1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ppc64 code to implement the kexec_file_load syscall 4 * 5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) 6 * Copyright (C) 2004 IBM Corp. 7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation 8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) 9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) 10 * Copyright (C) 2020 IBM Corporation 11 * 12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. 13 * Heavily modified for the kernel by 14 * Hari Bathini, IBM Corporation. 15 */ 16 17 #include <linux/kexec.h> 18 #include <linux/of_fdt.h> 19 #include <linux/libfdt.h> 20 #include <linux/of_device.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <asm/setup.h> 25 #include <asm/drmem.h> 26 #include <asm/kexec_ranges.h> 27 #include <asm/crashdump-ppc64.h> 28 29 struct umem_info { 30 u64 *buf; /* data buffer for usable-memory property */ 31 u32 size; /* size allocated for the data buffer */ 32 u32 max_entries; /* maximum no. of entries */ 33 u32 idx; /* index of current entry */ 34 35 /* usable memory ranges to look up */ 36 unsigned int nr_ranges; 37 const struct crash_mem_range *ranges; 38 }; 39 40 const struct kexec_file_ops * const kexec_file_loaders[] = { 41 &kexec_elf64_ops, 42 NULL 43 }; 44 45 /** 46 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes 47 * regions like opal/rtas, tce-table, initrd, 48 * kernel, htab which should be avoided while 49 * setting up kexec load segments. 50 * @mem_ranges: Range list to add the memory ranges to. 51 * 52 * Returns 0 on success, negative errno on error. 53 */ 54 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) 55 { 56 int ret; 57 58 ret = add_tce_mem_ranges(mem_ranges); 59 if (ret) 60 goto out; 61 62 ret = add_initrd_mem_range(mem_ranges); 63 if (ret) 64 goto out; 65 66 ret = add_htab_mem_range(mem_ranges); 67 if (ret) 68 goto out; 69 70 ret = add_kernel_mem_range(mem_ranges); 71 if (ret) 72 goto out; 73 74 ret = add_rtas_mem_range(mem_ranges); 75 if (ret) 76 goto out; 77 78 ret = add_opal_mem_range(mem_ranges); 79 if (ret) 80 goto out; 81 82 ret = add_reserved_mem_ranges(mem_ranges); 83 if (ret) 84 goto out; 85 86 /* exclude memory ranges should be sorted for easy lookup */ 87 sort_memory_ranges(*mem_ranges, true); 88 out: 89 if (ret) 90 pr_err("Failed to setup exclude memory ranges\n"); 91 return ret; 92 } 93 94 /** 95 * get_usable_memory_ranges - Get usable memory ranges. This list includes 96 * regions like crashkernel, opal/rtas & tce-table, 97 * that kdump kernel could use. 98 * @mem_ranges: Range list to add the memory ranges to. 99 * 100 * Returns 0 on success, negative errno on error. 101 */ 102 static int get_usable_memory_ranges(struct crash_mem **mem_ranges) 103 { 104 int ret; 105 106 /* 107 * Early boot failure observed on guests when low memory (first memory 108 * block?) is not added to usable memory. So, add [0, crashk_res.end] 109 * instead of [crashk_res.start, crashk_res.end] to workaround it. 110 * Also, crashed kernel's memory must be added to reserve map to 111 * avoid kdump kernel from using it. 112 */ 113 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); 114 if (ret) 115 goto out; 116 117 ret = add_rtas_mem_range(mem_ranges); 118 if (ret) 119 goto out; 120 121 ret = add_opal_mem_range(mem_ranges); 122 if (ret) 123 goto out; 124 125 ret = add_tce_mem_ranges(mem_ranges); 126 out: 127 if (ret) 128 pr_err("Failed to setup usable memory ranges\n"); 129 return ret; 130 } 131 132 /** 133 * get_crash_memory_ranges - Get crash memory ranges. This list includes 134 * first/crashing kernel's memory regions that 135 * would be exported via an elfcore. 136 * @mem_ranges: Range list to add the memory ranges to. 137 * 138 * Returns 0 on success, negative errno on error. 