1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of_device.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/firmware.h>
27 #include <asm/kexec_ranges.h>
28 #include <asm/crashdump-ppc64.h>
29 #include <asm/mmzone.h>
30 #include <asm/prom.h>
31 #include <asm/plpks.h>
32 
33 struct umem_info {
34 	u64 *buf;		/* data buffer for usable-memory property */
35 	u32 size;		/* size allocated for the data buffer */
36 	u32 max_entries;	/* maximum no. of entries */
37 	u32 idx;		/* index of current entry */
38 
39 	/* usable memory ranges to look up */
40 	unsigned int nr_ranges;
41 	const struct range *ranges;
42 };
43 
44 const struct kexec_file_ops * const kexec_file_loaders[] = {
45 	&kexec_elf64_ops,
46 	NULL
47 };
48 
49 /**
50  * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
51  *                             regions like opal/rtas, tce-table, initrd,
52  *                             kernel, htab which should be avoided while
53  *                             setting up kexec load segments.
54  * @mem_ranges:                Range list to add the memory ranges to.
55  *
56  * Returns 0 on success, negative errno on error.
57  */
58 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
59 {
60 	int ret;
61 
62 	ret = add_tce_mem_ranges(mem_ranges);
63 	if (ret)
64 		goto out;
65 
66 	ret = add_initrd_mem_range(mem_ranges);
67 	if (ret)
68 		goto out;
69 
70 	ret = add_htab_mem_range(mem_ranges);
71 	if (ret)
72 		goto out;
73 
74 	ret = add_kernel_mem_range(mem_ranges);
75 	if (ret)
76 		goto out;
77 
78 	ret = add_rtas_mem_range(mem_ranges);
79 	if (ret)
80 		goto out;
81 
82 	ret = add_opal_mem_range(mem_ranges);
83 	if (ret)
84 		goto out;
85 
86 	ret = add_reserved_mem_ranges(mem_ranges);
87 	if (ret)
88 		goto out;
89 
90 	/* exclude memory ranges should be sorted for easy lookup */
91 	sort_memory_ranges(*mem_ranges, true);
92 out:
93 	if (ret)
94 		pr_err("Failed to setup exclude memory ranges\n");
95 	return ret;
96 }
97 
98 /**
99  * get_usable_memory_ranges - Get usable memory ranges. This list includes
100  *                            regions like crashkernel, opal/rtas & tce-table,
101  *                            that kdump kernel could use.
102  * @mem_ranges:               Range list to add the memory ranges to.
103  *
104  * Returns 0 on success, negative errno on error.
105  */
106 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
107 {
108 	int ret;
109 
110 	/*
111 	 * Early boot failure observed on guests when low memory (first memory
112 	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
113 	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
114 	 * Also, crashed kernel's memory must be added to reserve map to
115 	 * avoid kdump kernel from using it.
116 	 */
117 	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
118 	if (ret)
119 		goto out;
120 
121 	ret = add_rtas_mem_range(mem_ranges);
122 	if (ret)
123 		goto out;
124 
125 	ret = add_opal_mem_range(mem_ranges);
126 	if (ret)
127 		goto out;
128 
129 	ret = add_tce_mem_ranges(mem_ranges);
130 out:
131 	if (ret)
132 		pr_err("Failed to setup usable memory ranges\n");
133 	return ret;
134 }
135 
136 /**
137  * get_crash_memory_ranges - Get crash memory ranges. This list includes
138  *                           first/crashing kernel's memory regions that
139  *                           would be exported via an elfcore.
140  * @mem_ranges:              Range list to add the memory ranges to.
141  *
142  * Returns 0 on success, negative errno on error.
143  */
144 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
145 {
146 	phys_addr_t base, end;
147 	struct crash_mem *tmem;
148 	u64 i;
149 	int ret;
150 
151 	for_each_mem_range(i, &base, &end) {
152 		u64 size = end - base;
153 
154 		/* Skip backup memory region, which needs a separate entry */
155 		if (base == BACKUP_SRC_START) {
156 			if (size > BACKUP_SRC_SIZE) {
157 				base = BACKUP_SRC_END + 1;
158 				size -= BACKUP_SRC_SIZE;
159 			} else
160 				continue;
161 		}
162 
163 		ret = add_mem_range(mem_ranges, base, size);
164 		if (ret)
165 			goto out;
166 
167 		/* Try merging adjacent ranges before reallocation attempt */
168 		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
169 			sort_memory_ranges(*mem_ranges, true);
170 	}
171 
172 	/* Reallocate memory ranges if there is no space to split ranges */
173 	tmem = *mem_ranges;
174 	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
175 		tmem = realloc_mem_ranges(mem_ranges);
176 		if (!tmem)
177 			goto out;
178 	}
179 
180 	/* Exclude crashkernel region */
181 	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
182 	if (ret)
183 		goto out;
184 
185 	/*
186 	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
187 	 *        regions are exported to save their context at the time of
188 	 *        crash, they should actually be backed up just like the
189 	 *        first 64K bytes of memory.
