1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ppc64 code to implement the kexec_file_load syscall 4 * 5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) 6 * Copyright (C) 2004 IBM Corp. 7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation 8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) 9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) 10 * Copyright (C) 2020 IBM Corporation 11 * 12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. 13 * Heavily modified for the kernel by 14 * Hari Bathini, IBM Corporation. 15 */ 16 17 #include <linux/kexec.h> 18 #include <linux/of_fdt.h> 19 #include <linux/libfdt.h> 20 #include <linux/of_device.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <asm/setup.h> 25 #include <asm/drmem.h> 26 #include <asm/firmware.h> 27 #include <asm/kexec_ranges.h> 28 #include <asm/crashdump-ppc64.h> 29 #include <asm/mmzone.h> 30 #include <asm/prom.h> 31 32 struct umem_info { 33 u64 *buf; /* data buffer for usable-memory property */ 34 u32 size; /* size allocated for the data buffer */ 35 u32 max_entries; /* maximum no. of entries */ 36 u32 idx; /* index of current entry */ 37 38 /* usable memory ranges to look up */ 39 unsigned int nr_ranges; 40 const struct range *ranges; 41 }; 42 43 const struct kexec_file_ops * const kexec_file_loaders[] = { 44 &kexec_elf64_ops, 45 NULL 46 }; 47 48 /** 49 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes 50 * regions like opal/rtas, tce-table, initrd, 51 * kernel, htab which should be avoided while 52 * setting up kexec load segments. 53 * @mem_ranges: Range list to add the memory ranges to. 54 * 55 * Returns 0 on success, negative errno on error. 56 */ 57 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) 58 { 59 int ret; 60 61 ret = add_tce_mem_ranges(mem_ranges); 62 if (ret) 63 goto out; 64 65 ret = add_initrd_mem_range(mem_ranges); 66 if (ret) 67 goto out; 68 69 ret = add_htab_mem_range(mem_ranges); 70 if (ret) 71 goto out; 72 73 ret = add_kernel_mem_range(mem_ranges); 74 if (ret) 75 goto out; 76 77 ret = add_rtas_mem_range(mem_ranges); 78 if (ret) 79 goto out; 80 81 ret = add_opal_mem_range(mem_ranges); 82 if (ret) 83 goto out; 84 85 ret = add_reserved_mem_ranges(mem_ranges); 86 if (ret) 87 goto out; 88 89 /* exclude memory ranges should be sorted for easy lookup */ 90 sort_memory_ranges(*mem_ranges, true); 91 out: 92 if (ret) 93 pr_err("Failed to setup exclude memory ranges\n"); 94 return ret; 95 } 96 97 /** 98 * get_usable_memory_ranges - Get usable memory ranges. This list includes 99 * regions like crashkernel, opal/rtas & tce-table, 100 * that kdump kernel could use. 101 * @mem_ranges: Range list to add the memory ranges to. 102 * 103 * Returns 0 on success, negative errno on error. 104 */ 105 static int get_usable_memory_ranges(struct crash_mem **mem_ranges) 106 { 107 int ret; 108 109 /* 110 * Early boot failure observed on guests when low memory (first memory 111 * block?) is not added to usable memory. So, add [0, crashk_res.end] 112 * instead of [crashk_res.start, crashk_res.end] to workaround it. 113 * Also, crashed kernel's memory must be added to reserve map to 114 * avoid kdump kernel from using it. 115 */ 116 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); 117 if (ret) 118 goto out; 119 120 ret = add_rtas_mem_range(mem_ranges); 121 if (ret) 122 goto out; 123 124 ret = add_opal_mem_range(mem_ranges); 125 if (ret) 126 goto out; 127 128 ret = add_tce_mem_ranges(mem_ranges); 129 out: 130 if (ret) 131 pr_err("Failed to setup usable memory ranges\n"); 132 return ret; 133 } 134 135 /** 136 * get_crash_memory_ranges - Get crash memory ranges. This list includes 137 * first/crashing kernel's memory regions that 138 * would be exported via an elfcore. 139 * @mem_ranges: Range list to add the memory ranges to. 140 * 141 * Returns 0 on success, negative errno on error. 142 */ 143 static int get_crash_memory_ranges(struct crash_mem **mem_ranges) 144 { 145 phys_addr_t base, end; 146 struct crash_mem *tmem; 147 u64 i; 148 int ret; 149 150 for_each_mem_range(i, &base, &end) { 151 u64 size = end - base; 152 153 /* Skip backup memory region, which needs a separate entry */ 154 if (base == BACKUP_SRC_START) { 155 if (size > BACKUP_SRC_SIZE) { 156 base = BACKUP_SRC_END + 1; 157 size -= BACKUP_SRC_SIZE; 158 } else 159 continue; 160 } 161 162 ret = add_mem_range(mem_ranges, base, size); 163 if (ret) 164 goto out; 165 166 /* Try merging adjacent ranges before reallocation attempt */ 167 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) 168 sort_memory_ranges(*mem_ranges, true); 169 } 170 171 /* Reallocate memory ranges if there is no space to split ranges */ 172 tmem = *mem_ranges; 173 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { 174 tmem = realloc_mem_ranges(mem_ranges); 175 if (!tmem) 176 goto out; 177 } 178 179 /* Exclude crashkernel region */ 180 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); 181 if (ret) 182 goto out; 183 184 /* 185 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL 186 * regions are exported to save their context at the time of 187 * crash, they should actually be backed up just like the 188 * first 64K bytes of memory. 