kernel's memory must be added to reserve map to 112 * avoid kdump kernel from using it. 113 */ 114 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); 115 if (ret) 116 goto out; 117 118 ret = add_rtas_mem_range(mem_ranges); 119 if (ret) 120 goto out; 121 122 ret = add_opal_mem_range(mem_ranges); 123 if (ret) 124 goto out; 125 126 ret = add_tce_mem_ranges(mem_ranges); 127 out: 128 if (ret) 129 pr_err("Failed to setup usable memory ranges\n"); 130 return ret; 131 } 132 133 /** 134 * get_crash_memory_ranges - Get crash memory ranges. This list includes 135 * first/crashing kernel's memory regions that 136 * would be exported via an elfcore. 137 * @mem_ranges: Range list to add the memory ranges to. 138 * 139 * Returns 0 on success, negative errno on error. 140 */ 141 static int get_crash_memory_ranges(struct crash_mem **mem_ranges) 142 { 143 phys_addr_t base, end; 144 struct crash_mem *tmem; 145 u64 i; 146 int ret; 147 148 for_each_mem_range(i, &base, &end) { 149 u64 size = end - base; 150 151 /* Skip backup memory region, which needs a separate entry */ 152 if (base == BACKUP_SRC_START) { 153 if (size > BACKUP_SRC_SIZE) { 154 base = BACKUP_SRC_END + 1; 155 size -= BACKUP_SRC_SIZE; 156 } else 157 continue; 158 } 159 160 ret = add_mem_range(mem_ranges, base, size); 161 if (ret) 162 goto out; 163 164 /* Try merging adjacent ranges before reallocation attempt */ 165 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) 166 sort_memory_ranges(*mem_ranges, true); 167 } 168 169 /* Reallocate memory ranges if there is no space to split ranges */ 170 tmem = *mem_ranges; 171 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { 172 tmem = realloc_mem_ranges(mem_ranges); 173 if (!tmem) 174 goto out; 175 } 176 177 /* Exclude crashkernel region */ 178 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); 179 if (ret) 180 goto out; 181 182 /* 183 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL 184 * regions are exported to save their context at the time of 185 * crash, they should actually be backed up just like the 186 * first 64K bytes of memory. 187 */ 188 ret = add_rtas_mem_range(mem_ranges); 189 if (ret) 190 goto out; 191 192 ret = add_opal_mem_range(mem_ranges); 193 if (ret) 194 goto out; 195 196 /* create a separate program header for the backup region */ 197 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); 198 if (ret) 199 goto out; 200 201 sort_memory_ranges(*mem_ranges, false); 202 out: 203 if (ret) 204 pr_err("Failed to setup crash memory ranges\n"); 205 return ret; 206 } 207 208 /** 209 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes 210 * memory regions that should be added to the 211 * memory reserve map to ensure the region is 212 * protected from any mischief. 213 * @mem_ranges: Range list to add the memory ranges to. 214 * 215 * Returns 0 on success, negative errno on error. 216 */ 217 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) 218 { 219 int ret; 220 221 ret = add_rtas_mem_range(mem_ranges); 222 if (ret) 223 goto out; 224 225 ret = add_tce_mem_ranges(mem_ranges); 226 if (ret) 227 goto out; 228 229 ret = add_reserved_mem_ranges(mem_ranges); 230 out: 231 if (ret) 232 pr_err("Failed to setup reserved memory ranges\n"); 233 return ret; 234 } 235 236 /** 237 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole 238 * in the memory regions between buf_min & buf_max 239 * for the buffer. If found, sets kbuf->mem. 240 * @kbuf: Buffer contents and memory parameters. 241 * @buf_min: Minimum address for the buffer. 242 * @buf_max: Maximum address for the buffer. 243 * 244 * Returns 0 on success, negative errno on error. 245 */ 246 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, 247 u64 buf_min, u64 buf_max) 248 { 249 int ret = -EADDRNOTAVAIL; 250 phys_addr_t start, end; 251 u64 i; 252 253 for_each_mem_range_rev(i, &start, &end) { 254 /* 255 * memblock uses [start, end) convention while it is 256 * [start, end] here. Fix the off-by-one to have the 257 * same convention. 