190 	 */
191 	ret = add_rtas_mem_range(mem_ranges);
192 	if (ret)
193 		goto out;
194 
195 	ret = add_opal_mem_range(mem_ranges);
196 	if (ret)
197 		goto out;
198 
199 	/* create a separate program header for the backup region */
200 	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
201 	if (ret)
202 		goto out;
203 
204 	sort_memory_ranges(*mem_ranges, false);
205 out:
206 	if (ret)
207 		pr_err("Failed to setup crash memory ranges\n");
208 	return ret;
209 }
210 
211 /**
212  * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
213  *                              memory regions that should be added to the
214  *                              memory reserve map to ensure the region is
215  *                              protected from any mischief.
216  * @mem_ranges:                 Range list to add the memory ranges to.
217  *
218  * Returns 0 on success, negative errno on error.
219  */
220 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
221 {
222 	int ret;
223 
224 	ret = add_rtas_mem_range(mem_ranges);
225 	if (ret)
226 		goto out;
227 
228 	ret = add_tce_mem_ranges(mem_ranges);
229 	if (ret)
230 		goto out;
231 
232 	ret = add_reserved_mem_ranges(mem_ranges);
233 out:
234 	if (ret)
235 		pr_err("Failed to setup reserved memory ranges\n");
236 	return ret;
237 }
238 
239 /**
240  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
241  *                              in the memory regions between buf_min & buf_max
242  *                              for the buffer. If found, sets kbuf->mem.
243  * @kbuf:                       Buffer contents and memory parameters.
244  * @buf_min:                    Minimum address for the buffer.
245  * @buf_max:                    Maximum address for the buffer.
246  *
247  * Returns 0 on success, negative errno on error.
248  */
249 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
250 				      u64 buf_min, u64 buf_max)
251 {
252 	int ret = -EADDRNOTAVAIL;
253 	phys_addr_t start, end;
254 	u64 i;
255 
256 	for_each_mem_range_rev(i, &start, &end) {
257 		/*
258 		 * memblock uses [start, end) convention while it is
259 		 * [start, end] here. Fix the off-by-one to have the
260 		 * same convention.
261 		 */
262 		end -= 1;
263 
264 		if (start > buf_max)
265 			continue;
266 
267 		/* Memory hole not found */
268 		if (end < buf_min)
269 			break;
270 
271 		/* Adjust memory region based on the given range */
272 		if (start < buf_min)
273 			start = buf_min;
274 		if (end > buf_max)
275 			end = buf_max;
276 
277 		start = ALIGN(start, kbuf->buf_align);
278 		if (start < end && (end - start + 1) >= kbuf->memsz) {
279 			/* Suitable memory range found. Set kbuf->mem */
280 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
281 					       kbuf->buf_align);
282 			ret = 0;
283 			break;
284 		}
285 	}
286 
287 	return ret;
288 }
289 
290 /**
291  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
292  *                                  suitable buffer with top down approach.
293  * @kbuf:                           Buffer contents and memory parameters.
294  * @buf_min:                        Minimum address for the buffer.
295  * @buf_max:                        Maximum address for the buffer.
296  * @emem:                           Exclude memory ranges.
297  *
298  * Returns 0 on success, negative errno on error.
299  */
300 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
301 					  u64 buf_min, u64 buf_max,
302 					  const struct crash_mem *emem)
303 {
304 	int i, ret = 0, err = -EADDRNOTAVAIL;
305 	u64 start, end, tmin, tmax;
306 
307 	tmax = buf_max;
308 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
309 		start = emem->ranges[i].start;
310 		end = emem->ranges[i].end;
311 
312 		if (start > tmax)
313 			continue;
314 
315 		if (end < tmax) {
316 			tmin = (end < buf_min ? buf_min : end + 1);
317 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
318 			if (!ret)
319 				return 0;
320 		}
321 
322 		tmax = start - 1;
323 
324 		if (tmax < buf_min) {
325 			ret = err;
326 			break;
327 		}
328 		ret = 0;
329 	}
330 
331 	if (!ret) {
332 		tmin = buf_min;
333 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
334 	}
335 	return ret;
336 }
337 
338 /**
339  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
340  *                               in the memory regions between buf_min & buf_max
341  *                               for the buffer. If found, sets kbuf->mem.
342  * @kbuf:                        Buffer contents and memory parameters.
343  * @buf_min:                     Minimum address for the buffer.
344  * @buf_max:                     Maximum address for the buffer.
345  *
346  * Returns 0 on success, negative errno on error.
347  */
348 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
349 				       u64 buf_min, u64 buf_max)
350 {
351 	int ret = -EADDRNOTAVAIL;
352 	phys_addr_t start, end;
353 	u64 i;
354 
355 	for_each_mem_range(i, &start, &end) {
356 		/*
357 		 * memblock uses [start, end) convention while it is
358 		 * [start, end] here. Fix the off-by-one to have the
359 		 * same convention.