139 */ 140 static int get_crash_memory_ranges(struct crash_mem **mem_ranges) 141 { 142 phys_addr_t base, end; 143 struct crash_mem *tmem; 144 u64 i; 145 int ret; 146 147 for_each_mem_range(i, &base, &end) { 148 u64 size = end - base; 149 150 /* Skip backup memory region, which needs a separate entry */ 151 if (base == BACKUP_SRC_START) { 152 if (size > BACKUP_SRC_SIZE) { 153 base = BACKUP_SRC_END + 1; 154 size -= BACKUP_SRC_SIZE; 155 } else 156 continue; 157 } 158 159 ret = add_mem_range(mem_ranges, base, size); 160 if (ret) 161 goto out; 162 163 /* Try merging adjacent ranges before reallocation attempt */ 164 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) 165 sort_memory_ranges(*mem_ranges, true); 166 } 167 168 /* Reallocate memory ranges if there is no space to split ranges */ 169 tmem = *mem_ranges; 170 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { 171 tmem = realloc_mem_ranges(mem_ranges); 172 if (!tmem) 173 goto out; 174 } 175 176 /* Exclude crashkernel region */ 177 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); 178 if (ret) 179 goto out; 180 181 /* 182 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL 183 * regions are exported to save their context at the time of 184 * crash, they should actually be backed up just like the 185 * first 64K bytes of memory. 186 */ 187 ret = add_rtas_mem_range(mem_ranges); 188 if (ret) 189 goto out; 190 191 ret = add_opal_mem_range(mem_ranges); 192 if (ret) 193 goto out; 194 195 /* create a separate program header for the backup region */ 196 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); 197 if (ret) 198 goto out; 199 200 sort_memory_ranges(*mem_ranges, false); 201 out: 202 if (ret) 203 pr_err("Failed to setup crash memory ranges\n"); 204 return ret; 205 } 206 207 /** 208 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes 209 * memory regions that should be added to the 210 * memory reserve map to ensure the region is 211 * protected from any mischief. 212 * @mem_ranges: Range list to add the memory ranges to. 213 * 214 * Returns 0 on success, negative errno on error. 215 */ 216 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) 217 { 218 int ret; 219 220 ret = add_rtas_mem_range(mem_ranges); 221 if (ret) 222 goto out; 223 224 ret = add_tce_mem_ranges(mem_ranges); 225 if (ret) 226 goto out; 227 228 ret = add_reserved_mem_ranges(mem_ranges); 229 out: 230 if (ret) 231 pr_err("Failed to setup reserved memory ranges\n"); 232 return ret; 233 } 234 235 /** 236 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole 237 * in the memory regions between buf_min & buf_max 238 * for the buffer. If found, sets kbuf->mem. 239 * @kbuf: Buffer contents and memory parameters. 240 * @buf_min: Minimum address for the buffer. 241 * @buf_max: Maximum address for the buffer. 242 * 243 * Returns 0 on success, negative errno on error. 244 */ 245 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, 246 u64 buf_min, u64 buf_max) 247 { 248 int ret = -EADDRNOTAVAIL; 249 phys_addr_t start, end; 250 u64 i; 251 252 for_each_mem_range_rev(i, &start, &end) { 253 /* 254 * memblock uses [start, end) convention while it is 255 * [start, end] here. Fix the off-by-one to have the 256 * same convention. 257 */ 258 end -= 1; 259 260 if (start > buf_max) 261 continue; 262 263 /* Memory hole not found */ 264 if (end < buf_min) 265 break; 266 267 /* Adjust memory region based on the given range */ 268 if (start < buf_min) 269 start = buf_min; 270 if (end > buf_max) 271 end = buf_max; 272 273 start = ALIGN(start, kbuf->buf_align); 274 if (start < end && (end - start + 1) >= kbuf->memsz) { 275 /* Suitable memory range found. Set kbuf->mem */ 276 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, 277 kbuf->buf_align); 278 ret = 0; 279 break; 280 } 281 } 282 283 return ret; 284 } 285 286 /** 287 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a 288 * suitable buffer with top down approach. 289 * @kbuf: Buffer contents and memory parameters. 290 * @buf_min: Minimum address for the buffer. 291 * @buf_max: Maximum address for the buffer. 292 * @emem: Exclude memory ranges. 293 * 294 * Returns 0 on success, negative errno on error. 