258 */ 259 end -= 1; 260 261 if (start > buf_max) 262 continue; 263 264 /* Memory hole not found */ 265 if (end < buf_min) 266 break; 267 268 /* Adjust memory region based on the given range */ 269 if (start < buf_min) 270 start = buf_min; 271 if (end > buf_max) 272 end = buf_max; 273 274 start = ALIGN(start, kbuf->buf_align); 275 if (start < end && (end - start + 1) >= kbuf->memsz) { 276 /* Suitable memory range found. Set kbuf->mem */ 277 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, 278 kbuf->buf_align); 279 ret = 0; 280 break; 281 } 282 } 283 284 return ret; 285 } 286 287 /** 288 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a 289 * suitable buffer with top down approach. 290 * @kbuf: Buffer contents and memory parameters. 291 * @buf_min: Minimum address for the buffer. 292 * @buf_max: Maximum address for the buffer. 293 * @emem: Exclude memory ranges. 294 * 295 * Returns 0 on success, negative errno on error. 296 */ 297 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, 298 u64 buf_min, u64 buf_max, 299 const struct crash_mem *emem) 300 { 301 int i, ret = 0, err = -EADDRNOTAVAIL; 302 u64 start, end, tmin, tmax; 303 304 tmax = buf_max; 305 for (i = (emem->nr_ranges - 1); i >= 0; i--) { 306 start = emem->ranges[i].start; 307 end = emem->ranges[i].end; 308 309 if (start > tmax) 310 continue; 311 312 if (end < tmax) { 313 tmin = (end < buf_min ? buf_min : end + 1); 314 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 315 if (!ret) 316 return 0; 317 } 318 319 tmax = start - 1; 320 321 if (tmax < buf_min) { 322 ret = err; 323 break; 324 } 325 ret = 0; 326 } 327 328 if (!ret) { 329 tmin = buf_min; 330 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 331 } 332 return ret; 333 } 334 335 /** 336 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole 337 * in the memory regions between buf_min & buf_max 338 * for the buffer. If found, sets kbuf->mem. 339 * @kbuf: Buffer contents and memory parameters. 340 * @buf_min: Minimum address for the buffer. 341 * @buf_max: Maximum address for the buffer. 342 * 343 * Returns 0 on success, negative errno on error. 344 */ 345 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, 346 u64 buf_min, u64 buf_max) 347 { 348 int ret = -EADDRNOTAVAIL; 349 phys_addr_t start, end; 350 u64 i; 351 352 for_each_mem_range(i, &start, &end) { 353 /* 354 * memblock uses [start, end) convention while it is 355 * [start, end] here. Fix the off-by-one to have the 356 * same convention. 357 */ 358 end -= 1; 359 360 if (end < buf_min) 361 continue; 362 363 /* Memory hole not found */ 364 if (start > buf_max) 365 break; 366 367 /* Adjust memory region based on the given range */ 368 if (start < buf_min) 369 start = buf_min; 370 if (end > buf_max) 371 end = buf_max; 372 373 start = ALIGN(start, kbuf->buf_align); 374 if (start < end && (end - start + 1) >= kbuf->memsz) { 375 /* Suitable memory range found. Set kbuf->mem */ 376 kbuf->mem = start; 377 ret = 0; 378 break; 379 } 380 } 381 382 return ret; 383 } 384 385 /** 386 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a 387 * suitable buffer with bottom up approach. 388 * @kbuf: Buffer contents and memory parameters. 389 * @buf_min: Minimum address for the buffer. 390 * @buf_max: Maximum address for the buffer. 391 * @emem: Exclude memory ranges. 392 * 393 * Returns 0 on success, negative errno on error. 394 */ 395 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, 396 u64 buf_min, u64 buf_max, 397 const struct crash_mem *emem) 398 { 399 int i, ret = 0, err = -EADDRNOTAVAIL; 400 u64 start, end, tmin, tmax; 401 402 tmin = buf_min; 403 for (i = 0; i < emem->nr_ranges; i++) { 404 start = emem->ranges[i].start; 405 end = emem->ranges[i].end; 406 407 if (end < tmin) 408 continue; 409 410 if (start > tmin) { 411 tmax = (start > buf_max ? buf_max : start - 1); 412 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 413 if (!ret) 414 return 0; 415 } 416 417 tmin = end + 1; 418 419 if (tmin > buf_max) { 420 ret = err; 421 break; 422 } 423 ret = 0; 424 } 425 426 if (!ret) { 427 tmax = buf_max; 428 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 429 } 430 return ret; 431 } 432 433 /** 434 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries 435 * @um_info: Usable memory buffer and ranges info. 436 * @cnt: No. of entries to accommodate. 