360 		 */
361 		end -= 1;
362 
363 		if (end < buf_min)
364 			continue;
365 
366 		/* Memory hole not found */
367 		if (start > buf_max)
368 			break;
369 
370 		/* Adjust memory region based on the given range */
371 		if (start < buf_min)
372 			start = buf_min;
373 		if (end > buf_max)
374 			end = buf_max;
375 
376 		start = ALIGN(start, kbuf->buf_align);
377 		if (start < end && (end - start + 1) >= kbuf->memsz) {
378 			/* Suitable memory range found. Set kbuf->mem */
379 			kbuf->mem = start;
380 			ret = 0;
381 			break;
382 		}
383 	}
384 
385 	return ret;
386 }
387 
388 /**
389  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
390  *                                   suitable buffer with bottom up approach.
391  * @kbuf:                            Buffer contents and memory parameters.
392  * @buf_min:                         Minimum address for the buffer.
393  * @buf_max:                         Maximum address for the buffer.
394  * @emem:                            Exclude memory ranges.
395  *
396  * Returns 0 on success, negative errno on error.
397  */
398 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
399 					   u64 buf_min, u64 buf_max,
400 					   const struct crash_mem *emem)
401 {
402 	int i, ret = 0, err = -EADDRNOTAVAIL;
403 	u64 start, end, tmin, tmax;
404 
405 	tmin = buf_min;
406 	for (i = 0; i < emem->nr_ranges; i++) {
407 		start = emem->ranges[i].start;
408 		end = emem->ranges[i].end;
409 
410 		if (end < tmin)
411 			continue;
412 
413 		if (start > tmin) {
414 			tmax = (start > buf_max ? buf_max : start - 1);
415 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
416 			if (!ret)
417 				return 0;
418 		}
419 
420 		tmin = end + 1;
421 
422 		if (tmin > buf_max) {
423 			ret = err;
424 			break;
425 		}
426 		ret = 0;
427 	}
428 
429 	if (!ret) {
430 		tmax = buf_max;
431 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
432 	}
433 	return ret;
434 }
435 
436 /**
437  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
438  * @um_info:                  Usable memory buffer and ranges info.
439  * @cnt:                      No. of entries to accommodate.
440  *
441  * Frees up the old buffer if memory reallocation fails.
442  *
443  * Returns buffer on success, NULL on error.
444  */
445 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
446 {
447 	u32 new_size;
448 	u64 *tbuf;
449 
450 	if ((um_info->idx + cnt) <= um_info->max_entries)
451 		return um_info->buf;
452 
453 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
454 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
455 	if (tbuf) {
456 		um_info->buf = tbuf;
457 		um_info->size = new_size;
458 		um_info->max_entries = (um_info->size / sizeof(u64));
459 	}
460 
461 	return tbuf;
462 }
463 
464 /**
465  * add_usable_mem - Add the usable memory ranges within the given memory range
466  *                  to the buffer
467  * @um_info:        Usable memory buffer and ranges info.
468  * @base:           Base address of memory range to look for.
469  * @end:            End address of memory range to look for.
470  *
471  * Returns 0 on success, negative errno on error.
472  */
473 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
474 {
475 	u64 loc_base, loc_end;
476 	bool add;
477 	int i;
478 
479 	for (i = 0; i < um_info->nr_ranges; i++) {
480 		add = false;
481 		loc_base = um_info->ranges[i].start;
482 		loc_end = um_info->ranges[i].end;
483 		if (loc_base >= base && loc_end <= end)
484 			add = true;
485 		else if (base < loc_end && end > loc_base) {
486 			if (loc_base < base)
487 				loc_base = base;
488 			if (loc_end > end)
489 				loc_end = end;
490 			add = true;
491 		}
492 
493 		if (add) {
494 			if (!check_realloc_usable_mem(um_info, 2))
495 				return -ENOMEM;
496 
497 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
498 			um_info->buf[um_info->idx++] =
499 					cpu_to_be64(loc_end - loc_base + 1);
500 		}
501 	}
502 
503 	return 0;
504 }
505 
506 /**
507  * kdump_setup_usable_lmb - This is a callback function that gets called by
508  *                          walk_drmem_lmbs for every LMB to set its
509  *                          usable memory ranges.
510  * @lmb:                    LMB info.
511  * @usm:                    linux,drconf-usable-memory property value.
512  * @data:                   Pointer to usable memory buffer and ranges info.
513  *
514  * Returns 0 on success, negative errno on error.
515  */
516 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
517 				  void *data)
518 {
519 	struct umem_info *um_info;
520 	int tmp_idx, ret;
521 	u64 base, end;
522 
523 	/*
524 	 * kdump load isn't supported on kernels already booted with
525 	 * linux,drconf-usable-memory property.
526 	 */
527 	if (*usm) {
528 		pr_err("linux,drconf-usable-memory property already exists!");
529 		return -EINVAL;
530 	}
531 
532 	um_info = data;
533 	tmp_idx = um_info->idx;
534 	if (!check_realloc_usable_mem(um_info, 1))
535 		return -ENOMEM;
536 
537 	um_info->idx++;
538 	base = lmb->base_addr;
539 	end = base + drmem_lmb_size() - 1;
540 	ret = add_usable_mem(um_info, base, end);
541 	if (!ret) {
542 		/*
543 		 * Update the no. of ranges added. Two entries (base & size)
544 		 * for every range added.