295 */ 296 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, 297 u64 buf_min, u64 buf_max, 298 const struct crash_mem *emem) 299 { 300 int i, ret = 0, err = -EADDRNOTAVAIL; 301 u64 start, end, tmin, tmax; 302 303 tmax = buf_max; 304 for (i = (emem->nr_ranges - 1); i >= 0; i--) { 305 start = emem->ranges[i].start; 306 end = emem->ranges[i].end; 307 308 if (start > tmax) 309 continue; 310 311 if (end < tmax) { 312 tmin = (end < buf_min ? buf_min : end + 1); 313 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 314 if (!ret) 315 return 0; 316 } 317 318 tmax = start - 1; 319 320 if (tmax < buf_min) { 321 ret = err; 322 break; 323 } 324 ret = 0; 325 } 326 327 if (!ret) { 328 tmin = buf_min; 329 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); 330 } 331 return ret; 332 } 333 334 /** 335 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole 336 * in the memory regions between buf_min & buf_max 337 * for the buffer. If found, sets kbuf->mem. 338 * @kbuf: Buffer contents and memory parameters. 339 * @buf_min: Minimum address for the buffer. 340 * @buf_max: Maximum address for the buffer. 341 * 342 * Returns 0 on success, negative errno on error. 343 */ 344 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, 345 u64 buf_min, u64 buf_max) 346 { 347 int ret = -EADDRNOTAVAIL; 348 phys_addr_t start, end; 349 u64 i; 350 351 for_each_mem_range(i, &start, &end) { 352 /* 353 * memblock uses [start, end) convention while it is 354 * [start, end] here. Fix the off-by-one to have the 355 * same convention. 356 */ 357 end -= 1; 358 359 if (end < buf_min) 360 continue; 361 362 /* Memory hole not found */ 363 if (start > buf_max) 364 break; 365 366 /* Adjust memory region based on the given range */ 367 if (start < buf_min) 368 start = buf_min; 369 if (end > buf_max) 370 end = buf_max; 371 372 start = ALIGN(start, kbuf->buf_align); 373 if (start < end && (end - start + 1) >= kbuf->memsz) { 374 /* Suitable memory range found. Set kbuf->mem */ 375 kbuf->mem = start; 376 ret = 0; 377 break; 378 } 379 } 380 381 return ret; 382 } 383 384 /** 385 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a 386 * suitable buffer with bottom up approach. 387 * @kbuf: Buffer contents and memory parameters. 388 * @buf_min: Minimum address for the buffer. 389 * @buf_max: Maximum address for the buffer. 390 * @emem: Exclude memory ranges. 391 * 392 * Returns 0 on success, negative errno on error. 393 */ 394 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, 395 u64 buf_min, u64 buf_max, 396 const struct crash_mem *emem) 397 { 398 int i, ret = 0, err = -EADDRNOTAVAIL; 399 u64 start, end, tmin, tmax; 400 401 tmin = buf_min; 402 for (i = 0; i < emem->nr_ranges; i++) { 403 start = emem->ranges[i].start; 404 end = emem->ranges[i].end; 405 406 if (end < tmin) 407 continue; 408 409 if (start > tmin) { 410 tmax = (start > buf_max ? buf_max : start - 1); 411 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 412 if (!ret) 413 return 0; 414 } 415 416 tmin = end + 1; 417 418 if (tmin > buf_max) { 419 ret = err; 420 break; 421 } 422 ret = 0; 423 } 424 425 if (!ret) { 426 tmax = buf_max; 427 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); 428 } 429 return ret; 430 } 431 432 /** 433 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries 434 * @um_info: Usable memory buffer and ranges info. 435 * @cnt: No. of entries to accommodate. 436 * 437 * Frees up the old buffer if memory reallocation fails. 438 * 439 * Returns buffer on success, NULL on error. 440 */ 441 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) 442 { 443 u32 new_size; 444 u64 *tbuf; 445 446 if ((um_info->idx + cnt) <= um_info->max_entries) 447 return um_info->buf; 448 449 new_size = um_info->size + MEM_RANGE_CHUNK_SZ; 450 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); 451 if (tbuf) { 452 um_info->buf = tbuf; 453 um_info->size = new_size; 454 um_info->max_entries = (um_info->size / sizeof(u64)); 455 } 456 457 return tbuf; 458 } 459 460 /** 461 * add_usable_mem - Add the usable memory ranges within the given memory range 462 * to the buffer 463 * @um_info: Usable memory buffer and ranges info. 464 * @base: Base address of memory range to look for. 465 * @end: End address of memory range to look for. 466 * 467 * Returns 0 on success, negative errno on error. 