437 * 438 * Frees up the old buffer if memory reallocation fails. 439 * 440 * Returns buffer on success, NULL on error. 441 */ 442 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) 443 { 444 u32 new_size; 445 u64 *tbuf; 446 447 if ((um_info->idx + cnt) <= um_info->max_entries) 448 return um_info->buf; 449 450 new_size = um_info->size + MEM_RANGE_CHUNK_SZ; 451 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); 452 if (tbuf) { 453 um_info->buf = tbuf; 454 um_info->size = new_size; 455 um_info->max_entries = (um_info->size / sizeof(u64)); 456 } 457 458 return tbuf; 459 } 460 461 /** 462 * add_usable_mem - Add the usable memory ranges within the given memory range 463 * to the buffer 464 * @um_info: Usable memory buffer and ranges info. 465 * @base: Base address of memory range to look for. 466 * @end: End address of memory range to look for. 467 * 468 * Returns 0 on success, negative errno on error. 469 */ 470 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) 471 { 472 u64 loc_base, loc_end; 473 bool add; 474 int i; 475 476 for (i = 0; i < um_info->nr_ranges; i++) { 477 add = false; 478 loc_base = um_info->ranges[i].start; 479 loc_end = um_info->ranges[i].end; 480 if (loc_base >= base && loc_end <= end) 481 add = true; 482 else if (base < loc_end && end > loc_base) { 483 if (loc_base < base) 484 loc_base = base; 485 if (loc_end > end) 486 loc_end = end; 487 add = true; 488 } 489 490 if (add) { 491 if (!check_realloc_usable_mem(um_info, 2)) 492 return -ENOMEM; 493 494 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); 495 um_info->buf[um_info->idx++] = 496 cpu_to_be64(loc_end - loc_base + 1); 497 } 498 } 499 500 return 0; 501 } 502 503 /** 504 * kdump_setup_usable_lmb - This is a callback function that gets called by 505 * walk_drmem_lmbs for every LMB to set its 506 * usable memory ranges. 507 * @lmb: LMB info. 508 * @usm: linux,drconf-usable-memory property value. 509 * @data: Pointer to usable memory buffer and ranges info. 510 * 511 * Returns 0 on success, negative errno on error. 512 */ 513 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, 514 void *data) 515 { 516 struct umem_info *um_info; 517 int tmp_idx, ret; 518 u64 base, end; 519 520 /* 521 * kdump load isn't supported on kernels already booted with 522 * linux,drconf-usable-memory property. 523 */ 524 if (*usm) { 525 pr_err("linux,drconf-usable-memory property already exists!"); 526 return -EINVAL; 527 } 528 529 um_info = data; 530 tmp_idx = um_info->idx; 531 if (!check_realloc_usable_mem(um_info, 1)) 532 return -ENOMEM; 533 534 um_info->idx++; 535 base = lmb->base_addr; 536 end = base + drmem_lmb_size() - 1; 537 ret = add_usable_mem(um_info, base, end); 538 if (!ret) { 539 /* 540 * Update the no. of ranges added. Two entries (base & size) 541 * for every range added. 542 */ 543 um_info->buf[tmp_idx] = 544 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); 545 } 546 547 return ret; 548 } 549 550 #define NODE_PATH_LEN 256 551 /** 552 * add_usable_mem_property - Add usable memory property for the given 553 * memory node. 554 * @fdt: Flattened device tree for the kdump kernel. 555 * @dn: Memory node. 556 * @um_info: Usable memory buffer and ranges info. 557 * 558 * Returns 0 on success, negative errno on error. 