189 */ 190 ret = add_rtas_mem_range(mem_ranges); 191 if (ret) 192 goto out; 193 194 ret = add_opal_mem_range(mem_ranges); 195 if (ret) 196 goto out; 197 198 /* create a separate program header for the backup region */ 199 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); 200 if (ret) 201 goto out; 202 203 sort_memory_ranges(*mem_ranges, false); 204 out: 205 if (ret) 206 pr_err("Failed to setup crash memory ranges\n"); 207 return ret; 208 } 209 210 /** 211 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes 212 * memory regions that should be added to the 213 * memory reserve map to ensure the region is 214 * protected from any mischief. 215 * @mem_ranges: Range list to add the memory ranges to. 216 * 217 * Returns 0 on success, negative errno on error. 218 */ 219 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) 220 { 221 int ret; 222 223 ret = add_rtas_mem_range(mem_ranges); 224 if (ret) 225 goto out; 226 227 ret = add_tce_mem_ranges(mem_ranges); 228 if (ret) 229 goto out; 230 231 ret = add_reserved_mem_ranges(mem_ranges); 232 out: 233 if (ret) 234 pr_err("Failed to setup reserved memory ranges\n"); 235 return ret; 236 } 237 238 /** 239 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole 240 * in the memory regions between buf_min & buf_max 241 * for the buffer. If found, sets kbuf->mem. 242 * @kbuf: Buffer contents and memory parameters. 243 * @buf_min: Minimum address for the buffer. 244 * @buf_max: Maximum address for the buffer. 245 * 246 * Returns 0 on success, negative errno on error. 247 */ 248 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, 249 u64 buf_min, u64 buf_max) 250 { 251 int ret = -EADDRNOTAVAIL; 252 phys_addr_t start, end; 253 u64 i; 254 255 for_each_mem_range_rev(i, &start, &end) { 256 /* 257 * memblock uses [start, end) convention while it is 258 * [start, end] here. Fix the off-by-one to have the 259 * same convention. 260 */ 261 end -= 1; 262 263 if (start > buf_max) 264 continue; 265 266 /* Memory hole not found */ 267 if (end < buf_min) 268 break; 269 270 /* Adjust memory region based on the given range */ 271 if (start < buf_min) 272 start = buf_min; 273 if (end > buf_max) 274 end = buf_max; 275 276 start = ALIGN(start, kbuf->buf_align); 277 if (start < end && (end - start + 1) >= kbuf->memsz) { 278 /* Suitable memory range found. Set kbuf->mem */ 279 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, 280 kbuf->buf_align); 281 ret = 0; 282 break; 283 } 284 } 285 286 return ret; 287 } 288 289 /** 290 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a 291 * suitable buffer with top down approach. 292 * @kbuf: Buffer contents and memory parameters. 293 * @buf_min: Minimum address for the buffer. 294 * @buf_max: Maximum address for the buffer. 295 * @emem: Exclude memory ranges. 296 * 297 * Returns 0 on success, negative errno on error. 298 */ 299 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, 300 u64 buf_min, u64 buf_max, 301 const struct crash_mem *emem) 302 { 303 int i, ret = 0, err = -EADDRNOTAVAIL; 304 u64 start, end, tmin, tmax; 305 306 tmax = buf_max; 307 for (i = (emem->nr_ranges - 1); i >= 0; i--) { 308 start = emem->ranges[i].start; 309 end = emem->ranges[i].end; 310 311 if (start > tmax) 312 continue; 313 314 if (end < tmax) { 315 tmin = (end < buf_min ? buf_min : end + 1); 316 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 317 if (!ret) 318 return 0; 319 } 320 321 tmax = start - 1; 322 323 if (tmax < buf_min) { 324 ret = err; 325 break; 326 } 327 ret = 0; 328 } 329 330 if (!ret) { 331 tmin = buf_min; 332 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 333 } 334 return ret; 335 } 336 337 /** 338 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole 339 * in the memory regions between buf_min & buf_max 340 * for the buffer. If found, sets kbuf->mem. 341 * @kbuf: Buffer contents and memory parameters. 342 * @buf_min: Minimum address for the buffer. 343 * @buf_max: Maximum address for the buffer. 344 * 345 * Returns 0 on success, negative errno on error. 