468 */ 469 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) 470 { 471 u64 loc_base, loc_end; 472 bool add; 473 int i; 474 475 for (i = 0; i < um_info->nr_ranges; i++) { 476 add = false; 477 loc_base = um_info->ranges[i].start; 478 loc_end = um_info->ranges[i].end; 479 if (loc_base >= base && loc_end <= end) 480 add = true; 481 else if (base < loc_end && end > loc_base) { 482 if (loc_base < base) 483 loc_base = base; 484 if (loc_end > end) 485 loc_end = end; 486 add = true; 487 } 488 489 if (add) { 490 if (!check_realloc_usable_mem(um_info, 2)) 491 return -ENOMEM; 492 493 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); 494 um_info->buf[um_info->idx++] = 495 cpu_to_be64(loc_end - loc_base + 1); 496 } 497 } 498 499 return 0; 500 } 501 502 /** 503 * kdump_setup_usable_lmb - This is a callback function that gets called by 504 * walk_drmem_lmbs for every LMB to set its 505 * usable memory ranges. 506 * @lmb: LMB info. 507 * @usm: linux,drconf-usable-memory property value. 508 * @data: Pointer to usable memory buffer and ranges info. 509 * 510 * Returns 0 on success, negative errno on error. 511 */ 512 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, 513 void *data) 514 { 515 struct umem_info *um_info; 516 int tmp_idx, ret; 517 u64 base, end; 518 519 /* 520 * kdump load isn't supported on kernels already booted with 521 * linux,drconf-usable-memory property. 522 */ 523 if (*usm) { 524 pr_err("linux,drconf-usable-memory property already exists!"); 525 return -EINVAL; 526 } 527 528 um_info = data; 529 tmp_idx = um_info->idx; 530 if (!check_realloc_usable_mem(um_info, 1)) 531 return -ENOMEM; 532 533 um_info->idx++; 534 base = lmb->base_addr; 535 end = base + drmem_lmb_size() - 1; 536 ret = add_usable_mem(um_info, base, end); 537 if (!ret) { 538 /* 539 * Update the no. of ranges added. Two entries (base & size) 540 * for every range added. 541 */ 542 um_info->buf[tmp_idx] = 543 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); 544 } 545 546 return ret; 547 } 548 549 #define NODE_PATH_LEN 256 550 /** 551 * add_usable_mem_property - Add usable memory property for the given 552 * memory node. 553 * @fdt: Flattened device tree for the kdump kernel. 554 * @dn: Memory node. 555 * @um_info: Usable memory buffer and ranges info. 556 * 557 * Returns 0 on success, negative errno on error. 558 */ 559 static int add_usable_mem_property(void *fdt, struct device_node *dn, 560 struct umem_info *um_info) 561 { 562 int n_mem_addr_cells, n_mem_size_cells, node; 563 char path[NODE_PATH_LEN]; 564 int i, len, ranges, ret; 565 const __be32 *prop; 566 u64 base, end; 567 568 of_node_get(dn); 569 570 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { 571 pr_err("Buffer (%d) too small for memory node: %pOF\n", 572 NODE_PATH_LEN, dn); 573 return -EOVERFLOW; 574 } 575 pr_debug("Memory node path: %s\n", path); 576 577 /* Now that we know the path, find its offset in kdump kernel's fdt */ 578 node = fdt_path_offset(fdt, path); 579 if (node < 0) { 580 pr_err("Malformed device tree: error reading %s\n", path); 581 ret = -EINVAL; 582 goto out; 583 } 584 585 /* Get the address & size cells */ 586 n_mem_addr_cells = of_n_addr_cells(dn); 587 n_mem_size_cells = of_n_size_cells(dn); 588 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, 589 n_mem_size_cells); 590 591 um_info->idx = 0; 592 if (!check_realloc_usable_mem(um_info, 2)) { 593 ret = -ENOMEM; 594 goto out; 595 } 596 597 prop = of_get_property(dn, "reg", &len); 598 if (!prop || len <= 0) { 599 ret = 0; 600 goto out; 601 } 602 603 /* 604 * "reg" property represents sequence of (addr,size) tuples 605 * each representing a memory range. 606 */ 607 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 608 609 for (i = 0; i < ranges; i++) { 610 base = of_read_number(prop, n_mem_addr_cells); 611 prop += n_mem_addr_cells; 612 end = base + of_read_number(prop, n_mem_size_cells) - 1; 613 prop += n_mem_size_cells; 614 615 ret = add_usable_mem(um_info, base, end); 616 if (ret) 617 goto out; 618 } 619 620 /* 621 * No kdump kernel usable memory found in this memory node. 622 * Write (0,0) tuple in linux,usable-memory property for 623 * this region to be ignored. 624 */ 625 if (um_info->idx == 0) { 626 um_info->buf[0] = 0; 627 um_info->buf[1] = 0; 628 um_info->idx = 2; 629 } 630 631 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, 632 (um_info->idx * sizeof(u64))); 633 634 out: 635 of_node_put(dn); 636 return ret; 637 } 638 639 640 /** 641 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory 642 * and linux,drconf-usable-memory DT properties as 643 * appropriate to restrict its memory usage. 