559 */ 560 static int add_usable_mem_property(void *fdt, struct device_node *dn, 561 struct umem_info *um_info) 562 { 563 int n_mem_addr_cells, n_mem_size_cells, node; 564 char path[NODE_PATH_LEN]; 565 int i, len, ranges, ret; 566 const __be32 *prop; 567 u64 base, end; 568 569 of_node_get(dn); 570 571 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { 572 pr_err("Buffer (%d) too small for memory node: %pOF\n", 573 NODE_PATH_LEN, dn); 574 return -EOVERFLOW; 575 } 576 pr_debug("Memory node path: %s\n", path); 577 578 /* Now that we know the path, find its offset in kdump kernel's fdt */ 579 node = fdt_path_offset(fdt, path); 580 if (node < 0) { 581 pr_err("Malformed device tree: error reading %s\n", path); 582 ret = -EINVAL; 583 goto out; 584 } 585 586 /* Get the address & size cells */ 587 n_mem_addr_cells = of_n_addr_cells(dn); 588 n_mem_size_cells = of_n_size_cells(dn); 589 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, 590 n_mem_size_cells); 591 592 um_info->idx = 0; 593 if (!check_realloc_usable_mem(um_info, 2)) { 594 ret = -ENOMEM; 595 goto out; 596 } 597 598 prop = of_get_property(dn, "reg", &len); 599 if (!prop || len <= 0) { 600 ret = 0; 601 goto out; 602 } 603 604 /* 605 * "reg" property represents sequence of (addr,size) tuples 606 * each representing a memory range. 607 */ 608 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 609 610 for (i = 0; i < ranges; i++) { 611 base = of_read_number(prop, n_mem_addr_cells); 612 prop += n_mem_addr_cells; 613 end = base + of_read_number(prop, n_mem_size_cells) - 1; 614 prop += n_mem_size_cells; 615 616 ret = add_usable_mem(um_info, base, end); 617 if (ret) 618 goto out; 619 } 620 621 /* 622 * No kdump kernel usable memory found in this memory node. 623 * Write (0,0) tuple in linux,usable-memory property for 624 * this region to be ignored. 625 */ 626 if (um_info->idx == 0) { 627 um_info->buf[0] = 0; 628 um_info->buf[1] = 0; 629 um_info->idx = 2; 630 } 631 632 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, 633 (um_info->idx * sizeof(u64))); 634 635 out: 636 of_node_put(dn); 637 return ret; 638 } 639 640 641 /** 642 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory 643 * and linux,drconf-usable-memory DT properties as 644 * appropriate to restrict its memory usage. 645 * @fdt: Flattened device tree for the kdump kernel. 646 * @usable_mem: Usable memory ranges for kdump kernel. 647 * 648 * Returns 0 on success, negative errno on error. 649 */ 650 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) 651 { 652 struct umem_info um_info; 653 struct device_node *dn; 654 int node, ret = 0; 655 656 if (!usable_mem) { 657 pr_err("Usable memory ranges for kdump kernel not found\n"); 658 return -ENOENT; 659 } 660 661 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 662 if (node == -FDT_ERR_NOTFOUND) 663 pr_debug("No dynamic reconfiguration memory found\n"); 664 else if (node < 0) { 665 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); 666 return -EINVAL; 667 } 668 669 um_info.buf = NULL; 670 um_info.size = 0; 671 um_info.max_entries = 0; 672 um_info.idx = 0; 673 /* Memory ranges to look up */ 674 um_info.ranges = &(usable_mem->ranges[0]); 675 um_info.nr_ranges = usable_mem->nr_ranges; 676 677 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 678 if (dn) { 679 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); 680 of_node_put(dn); 681 682 if (ret) { 683 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); 684 goto out; 685 } 686 687 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", 688 um_info.buf, (um_info.idx * sizeof(u64))); 689 if (ret) { 690 pr_err("Failed to update fdt with linux,drconf-usable-memory property"); 691 goto out; 692 } 693 } 694 695 /* 696 * Walk through each memory node and set linux,usable-memory property 697 * for the corresponding node in kdump kernel's fdt. 698 */ 699 for_each_node_by_type(dn, "memory") { 700 ret = add_usable_mem_property(fdt, dn, &um_info); 701 if (ret) { 702 pr_err("Failed to set linux,usable-memory property for %s node", 703 dn->full_name); 704 of_node_put(dn); 705 goto out; 706 } 707 } 708 709 out: 710 kfree(um_info.buf); 711 return ret; 712 } 713 714 /** 715 * load_backup_segment - Locate a memory hole to place the backup region. 716 * @image: Kexec image. 717 * @kbuf: Buffer contents and memory parameters. 718 * 719 * Returns 0 on success, negative errno on error. 720 */ 721 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) 722 { 723 void *buf; 724 int ret; 725 726 /* 727 * Setup a source buffer for backup segment. 