346 */ 347 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, 348 u64 buf_min, u64 buf_max) 349 { 350 int ret = -EADDRNOTAVAIL; 351 phys_addr_t start, end; 352 u64 i; 353 354 for_each_mem_range(i, &start, &end) { 355 /* 356 * memblock uses [start, end) convention while it is 357 * [start, end] here. Fix the off-by-one to have the 358 * same convention. 359 */ 360 end -= 1; 361 362 if (end < buf_min) 363 continue; 364 365 /* Memory hole not found */ 366 if (start > buf_max) 367 break; 368 369 /* Adjust memory region based on the given range */ 370 if (start < buf_min) 371 start = buf_min; 372 if (end > buf_max) 373 end = buf_max; 374 375 start = ALIGN(start, kbuf->buf_align); 376 if (start < end && (end - start + 1) >= kbuf->memsz) { 377 /* Suitable memory range found. Set kbuf->mem */ 378 kbuf->mem = start; 379 ret = 0; 380 break; 381 } 382 } 383 384 return ret; 385 } 386 387 /** 388 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a 389 * suitable buffer with bottom up approach. 390 * @kbuf: Buffer contents and memory parameters. 391 * @buf_min: Minimum address for the buffer. 392 * @buf_max: Maximum address for the buffer. 393 * @emem: Exclude memory ranges. 394 * 395 * Returns 0 on success, negative errno on error. 396 */ 397 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, 398 u64 buf_min, u64 buf_max, 399 const struct crash_mem *emem) 400 { 401 int i, ret = 0, err = -EADDRNOTAVAIL; 402 u64 start, end, tmin, tmax; 403 404 tmin = buf_min; 405 for (i = 0; i < emem->nr_ranges; i++) { 406 start = emem->ranges[i].start; 407 end = emem->ranges[i].end; 408 409 if (end < tmin) 410 continue; 411 412 if (start > tmin) { 413 tmax = (start > buf_max ? buf_max : start - 1); 414 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 415 if (!ret) 416 return 0; 417 } 418 419 tmin = end + 1; 420 421 if (tmin > buf_max) { 422 ret = err; 423 break; 424 } 425 ret = 0; 426 } 427 428 if (!ret) { 429 tmax = buf_max; 430 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 431 } 432 return ret; 433 } 434 435 /** 436 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries 437 * @um_info: Usable memory buffer and ranges info. 438 * @cnt: No. of entries to accommodate. 439 * 440 * Frees up the old buffer if memory reallocation fails. 441 * 442 * Returns buffer on success, NULL on error. 443 */ 444 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) 445 { 446 u32 new_size; 447 u64 *tbuf; 448 449 if ((um_info->idx + cnt) <= um_info->max_entries) 450 return um_info->buf; 451 452 new_size = um_info->size + MEM_RANGE_CHUNK_SZ; 453 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); 454 if (tbuf) { 455 um_info->buf = tbuf; 456 um_info->size = new_size; 457 um_info->max_entries = (um_info->size / sizeof(u64)); 458 } 459 460 return tbuf; 461 } 462 463 /** 464 * add_usable_mem - Add the usable memory ranges within the given memory range 465 * to the buffer 466 * @um_info: Usable memory buffer and ranges info. 467 * @base: Base address of memory range to look for. 468 * @end: End address of memory range to look for. 469 * 470 * Returns 0 on success, negative errno on error. 471 */ 472 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) 473 { 474 u64 loc_base, loc_end; 475 bool add; 476 int i; 477 478 for (i = 0; i < um_info->nr_ranges; i++) { 479 add = false; 480 loc_base = um_info->ranges[i].start; 481 loc_end = um_info->ranges[i].end; 482 if (loc_base >= base && loc_end <= end) 483 add = true; 484 else if (base < loc_end && end > loc_base) { 485 if (loc_base < base) 486 loc_base = base; 487 if (loc_end > end) 488 loc_end = end; 489 add = true; 490 } 491 492 if (add) { 493 if (!check_realloc_usable_mem(um_info, 2)) 494 return -ENOMEM; 495 496 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); 497 um_info->buf[um_info->idx++] = 498 cpu_to_be64(loc_end - loc_base + 1); 499 } 500 } 501 502 return 0; 503 } 504 505 /** 506 * kdump_setup_usable_lmb - This is a callback function that gets called by 507 * walk_drmem_lmbs for every LMB to set its 508 * usable memory ranges. 509 * @lmb: LMB info. 510 * @usm: linux,drconf-usable-memory property value. 511 * @data: Pointer to usable memory buffer and ranges info. 512 * 513 * Returns 0 on success, negative errno on error. 514 */ 515 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, 516 void *data) 517 { 518 struct umem_info *um_info; 519 int tmp_idx, ret; 520 u64 base, end; 521 522 /* 523 * kdump load isn't supported on kernels already booted with 524 * linux,drconf-usable-memory property. 