xref: /openbmc/linux/arch/powerpc/kernel/watchdog.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28 
29 #include <asm/paca.h>
30 
31 /*
32  * The powerpc watchdog ensures that each CPU is able to service timers.
33  * The watchdog sets up a simple timer on each CPU to run once per timer
34  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35  * the heartbeat.
36  *
37  * Then there are two systems to check that the heartbeat is still running.
38  * The local soft-NMI, and the SMP checker.
39  *
40  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41  * are disabled with local_irq_disable(), platforms that use soft-masking
42  * can leave hardware interrupts enabled and handle them with a masked
43  * interrupt handler. The masked handler can send the timer interrupt to the
44  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46  *
47  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48  * with the current time, and take action if the difference exceeds the
49  * watchdog threshold.
50  *
51  * The limitation of the soft-NMI watchdog is that it does not work when
52  * interrupts are hard disabled or otherwise not being serviced. This is
53  * solved by also having a SMP watchdog where all CPUs check all other
54  * CPUs heartbeat.
55  *
56  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57  * cpumask is kept, containing all CPUs which enable the watchdog. Each
58  * CPU clears their pending bit in their heartbeat timer. When the bitmask
59  * becomes empty, the last CPU to clear its pending bit updates a global
60  * timestamp and refills the pending bitmask.
61  *
62  * In the heartbeat timer, if any CPU notices that the global timestamp has
63  * not been updated for a period exceeding the watchdog threshold, then it
64  * means the CPU(s) with their bit still set in the pending mask have had
65  * their heartbeat stop, and action is taken.
66  *
67  * Some platforms implement true NMI IPIs, which can be used by the SMP
68  * watchdog to detect an unresponsive CPU and pull it out of its stuck
69  * state with the NMI IPI, to get crash/debug data from it. This way the
70  * SMP watchdog can detect hardware interrupts off lockups.
71  */
72 
73 static cpumask_t wd_cpus_enabled __read_mostly;
74 
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77 
78 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
79 
80 static DEFINE_PER_CPU(struct timer_list, wd_timer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82 
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88 
89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91 	/*
92 	 * Avoid locking layers if possible.
93 	 * This may be called from low level interrupt handlers at some
94 	 * point in future.
95 	 */
96 	raw_local_irq_save(*flags);
97 	hard_irq_disable(); /* Make it soft-NMI safe */
98 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99 		raw_local_irq_restore(*flags);
100 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
101 		raw_local_irq_save(*flags);
102 		hard_irq_disable();
103 	}
104 }
105 
106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108 	clear_bit_unlock(0, &__wd_smp_lock);
109 	raw_local_irq_restore(*flags);
110 }
111 
112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114 	int cpu = raw_smp_processor_id();
115 	u64 tb = get_tb();
116 
117 	pr_emerg("CPU %d Hard LOCKUP\n", cpu);
118 	pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119 		 cpu, tb, per_cpu(wd_timer_tb, cpu),
120 		 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
121 	print_modules();
122 	print_irqtrace_events(current);
123 	if (regs)
124 		show_regs(regs);
125 	else
126 		dump_stack();
127 
128 	/* Do not panic from here because that can recurse into NMI IPI layer */
129 }
130 
131 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
132 {
133 	cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
134 	cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
135 	if (cpumask_empty(&wd_smp_cpus_pending)) {
136 		wd_smp_last_reset_tb = tb;
137 		cpumask_andnot(&wd_smp_cpus_pending,
138 				&wd_cpus_enabled,
139 				&wd_smp_cpus_stuck);
140 	}
141 }
142 static void set_cpu_stuck(int cpu, u64 tb)
143 {
144 	set_cpumask_stuck(cpumask_of(cpu), tb);
145 }
146 
147 static void watchdog_smp_panic(int cpu, u64 tb)
148 {
149 	unsigned long flags;
150 	int c;
151 
152 	wd_smp_lock(&flags);
153 	/* Double check some things under lock */
154 	if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
155 		goto out;
156 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
157 		goto out;
158 	if (cpumask_weight(&wd_smp_cpus_pending) == 0)
159 		goto out;
160 
161 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
162 		 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
163 	pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
164 		 cpu, tb, wd_smp_last_reset_tb,
165 		 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
166 
167 	if (!sysctl_hardlockup_all_cpu_backtrace) {
168 		/*
169 		 * Try to trigger the stuck CPUs, unless we are going to
170 		 * get a backtrace on all of them anyway.