728 * 729 * A source buffer has no meaning for backup region as data will 730 * be copied from backup source, after crash, in the purgatory. 731 * But as load segment code doesn't recognize such segments, 732 * setup a dummy source buffer to keep it happy for now. 733 */ 734 buf = vzalloc(BACKUP_SRC_SIZE); 735 if (!buf) 736 return -ENOMEM; 737 738 kbuf->buffer = buf; 739 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 740 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; 741 kbuf->top_down = false; 742 743 ret = kexec_add_buffer(kbuf); 744 if (ret) { 745 vfree(buf); 746 return ret; 747 } 748 749 image->arch.backup_buf = buf; 750 image->arch.backup_start = kbuf->mem; 751 return 0; 752 } 753 754 /** 755 * update_backup_region_phdr - Update backup region's offset for the core to 756 * export the region appropriately. 757 * @image: Kexec image. 758 * @ehdr: ELF core header. 759 * 760 * Assumes an exclusive program header is setup for the backup region 761 * in the ELF headers 762 * 763 * Returns nothing. 764 */ 765 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) 766 { 767 Elf64_Phdr *phdr; 768 unsigned int i; 769 770 phdr = (Elf64_Phdr *)(ehdr + 1); 771 for (i = 0; i < ehdr->e_phnum; i++) { 772 if (phdr->p_paddr == BACKUP_SRC_START) { 773 phdr->p_offset = image->arch.backup_start; 774 pr_debug("Backup region offset updated to 0x%lx\n", 775 image->arch.backup_start); 776 return; 777 } 778 } 779 } 780 781 /** 782 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr 783 * segment needed to load kdump kernel. 784 * @image: Kexec image. 785 * @kbuf: Buffer contents and memory parameters. 786 * 787 * Returns 0 on success, negative errno on error. 788 */ 789 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) 790 { 791 struct crash_mem *cmem = NULL; 792 unsigned long headers_sz; 793 void *headers = NULL; 794 int ret; 795 796 ret = get_crash_memory_ranges(&cmem); 797 if (ret) 798 goto out; 799 800 /* Setup elfcorehdr segment */ 801 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); 802 if (ret) { 803 pr_err("Failed to prepare elf headers for the core\n"); 804 goto out; 805 } 806 807 /* Fix the offset for backup region in the ELF header */ 808 update_backup_region_phdr(image, headers); 809 810 kbuf->buffer = headers; 811 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 812 kbuf->bufsz = kbuf->memsz = headers_sz; 813 kbuf->top_down = false; 814 815 ret = kexec_add_buffer(kbuf); 816 if (ret) { 817 vfree(headers); 818 goto out; 819 } 820 821 image->elf_load_addr = kbuf->mem; 822 image->elf_headers_sz = headers_sz; 823 image->elf_headers = headers; 824 out: 825 kfree(cmem); 826 return ret; 827 } 828 829 /** 830 * load_crashdump_segments_ppc64 - Initialize the additional segements needed 831 * to load kdump kernel. 832 * @image: Kexec image. 833 * @kbuf: Buffer contents and memory parameters. 834 * 835 * Returns 0 on success, negative errno on error. 836 */ 837 int load_crashdump_segments_ppc64(struct kimage *image, 838 struct kexec_buf *kbuf) 839 { 840 int ret; 841 842 /* Load backup segment - first 64K bytes of the crashing kernel */ 843 ret = load_backup_segment(image, kbuf); 844 if (ret) { 845 pr_err("Failed to load backup segment\n"); 846 return ret; 847 } 848 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); 849 850 /* Load elfcorehdr segment - to export crashing kernel's vmcore */ 851 ret = load_elfcorehdr_segment(image, kbuf); 852 if (ret) { 853 pr_err("Failed to load elfcorehdr segment\n"); 854 return ret; 855 } 856 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", 857 image->elf_load_addr, kbuf->bufsz, kbuf->memsz); 858 859 return 0; 860 } 861 862 /** 863 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global 864 * variables and call setup_purgatory() to initialize 865 * common global variable. 866 * @image: kexec image. 867 * @slave_code: Slave code for the purgatory. 868 * @fdt: Flattened device tree for the next kernel. 869 * @kernel_load_addr: Address where the kernel is loaded. 