525 */ 526 if (*usm) { 527 pr_err("linux,drconf-usable-memory property already exists!"); 528 return -EINVAL; 529 } 530 531 um_info = data; 532 tmp_idx = um_info->idx; 533 if (!check_realloc_usable_mem(um_info, 1)) 534 return -ENOMEM; 535 536 um_info->idx++; 537 base = lmb->base_addr; 538 end = base + drmem_lmb_size() - 1; 539 ret = add_usable_mem(um_info, base, end); 540 if (!ret) { 541 /* 542 * Update the no. of ranges added. Two entries (base & size) 543 * for every range added. 544 */ 545 um_info->buf[tmp_idx] = 546 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); 547 } 548 549 return ret; 550 } 551 552 #define NODE_PATH_LEN 256 553 /** 554 * add_usable_mem_property - Add usable memory property for the given 555 * memory node. 556 * @fdt: Flattened device tree for the kdump kernel. 557 * @dn: Memory node. 558 * @um_info: Usable memory buffer and ranges info. 559 * 560 * Returns 0 on success, negative errno on error. 561 */ 562 static int add_usable_mem_property(void *fdt, struct device_node *dn, 563 struct umem_info *um_info) 564 { 565 int n_mem_addr_cells, n_mem_size_cells, node; 566 char path[NODE_PATH_LEN]; 567 int i, len, ranges, ret; 568 const __be32 *prop; 569 u64 base, end; 570 571 of_node_get(dn); 572 573 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { 574 pr_err("Buffer (%d) too small for memory node: %pOF\n", 575 NODE_PATH_LEN, dn); 576 return -EOVERFLOW; 577 } 578 pr_debug("Memory node path: %s\n", path); 579 580 /* Now that we know the path, find its offset in kdump kernel's fdt */ 581 node = fdt_path_offset(fdt, path); 582 if (node < 0) { 583 pr_err("Malformed device tree: error reading %s\n", path); 584 ret = -EINVAL; 585 goto out; 586 } 587 588 /* Get the address & size cells */ 589 n_mem_addr_cells = of_n_addr_cells(dn); 590 n_mem_size_cells = of_n_size_cells(dn); 591 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, 592 n_mem_size_cells); 593 594 um_info->idx = 0; 595 if (!check_realloc_usable_mem(um_info, 2)) { 596 ret = -ENOMEM; 597 goto out; 598 } 599 600 prop = of_get_property(dn, "reg", &len); 601 if (!prop || len <= 0) { 602 ret = 0; 603 goto out; 604 } 605 606 /* 607 * "reg" property represents sequence of (addr,size) tuples 608 * each representing a memory range. 609 */ 610 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 611 612 for (i = 0; i < ranges; i++) { 613 base = of_read_number(prop, n_mem_addr_cells); 614 prop += n_mem_addr_cells; 615 end = base + of_read_number(prop, n_mem_size_cells) - 1; 616 prop += n_mem_size_cells; 617 618 ret = add_usable_mem(um_info, base, end); 619 if (ret) 620 goto out; 621 } 622 623 /* 624 * No kdump kernel usable memory found in this memory node. 625 * Write (0,0) tuple in linux,usable-memory property for 626 * this region to be ignored. 627 */ 628 if (um_info->idx == 0) { 629 um_info->buf[0] = 0; 630 um_info->buf[1] = 0; 631 um_info->idx = 2; 632 } 633 634 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, 635 (um_info->idx * sizeof(u64))); 636 637 out: 638 of_node_put(dn); 639 return ret; 640 } 641 642 643 /** 644 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory 645 * and linux,drconf-usable-memory DT properties as 646 * appropriate to restrict its memory usage. 647 * @fdt: Flattened device tree for the kdump kernel. 648 * @usable_mem: Usable memory ranges for kdump kernel. 649 * 650 * Returns 0 on success, negative errno on error. 651 */ 652 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) 653 { 654 struct umem_info um_info; 655 struct device_node *dn; 656 int node, ret = 0; 657 658 if (!usable_mem) { 659 pr_err("Usable memory ranges for kdump kernel not found\n"); 660 return -ENOENT; 661 } 662 663 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 664 if (node == -FDT_ERR_NOTFOUND) 665 pr_debug("No dynamic reconfiguration memory found\n"); 666 else if (node < 0) { 667 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); 668 return -EINVAL; 669 } 670 671 um_info.buf = NULL; 672 um_info.size = 0; 673 um_info.max_entries = 0; 674 um_info.idx = 0; 675 /* Memory ranges to look up */ 676 um_info.ranges = &(usable_mem->ranges[0]); 677 um_info.nr_ranges = usable_mem->nr_ranges; 678 679 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 680 if (dn) { 681 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); 682 of_node_put(dn); 683 684 if (ret) { 685 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); 686 goto out; 687 } 688 689 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", 690 um_info.buf, (um_info.idx * sizeof(u64))); 691 if (ret) { 692 pr_err("Failed to update fdt with linux,drconf-usable-memory property"); 693 goto out; 694 } 695 } 696 697 /* 698 * Walk through each memory node and set linux,usable-memory property 699 * for the corresponding node in kdump kernel's fdt. 700 */ 701 for_each_node_by_type(dn, "memory") { 702 ret = add_usable_mem_property(fdt, dn, &um_info); 703 if (ret) { 704 pr_err("Failed to set linux,usable-memory property for %s node", 705 dn->full_name); 706 of_node_put(dn); 707 goto out; 708 } 709 } 710 711 out: 712 kfree(um_info.buf); 713 return ret; 714 } 715 716 /** 717 * load_backup_segment - Locate a memory hole to place the backup region. 