545 		 */
546 		um_info->buf[tmp_idx] =
547 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
548 	}
549 
550 	return ret;
551 }
552 
553 #define NODE_PATH_LEN		256
554 /**
555  * add_usable_mem_property - Add usable memory property for the given
556  *                           memory node.
557  * @fdt:                     Flattened device tree for the kdump kernel.
558  * @dn:                      Memory node.
559  * @um_info:                 Usable memory buffer and ranges info.
560  *
561  * Returns 0 on success, negative errno on error.
562  */
563 static int add_usable_mem_property(void *fdt, struct device_node *dn,
564 				   struct umem_info *um_info)
565 {
566 	int n_mem_addr_cells, n_mem_size_cells, node;
567 	char path[NODE_PATH_LEN];
568 	int i, len, ranges, ret;
569 	const __be32 *prop;
570 	u64 base, end;
571 
572 	of_node_get(dn);
573 
574 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
575 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
576 		       NODE_PATH_LEN, dn);
577 		return -EOVERFLOW;
578 	}
579 	pr_debug("Memory node path: %s\n", path);
580 
581 	/* Now that we know the path, find its offset in kdump kernel's fdt */
582 	node = fdt_path_offset(fdt, path);
583 	if (node < 0) {
584 		pr_err("Malformed device tree: error reading %s\n", path);
585 		ret = -EINVAL;
586 		goto out;
587 	}
588 
589 	/* Get the address & size cells */
590 	n_mem_addr_cells = of_n_addr_cells(dn);
591 	n_mem_size_cells = of_n_size_cells(dn);
592 	pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
593 		 n_mem_size_cells);
594 
595 	um_info->idx  = 0;
596 	if (!check_realloc_usable_mem(um_info, 2)) {
597 		ret = -ENOMEM;
598 		goto out;
599 	}
600 
601 	prop = of_get_property(dn, "reg", &len);
602 	if (!prop || len <= 0) {
603 		ret = 0;
604 		goto out;
605 	}
606 
607 	/*
608 	 * "reg" property represents sequence of (addr,size) tuples
609 	 * each representing a memory range.
610 	 */
611 	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
612 
613 	for (i = 0; i < ranges; i++) {
614 		base = of_read_number(prop, n_mem_addr_cells);
615 		prop += n_mem_addr_cells;
616 		end = base + of_read_number(prop, n_mem_size_cells) - 1;
617 		prop += n_mem_size_cells;
618 
619 		ret = add_usable_mem(um_info, base, end);
620 		if (ret)
621 			goto out;
622 	}
623 
624 	/*
625 	 * No kdump kernel usable memory found in this memory node.
626 	 * Write (0,0) tuple in linux,usable-memory property for
627 	 * this region to be ignored.
628 	 */
629 	if (um_info->idx == 0) {
630 		um_info->buf[0] = 0;
631 		um_info->buf[1] = 0;
632 		um_info->idx = 2;
633 	}
634 
635 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
636 			  (um_info->idx * sizeof(u64)));
637 
638 out:
639 	of_node_put(dn);
640 	return ret;
641 }
642 
643 
644 /**
645  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
646  *                         and linux,drconf-usable-memory DT properties as
647  *                         appropriate to restrict its memory usage.
648  * @fdt:                   Flattened device tree for the kdump kernel.
649  * @usable_mem:            Usable memory ranges for kdump kernel.
650  *
651  * Returns 0 on success, negative errno on error.
652  */
653 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
654 {
655 	struct umem_info um_info;
656 	struct device_node *dn;
657 	int node, ret = 0;
658 
659 	if (!usable_mem) {
660 		pr_err("Usable memory ranges for kdump kernel not found\n");
661 		return -ENOENT;
662 	}
663 
664 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
665 	if (node == -FDT_ERR_NOTFOUND)
666 		pr_debug("No dynamic reconfiguration memory found\n");
667 	else if (node < 0) {
668 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
669 		return -EINVAL;
670 	}
671 
672 	um_info.buf  = NULL;
673 	um_info.size = 0;
674 	um_info.max_entries = 0;
675 	um_info.idx  = 0;
676 	/* Memory ranges to look up */
677 	um_info.ranges = &(usable_mem->ranges[0]);
678 	um_info.nr_ranges = usable_mem->nr_ranges;
679 
680 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
681 	if (dn) {
682 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
683 		of_node_put(dn);
684 
685 		if (ret) {
686 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
687 			goto out;
688 		}
689 
690 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
691 				  um_info.buf, (um_info.idx * sizeof(u64)));
692 		if (ret) {
693 			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
694 			       fdt_strerror(ret));
695 			goto out;
696 		}
697 	}
698 
699 	/*
700 	 * Walk through each memory node and set linux,usable-memory property
701 	 * for the corresponding node in kdump kernel's fdt.