870 * @fdt_load_addr: Address where the flattened device tree is loaded. 871 * 872 * Returns 0 on success, negative errno on error. 873 */ 874 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, 875 const void *fdt, unsigned long kernel_load_addr, 876 unsigned long fdt_load_addr) 877 { 878 struct device_node *dn = NULL; 879 int ret; 880 881 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, 882 fdt_load_addr); 883 if (ret) 884 goto out; 885 886 if (image->type == KEXEC_TYPE_CRASH) { 887 u32 my_run_at_load = 1; 888 889 /* 890 * Tell relocatable kernel to run at load address 891 * via the word meant for that at 0x5c. 892 */ 893 ret = kexec_purgatory_get_set_symbol(image, "run_at_load", 894 &my_run_at_load, 895 sizeof(my_run_at_load), 896 false); 897 if (ret) 898 goto out; 899 } 900 901 /* Tell purgatory where to look for backup region */ 902 ret = kexec_purgatory_get_set_symbol(image, "backup_start", 903 &image->arch.backup_start, 904 sizeof(image->arch.backup_start), 905 false); 906 if (ret) 907 goto out; 908 909 /* Setup OPAL base & entry values */ 910 dn = of_find_node_by_path("/ibm,opal"); 911 if (dn) { 912 u64 val; 913 914 of_property_read_u64(dn, "opal-base-address", &val); 915 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, 916 sizeof(val), false); 917 if (ret) 918 goto out; 919 920 of_property_read_u64(dn, "opal-entry-address", &val); 921 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, 922 sizeof(val), false); 923 } 924 out: 925 if (ret) 926 pr_err("Failed to setup purgatory symbols"); 927 of_node_put(dn); 928 return ret; 929 } 930 931 /** 932 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to 933 * setup FDT for kexec/kdump kernel. 934 * @image: kexec image being loaded. 935 * 936 * Returns the estimated extra size needed for kexec/kdump kernel FDT. 937 */ 938 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) 939 { 940 u64 usm_entries; 941 942 if (image->type != KEXEC_TYPE_CRASH) 943 return 0; 944 945 /* 946 * For kdump kernel, account for linux,usable-memory and 947 * linux,drconf-usable-memory properties. Get an approximate on the 948 * number of usable memory entries and use for FDT size estimation. 949 */ 950 usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) + 951 (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); 952 return (unsigned int)(usm_entries * sizeof(u64)); 953 } 954 955 /** 956 * add_node_props - Reads node properties from device node structure and add 957 * them to fdt. 958 * @fdt: Flattened device tree of the kernel 959 * @node_offset: offset of the node to add a property at 960 * @dn: device node pointer 961 * 962 * Returns 0 on success, negative errno on error. 963 */ 964 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 965 { 966 int ret = 0; 967 struct property *pp; 968 969 if (!dn) 970 return -EINVAL; 971 972 for_each_property_of_node(dn, pp) { 973 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 974 if (ret < 0) { 975 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 976 return ret; 977 } 978 } 979 return ret; 980 } 981 982 /** 983 * update_cpus_node - Update cpus node of flattened device tree using of_root 984 * device node. 985 * @fdt: Flattened device tree of the kernel. 986 * 987 * Returns 0 on success, negative errno on error. 988 */ 989 static int update_cpus_node(void *fdt) 990 { 991 struct device_node *cpus_node, *dn; 992 int cpus_offset, cpus_subnode_offset, ret = 0; 993 994 cpus_offset = fdt_path_offset(fdt, "/cpus"); 995 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 996 pr_err("Malformed device tree: error reading /cpus node: %s\n", 997 fdt_strerror(cpus_offset)); 998 return cpus_offset; 999 } 1000 1001 if (cpus_offset > 0) { 1002 ret = fdt_del_node(fdt, cpus_offset); 1003 if (ret < 0) { 1004 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); 1005 return -EINVAL; 1006 } 1007 } 1008 1009 /* Add cpus node to fdt */ 1010 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); 1011 if (cpus_offset < 0) { 1012 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); 1013 return -EINVAL; 