644 * @fdt: Flattened device tree for the kdump kernel. 645 * @usable_mem: Usable memory ranges for kdump kernel. 646 * 647 * Returns 0 on success, negative errno on error. 648 */ 649 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) 650 { 651 struct umem_info um_info; 652 struct device_node *dn; 653 int node, ret = 0; 654 655 if (!usable_mem) { 656 pr_err("Usable memory ranges for kdump kernel not found\n"); 657 return -ENOENT; 658 } 659 660 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 661 if (node == -FDT_ERR_NOTFOUND) 662 pr_debug("No dynamic reconfiguration memory found\n"); 663 else if (node < 0) { 664 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); 665 return -EINVAL; 666 } 667 668 um_info.buf = NULL; 669 um_info.size = 0; 670 um_info.max_entries = 0; 671 um_info.idx = 0; 672 /* Memory ranges to look up */ 673 um_info.ranges = &(usable_mem->ranges[0]); 674 um_info.nr_ranges = usable_mem->nr_ranges; 675 676 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 677 if (dn) { 678 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); 679 of_node_put(dn); 680 681 if (ret) { 682 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); 683 goto out; 684 } 685 686 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", 687 um_info.buf, (um_info.idx * sizeof(u64))); 688 if (ret) { 689 pr_err("Failed to update fdt with linux,drconf-usable-memory property"); 690 goto out; 691 } 692 } 693 694 /* 695 * Walk through each memory node and set linux,usable-memory property 696 * for the corresponding node in kdump kernel's fdt. 697 */ 698 for_each_node_by_type(dn, "memory") { 699 ret = add_usable_mem_property(fdt, dn, &um_info); 700 if (ret) { 701 pr_err("Failed to set linux,usable-memory property for %s node", 702 dn->full_name); 703 goto out; 704 } 705 } 706 707 out: 708 kfree(um_info.buf); 709 return ret; 710 } 711 712 /** 713 * load_backup_segment - Locate a memory hole to place the backup region. 714 * @image: Kexec image. 715 * @kbuf: Buffer contents and memory parameters. 716 * 717 * Returns 0 on success, negative errno on error. 718 */ 719 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) 720 { 721 void *buf; 722 int ret; 723 724 /* 725 * Setup a source buffer for backup segment. 726 * 727 * A source buffer has no meaning for backup region as data will 728 * be copied from backup source, after crash, in the purgatory. 729 * But as load segment code doesn't recognize such segments, 730 * setup a dummy source buffer to keep it happy for now. 731 */ 732 buf = vzalloc(BACKUP_SRC_SIZE); 733 if (!buf) 734 return -ENOMEM; 735 736 kbuf->buffer = buf; 737 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 738 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; 739 kbuf->top_down = false; 740 741 ret = kexec_add_buffer(kbuf); 742 if (ret) { 743 vfree(buf); 744 return ret; 745 } 746 747 image->arch.backup_buf = buf; 748 image->arch.backup_start = kbuf->mem; 749 return 0; 750 } 751 752 /** 753 * update_backup_region_phdr - Update backup region's offset for the core to 754 * export the region appropriately. 755 * @image: Kexec image. 756 * @ehdr: ELF core header. 757 * 758 * Assumes an exclusive program header is setup for the backup region 759 * in the ELF headers 760 * 761 * Returns nothing. 762 */ 763 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) 764 { 765 Elf64_Phdr *phdr; 766 unsigned int i; 767 768 phdr = (Elf64_Phdr *)(ehdr + 1); 769 for (i = 0; i < ehdr->e_phnum; i++) { 770 if (phdr->p_paddr == BACKUP_SRC_START) { 771 phdr->p_offset = image->arch.backup_start; 772 pr_debug("Backup region offset updated to 0x%lx\n", 773 image->arch.backup_start); 774 return; 775 } 776 } 777 } 778 779 /** 780 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr 781 * segment needed to load kdump kernel. 782 * @image: Kexec image. 783 * @kbuf: Buffer contents and memory parameters. 784 * 785 * Returns 0 on success, negative errno on error. 