702 	 */
703 	for_each_node_by_type(dn, "memory") {
704 		ret = add_usable_mem_property(fdt, dn, &um_info);
705 		if (ret) {
706 			pr_err("Failed to set linux,usable-memory property for %s node",
707 			       dn->full_name);
708 			of_node_put(dn);
709 			goto out;
710 		}
711 	}
712 
713 out:
714 	kfree(um_info.buf);
715 	return ret;
716 }
717 
718 /**
719  * load_backup_segment - Locate a memory hole to place the backup region.
720  * @image:               Kexec image.
721  * @kbuf:                Buffer contents and memory parameters.
722  *
723  * Returns 0 on success, negative errno on error.
724  */
725 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
726 {
727 	void *buf;
728 	int ret;
729 
730 	/*
731 	 * Setup a source buffer for backup segment.
732 	 *
733 	 * A source buffer has no meaning for backup region as data will
734 	 * be copied from backup source, after crash, in the purgatory.
735 	 * But as load segment code doesn't recognize such segments,
736 	 * setup a dummy source buffer to keep it happy for now.
737 	 */
738 	buf = vzalloc(BACKUP_SRC_SIZE);
739 	if (!buf)
740 		return -ENOMEM;
741 
742 	kbuf->buffer = buf;
743 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
744 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
745 	kbuf->top_down = false;
746 
747 	ret = kexec_add_buffer(kbuf);
748 	if (ret) {
749 		vfree(buf);
750 		return ret;
751 	}
752 
753 	image->arch.backup_buf = buf;
754 	image->arch.backup_start = kbuf->mem;
755 	return 0;
756 }
757 
758 /**
759  * update_backup_region_phdr - Update backup region's offset for the core to
760  *                             export the region appropriately.
761  * @image:                     Kexec image.
762  * @ehdr:                      ELF core header.
763  *
764  * Assumes an exclusive program header is setup for the backup region
765  * in the ELF headers
766  *
767  * Returns nothing.
768  */
769 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
770 {
771 	Elf64_Phdr *phdr;
772 	unsigned int i;
773 
774 	phdr = (Elf64_Phdr *)(ehdr + 1);
775 	for (i = 0; i < ehdr->e_phnum; i++) {
776 		if (phdr->p_paddr == BACKUP_SRC_START) {
777 			phdr->p_offset = image->arch.backup_start;
778 			pr_debug("Backup region offset updated to 0x%lx\n",
779 				 image->arch.backup_start);
780 			return;
781 		}
782 	}
783 }
784 
785 /**
786  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
787  *                           segment needed to load kdump kernel.
788  * @image:                   Kexec image.
789  * @kbuf:                    Buffer contents and memory parameters.
790  *
791  * Returns 0 on success, negative errno on error.
792  */
793 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
794 {
795 	struct crash_mem *cmem = NULL;
796 	unsigned long headers_sz;
797 	void *headers = NULL;
798 	int ret;
799 
800 	ret = get_crash_memory_ranges(&cmem);
801 	if (ret)
802 		goto out;
803 
804 	/* Setup elfcorehdr segment */
805 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
806 	if (ret) {
807 		pr_err("Failed to prepare elf headers for the core\n");
808 		goto out;
809 	}
810 
811 	/* Fix the offset for backup region in the ELF header */
812 	update_backup_region_phdr(image, headers);
813 
814 	kbuf->buffer = headers;
815 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
816 	kbuf->bufsz = kbuf->memsz = headers_sz;
817 	kbuf->top_down = false;
818 
819 	ret = kexec_add_buffer(kbuf);
820 	if (ret) {
821 		vfree(headers);
822 		goto out;
823 	}
824 
825 	image->elf_load_addr = kbuf->mem;
826 	image->elf_headers_sz = headers_sz;
827 	image->elf_headers = headers;
828 out:
829 	kfree(cmem);
830 	return ret;
831 }
832 
833 /**
834  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
835  *                                 to load kdump kernel.
836  * @image:                         Kexec image.
837  * @kbuf:                          Buffer contents and memory parameters.
838  *
839  * Returns 0 on success, negative errno on error.
840  */
841 int load_crashdump_segments_ppc64(struct kimage *image,
842 				  struct kexec_buf *kbuf)
843 {
844 	int ret;
845 
846 	/* Load backup segment - first 64K bytes of the crashing kernel */
847 	ret = load_backup_segment(image, kbuf);
848 	if (ret) {
849 		pr_err("Failed to load backup segment\n");
850 		return ret;
851 	}
852 	pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
853 
854 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
855 	ret = load_elfcorehdr_segment(image, kbuf);
856 	if (ret) {
857 		pr_err("Failed to load elfcorehdr segment\n");
858 		return ret;
859 	}
860 	pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
861 		 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
862 
863 	return 0;
864 }
865 
866 /**
867  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
868  *                         variables and call setup_purgatory() to initialize
869  *                         common global variable.
870  * @image:                 kexec image.
871  * @slave_code:            Slave code for the purgatory.
872  * @fdt:                   Flattened device tree for the next kernel.
873  * @kernel_load_addr:      Address where the kernel is loaded.