718 * @image: Kexec image. 719 * @kbuf: Buffer contents and memory parameters. 720 * 721 * Returns 0 on success, negative errno on error. 722 */ 723 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) 724 { 725 void *buf; 726 int ret; 727 728 /* 729 * Setup a source buffer for backup segment. 730 * 731 * A source buffer has no meaning for backup region as data will 732 * be copied from backup source, after crash, in the purgatory. 733 * But as load segment code doesn't recognize such segments, 734 * setup a dummy source buffer to keep it happy for now. 735 */ 736 buf = vzalloc(BACKUP_SRC_SIZE); 737 if (!buf) 738 return -ENOMEM; 739 740 kbuf->buffer = buf; 741 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 742 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; 743 kbuf->top_down = false; 744 745 ret = kexec_add_buffer(kbuf); 746 if (ret) { 747 vfree(buf); 748 return ret; 749 } 750 751 image->arch.backup_buf = buf; 752 image->arch.backup_start = kbuf->mem; 753 return 0; 754 } 755 756 /** 757 * update_backup_region_phdr - Update backup region's offset for the core to 758 * export the region appropriately. 759 * @image: Kexec image. 760 * @ehdr: ELF core header. 761 * 762 * Assumes an exclusive program header is setup for the backup region 763 * in the ELF headers 764 * 765 * Returns nothing. 766 */ 767 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) 768 { 769 Elf64_Phdr *phdr; 770 unsigned int i; 771 772 phdr = (Elf64_Phdr *)(ehdr + 1); 773 for (i = 0; i < ehdr->e_phnum; i++) { 774 if (phdr->p_paddr == BACKUP_SRC_START) { 775 phdr->p_offset = image->arch.backup_start; 776 pr_debug("Backup region offset updated to 0x%lx\n", 777 image->arch.backup_start); 778 return; 779 } 780 } 781 } 782 783 /** 784 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr 785 * segment needed to load kdump kernel. 786 * @image: Kexec image. 787 * @kbuf: Buffer contents and memory parameters. 788 * 789 * Returns 0 on success, negative errno on error. 790 */ 791 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) 792 { 793 struct crash_mem *cmem = NULL; 794 unsigned long headers_sz; 795 void *headers = NULL; 796 int ret; 797 798 ret = get_crash_memory_ranges(&cmem); 799 if (ret) 800 goto out; 801 802 /* Setup elfcorehdr segment */ 803 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); 804 if (ret) { 805 pr_err("Failed to prepare elf headers for the core\n"); 806 goto out; 807 } 808 809 /* Fix the offset for backup region in the ELF header */ 810 update_backup_region_phdr(image, headers); 811 812 kbuf->buffer = headers; 813 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 814 kbuf->bufsz = kbuf->memsz = headers_sz; 815 kbuf->top_down = false; 816 817 ret = kexec_add_buffer(kbuf); 818 if (ret) { 819 vfree(headers); 820 goto out; 821 } 822 823 image->elf_load_addr = kbuf->mem; 824 image->elf_headers_sz = headers_sz; 825 image->elf_headers = headers; 826 out: 827 kfree(cmem); 828 return ret; 829 } 830 831 /** 832 * load_crashdump_segments_ppc64 - Initialize the additional segements needed 833 * to load kdump kernel. 834 * @image: Kexec image. 835 * @kbuf: Buffer contents and memory parameters. 836 * 837 * Returns 0 on success, negative errno on error. 838 */ 839 int load_crashdump_segments_ppc64(struct kimage *image, 840 struct kexec_buf *kbuf) 841 { 842 int ret; 843 844 /* Load backup segment - first 64K bytes of the crashing kernel */ 845 ret = load_backup_segment(image, kbuf); 846 if (ret) { 847 pr_err("Failed to load backup segment\n"); 848 return ret; 849 } 850 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); 851 852 /* Load elfcorehdr segment - to export crashing kernel's vmcore */ 853 ret = load_elfcorehdr_segment(image, kbuf); 854 if (ret) { 855 pr_err("Failed to load elfcorehdr segment\n"); 856 return ret; 857 } 858 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", 859 image->elf_load_addr, kbuf->bufsz, kbuf->memsz); 860 861 return 0; 862 } 863 864 /** 865 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global 866 * variables and call setup_purgatory() to initialize 867 * common global variable. 868 * @image: kexec image. 