1014 } 1015 1016 /* Add cpus node properties */ 1017 cpus_node = of_find_node_by_path("/cpus"); 1018 ret = add_node_props(fdt, cpus_offset, cpus_node); 1019 of_node_put(cpus_node); 1020 if (ret < 0) 1021 return ret; 1022 1023 /* Loop through all subnodes of cpus and add them to fdt */ 1024 for_each_node_by_type(dn, "cpu") { 1025 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 1026 if (cpus_subnode_offset < 0) { 1027 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 1028 fdt_strerror(cpus_subnode_offset)); 1029 ret = cpus_subnode_offset; 1030 goto out; 1031 } 1032 1033 ret = add_node_props(fdt, cpus_subnode_offset, dn); 1034 if (ret < 0) 1035 goto out; 1036 } 1037 out: 1038 of_node_put(dn); 1039 return ret; 1040 } 1041 1042 static int copy_property(void *fdt, int node_offset, const struct device_node *dn, 1043 const char *propname) 1044 { 1045 const void *prop, *fdtprop; 1046 int len = 0, fdtlen = 0; 1047 1048 prop = of_get_property(dn, propname, &len); 1049 fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen); 1050 1051 if (fdtprop && !prop) 1052 return fdt_delprop(fdt, node_offset, propname); 1053 else if (prop) 1054 return fdt_setprop(fdt, node_offset, propname, prop, len); 1055 else 1056 return -FDT_ERR_NOTFOUND; 1057 } 1058 1059 static int update_pci_dma_nodes(void *fdt, const char *dmapropname) 1060 { 1061 struct device_node *dn; 1062 int pci_offset, root_offset, ret = 0; 1063 1064 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1065 return 0; 1066 1067 root_offset = fdt_path_offset(fdt, "/"); 1068 for_each_node_with_property(dn, dmapropname) { 1069 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn)); 1070 if (pci_offset < 0) 1071 continue; 1072 1073 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window"); 1074 if (ret < 0) 1075 break; 1076 ret = copy_property(fdt, pci_offset, dn, dmapropname); 1077 if (ret < 0) 1078 break; 1079 } 1080 1081 return ret; 1082 } 1083 1084 /** 1085 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel 1086 * being loaded. 1087 * @image: kexec image being loaded. 1088 * @fdt: Flattened device tree for the next kernel. 1089 * @initrd_load_addr: Address where the next initrd will be loaded. 1090 * @initrd_len: Size of the next initrd, or 0 if there will be none. 1091 * @cmdline: Command line for the next kernel, or NULL if there will 1092 * be none. 1093 * 1094 * Returns 0 on success, negative errno on error. 1095 */ 1096 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, 1097 unsigned long initrd_load_addr, 1098 unsigned long initrd_len, const char *cmdline) 1099 { 1100 struct crash_mem *umem = NULL, *rmem = NULL; 1101 int i, nr_ranges, ret; 1102 1103 /* 1104 * Restrict memory usage for kdump kernel by setting up 1105 * usable memory ranges and memory reserve map. 1106 */ 1107 if (image->type == KEXEC_TYPE_CRASH) { 1108 ret = get_usable_memory_ranges(&umem); 1109 if (ret) 1110 goto out; 1111 1112 ret = update_usable_mem_fdt(fdt, umem); 1113 if (ret) { 1114 pr_err("Error setting up usable-memory property for kdump kernel\n"); 1115 goto out; 1116 } 1117 1118 /* 1119 * Ensure we don't touch crashed kernel's memory except the 1120 * first 64K of RAM, which will be backed up. 1121 */ 1122 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, 1123 crashk_res.start - BACKUP_SRC_SIZE); 1124 if (ret) { 1125 pr_err("Error reserving crash memory: %s\n", 1126 fdt_strerror(ret)); 1127 goto out; 1128 } 1129 1130 /* Ensure backup region is not used by kdump/capture kernel */ 1131 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, 1132 BACKUP_SRC_SIZE); 1133 if (ret) { 1134 pr_err("Error reserving memory for backup: %s\n", 1135 fdt_strerror(ret)); 1136 goto out; 1137 } 1138 } 1139 1140 /* Update cpus nodes information to account hotplug CPUs. */ 1141 ret = update_cpus_node(fdt); 1142 if (ret < 0) 1143 goto out; 1144 1145 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" 1146 #define DMA64_PROPNAME "linux,dma64-ddr-window-info" 1147 ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME); 