874  * @fdt_load_addr:         Address where the flattened device tree is loaded.
875  *
876  * Returns 0 on success, negative errno on error.
877  */
878 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
879 			  const void *fdt, unsigned long kernel_load_addr,
880 			  unsigned long fdt_load_addr)
881 {
882 	struct device_node *dn = NULL;
883 	int ret;
884 
885 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
886 			      fdt_load_addr);
887 	if (ret)
888 		goto out;
889 
890 	if (image->type == KEXEC_TYPE_CRASH) {
891 		u32 my_run_at_load = 1;
892 
893 		/*
894 		 * Tell relocatable kernel to run at load address
895 		 * via the word meant for that at 0x5c.
896 		 */
897 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
898 						     &my_run_at_load,
899 						     sizeof(my_run_at_load),
900 						     false);
901 		if (ret)
902 			goto out;
903 	}
904 
905 	/* Tell purgatory where to look for backup region */
906 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
907 					     &image->arch.backup_start,
908 					     sizeof(image->arch.backup_start),
909 					     false);
910 	if (ret)
911 		goto out;
912 
913 	/* Setup OPAL base & entry values */
914 	dn = of_find_node_by_path("/ibm,opal");
915 	if (dn) {
916 		u64 val;
917 
918 		of_property_read_u64(dn, "opal-base-address", &val);
919 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
920 						     sizeof(val), false);
921 		if (ret)
922 			goto out;
923 
924 		of_property_read_u64(dn, "opal-entry-address", &val);
925 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
926 						     sizeof(val), false);
927 	}
928 out:
929 	if (ret)
930 		pr_err("Failed to setup purgatory symbols");
931 	of_node_put(dn);
932 	return ret;
933 }
934 
935 /**
936  * get_cpu_node_size - Compute the size of a CPU node in the FDT.
937  *                     This should be done only once and the value is stored in
938  *                     a static variable.
939  * Returns the max size of a CPU node in the FDT.
940  */
941 static unsigned int cpu_node_size(void)
942 {
943 	static unsigned int size;
944 	struct device_node *dn;
945 	struct property *pp;
946 
947 	/*
948 	 * Don't compute it twice, we are assuming that the per CPU node size
949 	 * doesn't change during the system's life.
950 	 */
951 	if (size)
952 		return size;
953 
954 	dn = of_find_node_by_type(NULL, "cpu");
955 	if (WARN_ON_ONCE(!dn)) {
956 		// Unlikely to happen
957 		return 0;
958 	}
959 
960 	/*
961 	 * We compute the sub node size for a CPU node, assuming it
962 	 * will be the same for all.
963 	 */
964 	size += strlen(dn->name) + 5;
965 	for_each_property_of_node(dn, pp) {
966 		size += strlen(pp->name);
967 		size += pp->length;
968 	}
969 
970 	of_node_put(dn);
971 	return size;
972 }
973 
974 /**
975  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
976  *                              setup FDT for kexec/kdump kernel.
977  * @image:                      kexec image being loaded.
978  *
979  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
980  */
981 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
982 {
983 	unsigned int cpu_nodes, extra_size = 0;
984 	struct device_node *dn;
985 	u64 usm_entries;
986 
987 	// Budget some space for the password blob. There's already extra space
988 	// for the key name
989 	if (plpks_is_available())
990 		extra_size += (unsigned int)plpks_get_passwordlen();
991 
992 	if (image->type != KEXEC_TYPE_CRASH)
993 		return extra_size;
994 
995 	/*
996 	 * For kdump kernel, account for linux,usable-memory and
997 	 * linux,drconf-usable-memory properties. Get an approximate on the
998 	 * number of usable memory entries and use for FDT size estimation.
999 	 */
1000 	if (drmem_lmb_size()) {
1001 		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
1002 			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
1003 		extra_size += (unsigned int)(usm_entries * sizeof(u64));
1004 	}
1005 
1006 	/*
1007 	 * Get the number of CPU nodes in the current DT. This allows to
1008 	 * reserve places for CPU nodes added since the boot time.
1009 	 */
1010 	cpu_nodes = 0;
1011 	for_each_node_by_type(dn, "cpu") {
1012 		cpu_nodes++;
1013 	}
1014 
1015 	if (cpu_nodes > boot_cpu_node_count)
1016 		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
1017 
1018 	return extra_size;
1019 }
1020 
1021 /**
1022  * add_node_props - Reads node properties from device node structure and add
1023  *                  them to fdt.
1024  * @fdt:            Flattened device tree of the kernel
1025  * @node_offset:    offset of the node to add a property at
1026  * @dn:             device node pointer
1027  *
1028  * Returns 0 on success, negative errno on error.
1029  */
1030 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
1031 {
1032 	int ret = 0;
1033 	struct property *pp;
1034 
1035 	if (!dn)
1036 		return -EINVAL;
1037 
1038 	for_each_property_of_node(dn, pp) {
1039 		ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
1040 		if (ret < 0) {
1041 			pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
1042 			return ret;
1043 		}
1044 	}
1045 	return ret;
1046 }
1047 
1048 /**
1049  * update_cpus_node - Update cpus node of flattened device tree using of_root
1050  *                    device node.