869 * @slave_code: Slave code for the purgatory. 870 * @fdt: Flattened device tree for the next kernel. 871 * @kernel_load_addr: Address where the kernel is loaded. 872 * @fdt_load_addr: Address where the flattened device tree is loaded. 873 * 874 * Returns 0 on success, negative errno on error. 875 */ 876 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, 877 const void *fdt, unsigned long kernel_load_addr, 878 unsigned long fdt_load_addr) 879 { 880 struct device_node *dn = NULL; 881 int ret; 882 883 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, 884 fdt_load_addr); 885 if (ret) 886 goto out; 887 888 if (image->type == KEXEC_TYPE_CRASH) { 889 u32 my_run_at_load = 1; 890 891 /* 892 * Tell relocatable kernel to run at load address 893 * via the word meant for that at 0x5c. 894 */ 895 ret = kexec_purgatory_get_set_symbol(image, "run_at_load", 896 &my_run_at_load, 897 sizeof(my_run_at_load), 898 false); 899 if (ret) 900 goto out; 901 } 902 903 /* Tell purgatory where to look for backup region */ 904 ret = kexec_purgatory_get_set_symbol(image, "backup_start", 905 &image->arch.backup_start, 906 sizeof(image->arch.backup_start), 907 false); 908 if (ret) 909 goto out; 910 911 /* Setup OPAL base & entry values */ 912 dn = of_find_node_by_path("/ibm,opal"); 913 if (dn) { 914 u64 val; 915 916 of_property_read_u64(dn, "opal-base-address", &val); 917 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, 918 sizeof(val), false); 919 if (ret) 920 goto out; 921 922 of_property_read_u64(dn, "opal-entry-address", &val); 923 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, 924 sizeof(val), false); 925 } 926 out: 927 if (ret) 928 pr_err("Failed to setup purgatory symbols"); 929 of_node_put(dn); 930 return ret; 931 } 932 933 /** 934 * get_cpu_node_size - Compute the size of a CPU node in the FDT. 935 * This should be done only once and the value is stored in 936 * a static variable. 937 * Returns the max size of a CPU node in the FDT. 938 */ 939 static unsigned int cpu_node_size(void) 940 { 941 static unsigned int size; 942 struct device_node *dn; 943 struct property *pp; 944 945 /* 946 * Don't compute it twice, we are assuming that the per CPU node size 947 * doesn't change during the system's life. 948 */ 949 if (size) 950 return size; 951 952 dn = of_find_node_by_type(NULL, "cpu"); 953 if (WARN_ON_ONCE(!dn)) { 954 // Unlikely to happen 955 return 0; 956 } 957 958 /* 959 * We compute the sub node size for a CPU node, assuming it 960 * will be the same for all. 961 */ 962 size += strlen(dn->name) + 5; 963 for_each_property_of_node(dn, pp) { 964 size += strlen(pp->name); 965 size += pp->length; 966 } 967 968 of_node_put(dn); 969 return size; 970 } 971 972 /** 973 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to 974 * setup FDT for kexec/kdump kernel. 975 * @image: kexec image being loaded. 976 * 977 * Returns the estimated extra size needed for kexec/kdump kernel FDT. 978 */ 979 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) 980 { 981 unsigned int cpu_nodes, extra_size; 982 struct device_node *dn; 983 u64 usm_entries; 984 985 if (image->type != KEXEC_TYPE_CRASH) 986 return 0; 987 988 /* 989 * For kdump kernel, account for linux,usable-memory and 990 * linux,drconf-usable-memory properties. Get an approximate on the 991 * number of usable memory entries and use for FDT size estimation. 992 */ 993 if (drmem_lmb_size()) { 994 usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) + 995 (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); 996 extra_size = (unsigned int)(usm_entries * sizeof(u64)); 997 } else { 998 extra_size = 0; 999 } 1000 1001 /* 1002 * Get the number of CPU nodes in the current DT. This allows to 1003 * reserve places for CPU nodes added since the boot time. 1004 */ 1005 cpu_nodes = 0; 1006 for_each_node_by_type(dn, "cpu") { 1007 cpu_nodes++; 1008 } 1009 1010 if (cpu_nodes > boot_cpu_node_count) 1011 extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size(); 1012 1013 return extra_size; 1014 } 1015 1016 /** 1017 * add_node_props - Reads node properties from device node structure and add 1018 * them to fdt. 1019 * @fdt: Flattened device tree of the kernel 1020 * @node_offset: offset of the node to add a property at 1021 * @dn: device node pointer 1022 * 1023 * Returns 0 on success, negative errno on error. 