786 */ 787 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) 788 { 789 struct crash_mem *cmem = NULL; 790 unsigned long headers_sz; 791 void *headers = NULL; 792 int ret; 793 794 ret = get_crash_memory_ranges(&cmem); 795 if (ret) 796 goto out; 797 798 /* Setup elfcorehdr segment */ 799 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); 800 if (ret) { 801 pr_err("Failed to prepare elf headers for the core\n"); 802 goto out; 803 } 804 805 /* Fix the offset for backup region in the ELF header */ 806 update_backup_region_phdr(image, headers); 807 808 kbuf->buffer = headers; 809 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; 810 kbuf->bufsz = kbuf->memsz = headers_sz; 811 kbuf->top_down = false; 812 813 ret = kexec_add_buffer(kbuf); 814 if (ret) { 815 vfree(headers); 816 goto out; 817 } 818 819 image->elf_load_addr = kbuf->mem; 820 image->elf_headers_sz = headers_sz; 821 image->elf_headers = headers; 822 out: 823 kfree(cmem); 824 return ret; 825 } 826 827 /** 828 * load_crashdump_segments_ppc64 - Initialize the additional segements needed 829 * to load kdump kernel. 830 * @image: Kexec image. 831 * @kbuf: Buffer contents and memory parameters. 832 * 833 * Returns 0 on success, negative errno on error. 834 */ 835 int load_crashdump_segments_ppc64(struct kimage *image, 836 struct kexec_buf *kbuf) 837 { 838 int ret; 839 840 /* Load backup segment - first 64K bytes of the crashing kernel */ 841 ret = load_backup_segment(image, kbuf); 842 if (ret) { 843 pr_err("Failed to load backup segment\n"); 844 return ret; 845 } 846 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); 847 848 /* Load elfcorehdr segment - to export crashing kernel's vmcore */ 849 ret = load_elfcorehdr_segment(image, kbuf); 850 if (ret) { 851 pr_err("Failed to load elfcorehdr segment\n"); 852 return ret; 853 } 854 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", 855 image->elf_load_addr, kbuf->bufsz, kbuf->memsz); 856 857 return 0; 858 } 859 860 /** 861 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global 862 * variables and call setup_purgatory() to initialize 863 * common global variable. 864 * @image: kexec image. 865 * @slave_code: Slave code for the purgatory. 866 * @fdt: Flattened device tree for the next kernel. 867 * @kernel_load_addr: Address where the kernel is loaded. 868 * @fdt_load_addr: Address where the flattened device tree is loaded. 869 * 870 * Returns 0 on success, negative errno on error. 871 */ 872 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, 873 const void *fdt, unsigned long kernel_load_addr, 874 unsigned long fdt_load_addr) 875 { 876 struct device_node *dn = NULL; 877 int ret; 878 879 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, 880 fdt_load_addr); 881 if (ret) 882 goto out; 883 884 if (image->type == KEXEC_TYPE_CRASH) { 885 u32 my_run_at_load = 1; 886 887 /* 888 * Tell relocatable kernel to run at load address 889 * via the word meant for that at 0x5c. 890 */ 891 ret = kexec_purgatory_get_set_symbol(image, "run_at_load", 892 &my_run_at_load, 893 sizeof(my_run_at_load), 894 false); 895 if (ret) 896 goto out; 897 } 898 899 /* Tell purgatory where to look for backup region */ 900 ret = kexec_purgatory_get_set_symbol(image, "backup_start", 901 &image->arch.backup_start, 902 sizeof(image->arch.backup_start), 903 false); 904 if (ret) 905 goto out; 906 907 /* Setup OPAL base & entry values */ 908 dn = of_find_node_by_path("/ibm,opal"); 909 if (dn) { 910 u64 val; 911 912 of_property_read_u64(dn, "opal-base-address", &val); 913 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, 914 sizeof(val), false); 915 if (ret) 916 goto out; 917 918 of_property_read_u64(dn, "opal-entry-address", &val); 919 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, 920 sizeof(val), false); 921 } 922 out: 923 if (ret) 924 pr_err("Failed to setup purgatory symbols"); 925 of_node_put(dn); 926 return ret; 927 } 928 929 /** 930 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to 931 * setup FDT for kexec/kdump kernel. 932 * @image: kexec image being loaded. 933 * 934 * Returns the estimated extra size needed for kexec/kdump kernel FDT. 935 */ 936 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) 937 { 938 u64 usm_entries; 939 940 if (image->type != KEXEC_TYPE_CRASH) 941 return 0; 942 943 /* 944 * For kdump kernel, account for linux,usable-memory and 945 * linux,drconf-usable-memory properties. Get an approximate on the 946 * number of usable memory entries and use for FDT size estimation. 