1051  * @fdt:              Flattened device tree of the kernel.
1052  *
1053  * Returns 0 on success, negative errno on error.
1054  */
1055 static int update_cpus_node(void *fdt)
1056 {
1057 	struct device_node *cpus_node, *dn;
1058 	int cpus_offset, cpus_subnode_offset, ret = 0;
1059 
1060 	cpus_offset = fdt_path_offset(fdt, "/cpus");
1061 	if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
1062 		pr_err("Malformed device tree: error reading /cpus node: %s\n",
1063 		       fdt_strerror(cpus_offset));
1064 		return cpus_offset;
1065 	}
1066 
1067 	if (cpus_offset > 0) {
1068 		ret = fdt_del_node(fdt, cpus_offset);
1069 		if (ret < 0) {
1070 			pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1071 			return -EINVAL;
1072 		}
1073 	}
1074 
1075 	/* Add cpus node to fdt */
1076 	cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1077 	if (cpus_offset < 0) {
1078 		pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1079 		return -EINVAL;
1080 	}
1081 
1082 	/* Add cpus node properties */
1083 	cpus_node = of_find_node_by_path("/cpus");
1084 	ret = add_node_props(fdt, cpus_offset, cpus_node);
1085 	of_node_put(cpus_node);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	/* Loop through all subnodes of cpus and add them to fdt */
1090 	for_each_node_by_type(dn, "cpu") {
1091 		cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1092 		if (cpus_subnode_offset < 0) {
1093 			pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1094 			       fdt_strerror(cpus_subnode_offset));
1095 			ret = cpus_subnode_offset;
1096 			goto out;
1097 		}
1098 
1099 		ret = add_node_props(fdt, cpus_subnode_offset, dn);
1100 		if (ret < 0)
1101 			goto out;
1102 	}
1103 out:
1104 	of_node_put(dn);
1105 	return ret;
1106 }
1107 
1108 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
1109 			 const char *propname)
1110 {
1111 	const void *prop, *fdtprop;
1112 	int len = 0, fdtlen = 0;
1113 
1114 	prop = of_get_property(dn, propname, &len);
1115 	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
1116 
1117 	if (fdtprop && !prop)
1118 		return fdt_delprop(fdt, node_offset, propname);
1119 	else if (prop)
1120 		return fdt_setprop(fdt, node_offset, propname, prop, len);
1121 	else
1122 		return -FDT_ERR_NOTFOUND;
1123 }
1124 
1125 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
1126 {
1127 	struct device_node *dn;
1128 	int pci_offset, root_offset, ret = 0;
1129 
1130 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1131 		return 0;
1132 
1133 	root_offset = fdt_path_offset(fdt, "/");
1134 	for_each_node_with_property(dn, dmapropname) {
1135 		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
1136 		if (pci_offset < 0)
1137 			continue;
1138 
1139 		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
1140 		if (ret < 0)
1141 			break;
1142 		ret = copy_property(fdt, pci_offset, dn, dmapropname);
1143 		if (ret < 0)
1144 			break;
1145 	}
1146 
1147 	return ret;
1148 }
1149 
1150 /**
1151  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1152  *                       being loaded.
1153  * @image:               kexec image being loaded.
1154  * @fdt:                 Flattened device tree for the next kernel.
1155  * @initrd_load_addr:    Address where the next initrd will be loaded.
1156  * @initrd_len:          Size of the next initrd, or 0 if there will be none.
1157  * @cmdline:             Command line for the next kernel, or NULL if there will
1158  *                       be none.
1159  *
1160  * Returns 0 on success, negative errno on error.
1161  */
1162 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1163 			unsigned long initrd_load_addr,
1164 			unsigned long initrd_len, const char *cmdline)
1165 {
1166 	struct crash_mem *umem = NULL, *rmem = NULL;
1167 	int i, nr_ranges, ret;
1168 
1169 	/*
1170 	 * Restrict memory usage for kdump kernel by setting up
1171 	 * usable memory ranges and memory reserve map.
1172 	 */
1173 	if (image->type == KEXEC_TYPE_CRASH) {
1174 		ret = get_usable_memory_ranges(&umem);
1175 		if (ret)
1176 			goto out;
1177 
1178 		ret = update_usable_mem_fdt(fdt, umem);
1179 		if (ret) {
1180 			pr_err("Error setting up usable-memory property for kdump kernel\n");
1181 			goto out;
1182 		}
1183 
1184 		/*
1185 		 * Ensure we don't touch crashed kernel's memory except the
1186 		 * first 64K of RAM, which will be backed up.