1024 */ 1025 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 1026 { 1027 int ret = 0; 1028 struct property *pp; 1029 1030 if (!dn) 1031 return -EINVAL; 1032 1033 for_each_property_of_node(dn, pp) { 1034 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 1035 if (ret < 0) { 1036 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 1037 return ret; 1038 } 1039 } 1040 return ret; 1041 } 1042 1043 /** 1044 * update_cpus_node - Update cpus node of flattened device tree using of_root 1045 * device node. 1046 * @fdt: Flattened device tree of the kernel. 1047 * 1048 * Returns 0 on success, negative errno on error. 1049 */ 1050 static int update_cpus_node(void *fdt) 1051 { 1052 struct device_node *cpus_node, *dn; 1053 int cpus_offset, cpus_subnode_offset, ret = 0; 1054 1055 cpus_offset = fdt_path_offset(fdt, "/cpus"); 1056 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 1057 pr_err("Malformed device tree: error reading /cpus node: %s\n", 1058 fdt_strerror(cpus_offset)); 1059 return cpus_offset; 1060 } 1061 1062 if (cpus_offset > 0) { 1063 ret = fdt_del_node(fdt, cpus_offset); 1064 if (ret < 0) { 1065 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); 1066 return -EINVAL; 1067 } 1068 } 1069 1070 /* Add cpus node to fdt */ 1071 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); 1072 if (cpus_offset < 0) { 1073 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); 1074 return -EINVAL; 1075 } 1076 1077 /* Add cpus node properties */ 1078 cpus_node = of_find_node_by_path("/cpus"); 1079 ret = add_node_props(fdt, cpus_offset, cpus_node); 1080 of_node_put(cpus_node); 1081 if (ret < 0) 1082 return ret; 1083 1084 /* Loop through all subnodes of cpus and add them to fdt */ 1085 for_each_node_by_type(dn, "cpu") { 1086 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 1087 if (cpus_subnode_offset < 0) { 1088 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 1089 fdt_strerror(cpus_subnode_offset)); 1090 ret = cpus_subnode_offset; 1091 goto out; 1092 } 1093 1094 ret = add_node_props(fdt, cpus_subnode_offset, dn); 1095 if (ret < 0) 1096 goto out; 1097 } 1098 out: 1099 of_node_put(dn); 1100 return ret; 1101 } 1102 1103 static int copy_property(void *fdt, int node_offset, const struct device_node *dn, 1104 const char *propname) 1105 { 1106 const void *prop, *fdtprop; 1107 int len = 0, fdtlen = 0; 1108 1109 prop = of_get_property(dn, propname, &len); 1110 fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen); 1111 1112 if (fdtprop && !prop) 1113 return fdt_delprop(fdt, node_offset, propname); 1114 else if (prop) 1115 return fdt_setprop(fdt, node_offset, propname, prop, len); 1116 else 1117 return -FDT_ERR_NOTFOUND; 1118 } 1119 1120 static int update_pci_dma_nodes(void *fdt, const char *dmapropname) 1121 { 1122 struct device_node *dn; 1123 int pci_offset, root_offset, ret = 0; 1124 1125 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1126 return 0; 1127 1128 root_offset = fdt_path_offset(fdt, "/"); 1129 for_each_node_with_property(dn, dmapropname) { 1130 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn)); 1131 if (pci_offset < 0) 1132 continue; 1133 1134 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window"); 1135 if (ret < 0) 1136 break; 1137 ret = copy_property(fdt, pci_offset, dn, dmapropname); 1138 if (ret < 0) 1139 break; 1140 } 1141 1142 return ret; 1143 } 1144 1145 /** 1146 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel 1147 * being loaded. 1148 * @image: kexec image being loaded. 1149 * @fdt: Flattened device tree for the next kernel. 1150 * @initrd_load_addr: Address where the next initrd will be loaded. 1151 * @initrd_len: Size of the next initrd, or 0 if there will be none. 1152 * @cmdline: Command line for the next kernel, or NULL if there will 1153 * be none. 1154 * 1155 * Returns 0 on success, negative errno on error. 1156 */ 1157 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, 1158 unsigned long initrd_load_addr, 1159 unsigned long initrd_len, const char *cmdline) 1160 { 1161 struct crash_mem *umem = NULL, *rmem = NULL; 1162 int i, nr_ranges, ret; 1163 1164 /* 1165 * Restrict memory usage for kdump kernel by setting up 1166 * usable memory ranges and memory reserve map. 1167 */ 1168 if (image->type == KEXEC_TYPE_CRASH) { 1169 ret = get_usable_memory_ranges(&umem); 1170 if (ret) 1171 goto out; 1172 1173 ret = update_usable_mem_fdt(fdt, umem); 1174 if (ret) { 1175 pr_err("Error setting up usable-memory property for kdump kernel\n"); 1176 goto out; 1177 } 1178 1179 /* 1180 * Ensure we don't touch crashed kernel's memory except the 1181 * first 64K of RAM, which will be backed up. 1182 */ 1183 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, 1184 crashk_res.start - BACKUP_SRC_SIZE); 1185 if (ret) { 1186 pr_err("Error reserving crash memory: %s\n", 1187 fdt_strerror(ret)); 1188 goto out; 1189 } 1190 1191 /* Ensure backup