947 */ 948 usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) + 949 (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); 950 return (unsigned int)(usm_entries * sizeof(u64)); 951 } 952 953 /** 954 * add_node_props - Reads node properties from device node structure and add 955 * them to fdt. 956 * @fdt: Flattened device tree of the kernel 957 * @node_offset: offset of the node to add a property at 958 * @dn: device node pointer 959 * 960 * Returns 0 on success, negative errno on error. 961 */ 962 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 963 { 964 int ret = 0; 965 struct property *pp; 966 967 if (!dn) 968 return -EINVAL; 969 970 for_each_property_of_node(dn, pp) { 971 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 972 if (ret < 0) { 973 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 974 return ret; 975 } 976 } 977 return ret; 978 } 979 980 /** 981 * update_cpus_node - Update cpus node of flattened device tree using of_root 982 * device node. 983 * @fdt: Flattened device tree of the kernel. 984 * 985 * Returns 0 on success, negative errno on error. 986 */ 987 static int update_cpus_node(void *fdt) 988 { 989 struct device_node *cpus_node, *dn; 990 int cpus_offset, cpus_subnode_offset, ret = 0; 991 992 cpus_offset = fdt_path_offset(fdt, "/cpus"); 993 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 994 pr_err("Malformed device tree: error reading /cpus node: %s\n", 995 fdt_strerror(cpus_offset)); 996 return cpus_offset; 997 } 998 999 if (cpus_offset > 0) { 1000 ret = fdt_del_node(fdt, cpus_offset); 1001 if (ret < 0) { 1002 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); 1003 return -EINVAL; 1004 } 1005 } 1006 1007 /* Add cpus node to fdt */ 1008 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); 1009 if (cpus_offset < 0) { 1010 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); 1011 return -EINVAL; 1012 } 1013 1014 /* Add cpus node properties */ 1015 cpus_node = of_find_node_by_path("/cpus"); 1016 ret = add_node_props(fdt, cpus_offset, cpus_node); 1017 of_node_put(cpus_node); 1018 if (ret < 0) 1019 return ret; 1020 1021 /* Loop through all subnodes of cpus and add them to fdt */ 1022 for_each_node_by_type(dn, "cpu") { 1023 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 1024 if (cpus_subnode_offset < 0) { 1025 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 1026 fdt_strerror(cpus_subnode_offset)); 1027 ret = cpus_subnode_offset; 1028 goto out; 1029 } 1030 1031 ret = add_node_props(fdt, cpus_subnode_offset, dn); 1032 if (ret < 0) 1033 goto out; 1034 } 1035 out: 1036 of_node_put(dn); 1037 return ret; 1038 } 1039 1040 /** 1041 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel 1042 * being loaded. 1043 * @image: kexec image being loaded. 1044 * @fdt: Flattened device tree for the next kernel. 1045 * @initrd_load_addr: Address where the next initrd will be loaded. 1046 * @initrd_len: Size of the next initrd, or 0 if there will be none. 1047 * @cmdline: Command line for the next kernel, or NULL if there will 1048 * be none. 1049 * 1050 * Returns 0 on success, negative errno on error. 1051 */ 1052 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, 1053 unsigned long initrd_load_addr, 1054 unsigned long initrd_len, const char *cmdline) 1055 { 1056 struct crash_mem *umem = NULL, *rmem = NULL; 1057 int i, nr_ranges, ret; 1058 1059 /* 1060 * Restrict memory usage for kdump kernel by setting up 1061 * usable memory ranges and memory reserve map. 1062 */ 1063 if (image->type == KEXEC_TYPE_CRASH) { 1064 ret = get_usable_memory_ranges(&umem); 1065 if (ret) 1066 goto out; 1067 1068 ret = update_usable_mem_fdt(fdt, umem); 1069 if (ret) { 1070 pr_err("Error setting up usable-memory property for kdump kernel\n"); 1071 goto out; 1072 } 1073 1074 /* 1075 * Ensure we don't touch crashed kernel's memory except the 1076 * first 64K of RAM, which will be backed up. 1077 */ 1078 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, 1079 crashk_res.start - BACKUP_SRC_SIZE); 1080 if (ret) { 1081 pr_err("Error reserving crash memory: %s\n", 1082 fdt_strerror(ret)); 1083 goto out; 1084 } 1085 1086 /* Ensure backup region is not used