1187 		 */
1188 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1189 				      crashk_res.start - BACKUP_SRC_SIZE);
1190 		if (ret) {
1191 			pr_err("Error reserving crash memory: %s\n",
1192 			       fdt_strerror(ret));
1193 			goto out;
1194 		}
1195 
1196 		/* Ensure backup region is not used by kdump/capture kernel */
1197 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1198 				      BACKUP_SRC_SIZE);
1199 		if (ret) {
1200 			pr_err("Error reserving memory for backup: %s\n",
1201 			       fdt_strerror(ret));
1202 			goto out;
1203 		}
1204 	}
1205 
1206 	/* Update cpus nodes information to account hotplug CPUs. */
1207 	ret =  update_cpus_node(fdt);
1208 	if (ret < 0)
1209 		goto out;
1210 
1211 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info"
1212 #define DMA64_PROPNAME "linux,dma64-ddr-window-info"
1213 	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
1214 	if (ret < 0)
1215 		goto out;
1216 
1217 	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
1218 	if (ret < 0)
1219 		goto out;
1220 #undef DMA64_PROPNAME
1221 #undef DIRECT64_PROPNAME
1222 
1223 	/* Update memory reserve map */
1224 	ret = get_reserved_memory_ranges(&rmem);
1225 	if (ret)
1226 		goto out;
1227 
1228 	nr_ranges = rmem ? rmem->nr_ranges : 0;
1229 	for (i = 0; i < nr_ranges; i++) {
1230 		u64 base, size;
1231 
1232 		base = rmem->ranges[i].start;
1233 		size = rmem->ranges[i].end - base + 1;
1234 		ret = fdt_add_mem_rsv(fdt, base, size);
1235 		if (ret) {
1236 			pr_err("Error updating memory reserve map: %s\n",
1237 			       fdt_strerror(ret));
1238 			goto out;
1239 		}
1240 	}
1241 
1242 	// If we have PLPKS active, we need to provide the password to the new kernel
1243 	if (plpks_is_available())
1244 		ret = plpks_populate_fdt(fdt);
1245 
1246 out:
1247 	kfree(rmem);
1248 	kfree(umem);
1249 	return ret;
1250 }
1251 
1252 /**
1253  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1254  *                              tce-table, reserved-ranges & such (exclude
1255  *                              memory ranges) as they can't be used for kexec
1256  *                              segment buffer. Sets kbuf->mem when a suitable
1257  *                              memory hole is found.
1258  * @kbuf:                       Buffer contents and memory parameters.
1259  *
1260  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1261  *
1262  * Returns 0 on success, negative errno on error.
1263  */
1264 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1265 {
1266 	struct crash_mem **emem;
1267 	u64 buf_min, buf_max;
1268 	int ret;
1269 
1270 	/* Look up the exclude ranges list while locating the memory hole */
1271 	emem = &(kbuf->image->arch.exclude_ranges);
1272 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1273 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1274 		return kexec_locate_mem_hole(kbuf);
1275 	}
1276 
1277 	buf_min = kbuf->buf_min;
1278 	buf_max = kbuf->buf_max;
1279 	/* Segments for kdump kernel should be within crashkernel region */
1280 	if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1281 		buf_min = (buf_min < crashk_res.start ?
1282 			   crashk_res.start : buf_min);
1283 		buf_max = (buf_max > crashk_res.end ?
1284 			   crashk_res.end : buf_max);
1285 	}
1286 
1287 	if (buf_min > buf_max) {
1288 		pr_err("Invalid buffer min and/or max values\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	if (kbuf->top_down)
1293 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1294 						     *emem);
1295 	else
1296 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1297 						      *emem);
1298 
1299 	/* Add the buffer allocated to the exclude list for the next lookup */
1300 	if (!ret) {
1301 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1302 		sort_memory_ranges(*emem, true);
1303 	} else {
1304 		pr_err("Failed to locate memory buffer of size %lu\n",
1305 		       kbuf->memsz);
1306 	}
1307 	return ret;
1308 }
1309 
1310 /**
1311  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1312  *                                 kexec segments.
1313  * @image:                         kexec image being loaded.
1314  * @buf:                           Buffer pointing to elf data.
1315  * @buf_len:                       Length of the buffer.
1316  *
1317  * Returns 0 on success, negative errno on error.
1318  */
1319 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1320 				  unsigned long buf_len)
1321 {
1322 	int ret;
1323 
1324 	/* Get exclude memory ranges needed for setting up kexec segments */
1325 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1326 	if (ret) {
1327 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1328 		return ret;
1329 	}
1330 
1331 	return kexec_image_probe_default(image, buf, buf_len);
1332 }
1333 
1334 /**
1335  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1336  *                                      while loading the image.
1337  * @image:                              kexec image being loaded.
1338  *
1339  * Returns 0 on success, negative errno on error.
1340  */
1341 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1342 {
1343 	kfree(image->arch.exclude_ranges);
1344 	image->arch.exclude_ranges = NULL;
1345 
1346 	vfree(image->arch.backup_buf);
1347 	image->arch.backup_buf = NULL;
1348 
1349 	vfree(image->elf_headers);
1350 	image->elf_headers = NULL;
1351 	image->elf_headers_sz = 0;
1352 
1353 	kvfree(image->arch.fdt);
1354 	image->arch.fdt = NULL;
1355 
1356 	return kexec_image_post_load_cleanup_default(image);
1357 }
1358