region is not used by kdump/capture kernel */ 1192 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, 1193 BACKUP_SRC_SIZE); 1194 if (ret) { 1195 pr_err("Error reserving memory for backup: %s\n", 1196 fdt_strerror(ret)); 1197 goto out; 1198 } 1199 } 1200 1201 /* Update cpus nodes information to account hotplug CPUs. */ 1202 ret = update_cpus_node(fdt); 1203 if (ret < 0) 1204 goto out; 1205 1206 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" 1207 #define DMA64_PROPNAME "linux,dma64-ddr-window-info" 1208 ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME); 1209 if (ret < 0) 1210 goto out; 1211 1212 ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME); 1213 if (ret < 0) 1214 goto out; 1215 #undef DMA64_PROPNAME 1216 #undef DIRECT64_PROPNAME 1217 1218 /* Update memory reserve map */ 1219 ret = get_reserved_memory_ranges(&rmem); 1220 if (ret) 1221 goto out; 1222 1223 nr_ranges = rmem ? rmem->nr_ranges : 0; 1224 for (i = 0; i < nr_ranges; i++) { 1225 u64 base, size; 1226 1227 base = rmem->ranges[i].start; 1228 size = rmem->ranges[i].end - base + 1; 1229 ret = fdt_add_mem_rsv(fdt, base, size); 1230 if (ret) { 1231 pr_err("Error updating memory reserve map: %s\n", 1232 fdt_strerror(ret)); 1233 goto out; 1234 } 1235 } 1236 1237 out: 1238 kfree(rmem); 1239 kfree(umem); 1240 return ret; 1241 } 1242 1243 /** 1244 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, 1245 * tce-table, reserved-ranges & such (exclude 1246 * memory ranges) as they can't be used for kexec 1247 * segment buffer. Sets kbuf->mem when a suitable 1248 * memory hole is found. 1249 * @kbuf: Buffer contents and memory parameters. 1250 * 1251 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. 1252 * 1253 * Returns 0 on success, negative errno on error. 1254 */ 1255 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 1256 { 1257 struct crash_mem **emem; 1258 u64 buf_min, buf_max; 1259 int ret; 1260 1261 /* Look up the exclude ranges list while locating the memory hole */ 1262 emem = &(kbuf->image->arch.exclude_ranges); 1263 if (!(*emem) || ((*emem)->nr_ranges == 0)) { 1264 pr_warn("No exclude range list. Using the default locate mem hole method\n"); 1265 return kexec_locate_mem_hole(kbuf); 1266 } 1267 1268 buf_min = kbuf->buf_min; 1269 buf_max = kbuf->buf_max; 1270 /* Segments for kdump kernel should be within crashkernel region */ 1271 if (kbuf->image->type == KEXEC_TYPE_CRASH) { 1272 buf_min = (buf_min < crashk_res.start ? 1273 crashk_res.start : buf_min); 1274 buf_max = (buf_max > crashk_res.end ? 1275 crashk_res.end : buf_max); 1276 } 1277 1278 if (buf_min > buf_max) { 1279 pr_err("Invalid buffer min and/or max values\n"); 1280 return -EINVAL; 1281 } 1282 1283 if (kbuf->top_down) 1284 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, 1285 *emem); 1286 else 1287 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, 1288 *emem); 1289 1290 /* Add the buffer allocated to the exclude list for the next lookup */ 1291 if (!ret) { 1292 add_mem_range(emem, kbuf->mem, kbuf->memsz); 1293 sort_memory_ranges(*emem, true); 1294 } else { 1295 pr_err("Failed to locate memory buffer of size %lu\n", 1296 kbuf->memsz); 1297 } 1298 return ret; 1299 } 1300 1301 /** 1302 * arch_kexec_kernel_image_probe - Does additional handling needed to setup 1303 * kexec segments. 1304 * @image: kexec image being loaded. 1305 * @buf: Buffer pointing to elf data. 1306 * @buf_len: Length of the buffer. 1307 * 1308 * Returns 0 on success, negative errno on error. 1309 */ 1310 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 1311 unsigned long buf_len) 1312 { 1313 int ret; 1314 1315 /* Get exclude memory ranges needed for setting up kexec segments */ 1316 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); 1317 if (ret) { 1318 pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); 1319 return ret; 1320 } 1321 1322 return kexec_image_probe_default(image, buf, buf_len); 1323 } 1324 1325 /** 1326 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done 1327 * while loading the image. 1328 * @image: kexec image being loaded. 1329 * 1330 * Returns 0 on success, negative errno on error. 1331 */ 1332 int arch_kimage_file_post_load_cleanup(struct kimage *image) 1333 { 1334 kfree(image->arch.exclude_ranges); 1335 image->arch.exclude_ranges = NULL; 1336 1337 vfree(image->arch.backup_buf); 1338 image->arch.backup_buf = NULL; 1339 1340 vfree(image->elf_headers); 1341 image->elf_headers = NULL; 1342 image->elf_headers_sz = 0; 1343 1344 kvfree(image->arch.fdt); 1345 image->arch.fdt = NULL; 1346 1347 return kexec_image_post_load_cleanup_default(image); 1348 } 1349