1148 if (ret < 0) 1149 goto out; 1150 1151 ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME); 1152 if (ret < 0) 1153 goto out; 1154 #undef DMA64_PROPNAME 1155 #undef DIRECT64_PROPNAME 1156 1157 /* Update memory reserve map */ 1158 ret = get_reserved_memory_ranges(&rmem); 1159 if (ret) 1160 goto out; 1161 1162 nr_ranges = rmem ? rmem->nr_ranges : 0; 1163 for (i = 0; i < nr_ranges; i++) { 1164 u64 base, size; 1165 1166 base = rmem->ranges[i].start; 1167 size = rmem->ranges[i].end - base + 1; 1168 ret = fdt_add_mem_rsv(fdt, base, size); 1169 if (ret) { 1170 pr_err("Error updating memory reserve map: %s\n", 1171 fdt_strerror(ret)); 1172 goto out; 1173 } 1174 } 1175 1176 out: 1177 kfree(rmem); 1178 kfree(umem); 1179 return ret; 1180 } 1181 1182 /** 1183 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, 1184 * tce-table, reserved-ranges & such (exclude 1185 * memory ranges) as they can't be used for kexec 1186 * segment buffer. Sets kbuf->mem when a suitable 1187 * memory hole is found. 1188 * @kbuf: Buffer contents and memory parameters. 1189 * 1190 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. 1191 * 1192 * Returns 0 on success, negative errno on error. 1193 */ 1194 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 1195 { 1196 struct crash_mem **emem; 1197 u64 buf_min, buf_max; 1198 int ret; 1199 1200 /* Look up the exclude ranges list while locating the memory hole */ 1201 emem = &(kbuf->image->arch.exclude_ranges); 1202 if (!(*emem) || ((*emem)->nr_ranges == 0)) { 1203 pr_warn("No exclude range list. Using the default locate mem hole method\n"); 1204 return kexec_locate_mem_hole(kbuf); 1205 } 1206 1207 buf_min = kbuf->buf_min; 1208 buf_max = kbuf->buf_max; 1209 /* Segments for kdump kernel should be within crashkernel region */ 1210 if (kbuf->image->type == KEXEC_TYPE_CRASH) { 1211 buf_min = (buf_min < crashk_res.start ? 1212 crashk_res.start : buf_min); 1213 buf_max = (buf_max > crashk_res.end ? 1214 crashk_res.end : buf_max); 1215 } 1216 1217 if (buf_min > buf_max) { 1218 pr_err("Invalid buffer min and/or max values\n"); 1219 return -EINVAL; 1220 } 1221 1222 if (kbuf->top_down) 1223 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, 1224 *emem); 1225 else 1226 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, 1227 *emem); 1228 1229 /* Add the buffer allocated to the exclude list for the next lookup */ 1230 if (!ret) { 1231 add_mem_range(emem, kbuf->mem, kbuf->memsz); 1232 sort_memory_ranges(*emem, true); 1233 } else { 1234 pr_err("Failed to locate memory buffer of size %lu\n", 1235 kbuf->memsz); 1236 } 1237 return ret; 1238 } 1239 1240 /** 1241 * arch_kexec_kernel_image_probe - Does additional handling needed to setup 1242 * kexec segments. 1243 * @image: kexec image being loaded. 1244 * @buf: Buffer pointing to elf data. 1245 * @buf_len: Length of the buffer. 1246 * 1247 * Returns 0 on success, negative errno on error. 1248 */ 1249 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 1250 unsigned long buf_len) 1251 { 1252 int ret; 1253 1254 /* Get exclude memory ranges needed for setting up kexec segments */ 1255 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); 1256 if (ret) { 1257 pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); 1258 return ret; 1259 } 1260 1261 return kexec_image_probe_default(image, buf, buf_len); 1262 } 1263 1264 /** 1265 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done 1266 * while loading the image. 1267 * @image: kexec image being loaded. 1268 * 1269 * Returns 0 on success, negative errno on error. 1270 */ 1271 int arch_kimage_file_post_load_cleanup(struct kimage *image) 1272 { 1273 kfree(image->arch.exclude_ranges); 1274 image->arch.exclude_ranges = NULL; 1275 1276 vfree(image->arch.backup_buf); 1277 image->arch.backup_buf = NULL; 1278 1279 vfree(image->elf_headers); 1280 image->elf_headers = NULL; 1281 image->elf_headers_sz = 0; 1282 1283 kvfree(image->arch.fdt); 1284 image->arch.fdt = NULL; 1285 1286 return kexec_image_post_load_cleanup_default(image); 1287 } 1288