by kdump/capture kernel */ 1087 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, 1088 BACKUP_SRC_SIZE); 1089 if (ret) { 1090 pr_err("Error reserving memory for backup: %s\n", 1091 fdt_strerror(ret)); 1092 goto out; 1093 } 1094 } 1095 1096 /* Update cpus nodes information to account hotplug CPUs. */ 1097 ret = update_cpus_node(fdt); 1098 if (ret < 0) 1099 goto out; 1100 1101 /* Update memory reserve map */ 1102 ret = get_reserved_memory_ranges(&rmem); 1103 if (ret) 1104 goto out; 1105 1106 nr_ranges = rmem ? rmem->nr_ranges : 0; 1107 for (i = 0; i < nr_ranges; i++) { 1108 u64 base, size; 1109 1110 base = rmem->ranges[i].start; 1111 size = rmem->ranges[i].end - base + 1; 1112 ret = fdt_add_mem_rsv(fdt, base, size); 1113 if (ret) { 1114 pr_err("Error updating memory reserve map: %s\n", 1115 fdt_strerror(ret)); 1116 goto out; 1117 } 1118 } 1119 1120 out: 1121 kfree(rmem); 1122 kfree(umem); 1123 return ret; 1124 } 1125 1126 /** 1127 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, 1128 * tce-table, reserved-ranges & such (exclude 1129 * memory ranges) as they can't be used for kexec 1130 * segment buffer. Sets kbuf->mem when a suitable 1131 * memory hole is found. 1132 * @kbuf: Buffer contents and memory parameters. 1133 * 1134 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. 1135 * 1136 * Returns 0 on success, negative errno on error. 1137 */ 1138 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 1139 { 1140 struct crash_mem **emem; 1141 u64 buf_min, buf_max; 1142 int ret; 1143 1144 /* Look up the exclude ranges list while locating the memory hole */ 1145 emem = &(kbuf->image->arch.exclude_ranges); 1146 if (!(*emem) || ((*emem)->nr_ranges == 0)) { 1147 pr_warn("No exclude range list. Using the default locate mem hole method\n"); 1148 return kexec_locate_mem_hole(kbuf); 1149 } 1150 1151 buf_min = kbuf->buf_min; 1152 buf_max = kbuf->buf_max; 1153 /* Segments for kdump kernel should be within crashkernel region */ 1154 if (kbuf->image->type == KEXEC_TYPE_CRASH) { 1155 buf_min = (buf_min < crashk_res.start ? 1156 crashk_res.start : buf_min); 1157 buf_max = (buf_max > crashk_res.end ? 1158 crashk_res.end : buf_max); 1159 } 1160 1161 if (buf_min > buf_max) { 1162 pr_err("Invalid buffer min and/or max values\n"); 1163 return -EINVAL; 1164 } 1165 1166 if (kbuf->top_down) 1167 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, 1168 *emem); 1169 else 1170 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, 1171 *emem); 1172 1173 /* Add the buffer allocated to the exclude list for the next lookup */ 1174 if (!ret) { 1175 add_mem_range(emem, kbuf->mem, kbuf->memsz); 1176 sort_memory_ranges(*emem, true); 1177 } else { 1178 pr_err("Failed to locate memory buffer of size %lu\n", 1179 kbuf->memsz); 1180 } 1181 return ret; 1182 } 1183 1184 /** 1185 * arch_kexec_kernel_image_probe - Does additional handling needed to setup 1186 * kexec segments. 1187 * @image: kexec image being loaded. 1188 * @buf: Buffer pointing to elf data. 1189 * @buf_len: Length of the buffer. 1190 * 1191 * Returns 0 on success, negative errno on error. 1192 */ 1193 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 1194 unsigned long buf_len) 1195 { 1196 int ret; 1197 1198 /* Get exclude memory ranges needed for setting up kexec segments */ 1199 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); 1200 if (ret) { 1201 pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); 1202 return ret; 1203 } 1204 1205 return kexec_image_probe_default(image, buf, buf_len); 1206 } 1207 1208 /** 1209 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done 1210 * while loading the image. 1211 * @image: kexec image being loaded. 1212 * 1213 * Returns 0 on success, negative errno on error. 1214 */ 1215 int arch_kimage_file_post_load_cleanup(struct kimage *image) 1216 { 1217 kfree(image->arch.exclude_ranges); 1218 image->arch.exclude_ranges = NULL; 1219 1220 vfree(image->arch.backup_buf); 1221 image->arch.backup_buf = NULL; 1222 1223 vfree(image->elf_headers); 1224 image->elf_headers = NULL; 1225 image->elf_headers_sz = 0; 1226 1227 kvfree(image->arch.fdt); 1228 image->arch.fdt = NULL; 1229 1230 return kexec_image_post_load_cleanup_default(image); 1231 } 1232