171 		 */
172 		for_each_cpu(c, &wd_smp_cpus_pending) {
173 			if (c == cpu)
174 				continue;
175 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
176 		}
177 		smp_flush_nmi_ipi(1000000);
178 	}
179 
180 	/* Take the stuck CPUs out of the watch group */
181 	set_cpumask_stuck(&wd_smp_cpus_pending, tb);
182 
183 	wd_smp_unlock(&flags);
184 
185 	printk_safe_flush();
186 	/*
187 	 * printk_safe_flush() seems to require another print
188 	 * before anything actually goes out to console.
189 	 */
190 	if (sysctl_hardlockup_all_cpu_backtrace)
191 		trigger_allbutself_cpu_backtrace();
192 
193 	if (hardlockup_panic)
194 		nmi_panic(NULL, "Hard LOCKUP");
195 
196 	return;
197 
198 out:
199 	wd_smp_unlock(&flags);
200 }
201 
202 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
203 {
204 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
205 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
206 			struct pt_regs *regs = get_irq_regs();
207 			unsigned long flags;
208 
209 			wd_smp_lock(&flags);
210 
211 			pr_emerg("CPU %d became unstuck TB:%lld\n",
212 				 cpu, tb);
213 			print_irqtrace_events(current);
214 			if (regs)
215 				show_regs(regs);
216 			else
217 				dump_stack();
218 
219 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
220 			wd_smp_unlock(&flags);
221 		}
222 		return;
223 	}
224 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
225 	if (cpumask_empty(&wd_smp_cpus_pending)) {
226 		unsigned long flags;
227 
228 		wd_smp_lock(&flags);
229 		if (cpumask_empty(&wd_smp_cpus_pending)) {
230 			wd_smp_last_reset_tb = tb;
231 			cpumask_andnot(&wd_smp_cpus_pending,
232 					&wd_cpus_enabled,
233 					&wd_smp_cpus_stuck);
234 		}
235 		wd_smp_unlock(&flags);
236 	}
237 }
238 
239 static void watchdog_timer_interrupt(int cpu)
240 {
241 	u64 tb = get_tb();
242 
243 	per_cpu(wd_timer_tb, cpu) = tb;
244 
245 	wd_smp_clear_cpu_pending(cpu, tb);
246 
247 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
248 		watchdog_smp_panic(cpu, tb);
249 }
250 
251 void soft_nmi_interrupt(struct pt_regs *regs)
252 {
253 	unsigned long flags;
254 	int cpu = raw_smp_processor_id();
255 	u64 tb;
256 
257 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
258 		return;
259 
260 	nmi_enter();
261 
262 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
263 
264 	tb = get_tb();
265 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
266 		wd_smp_lock(&flags);
267 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
268 			wd_smp_unlock(&flags);
269 			goto out;
270 		}
271 		set_cpu_stuck(cpu, tb);
272 
273 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
274 			 cpu, (void *)regs->nip);
275 		pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
276 			 cpu, tb, per_cpu(wd_timer_tb, cpu),
277 			 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
278 		print_modules();
279 		print_irqtrace_events(current);
280 		show_regs(regs);
281 
282 		wd_smp_unlock(&flags);
283 
284 		if (sysctl_hardlockup_all_cpu_backtrace)
285 			trigger_allbutself_cpu_backtrace();
286 
287 		if (hardlockup_panic)
288 			nmi_panic(regs, "Hard LOCKUP");
289 	}
290 	if (wd_panic_timeout_tb < 0x7fffffff)
291 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
292 
293 out:
294 	nmi_exit();
295 }
296 
297 static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
298 {
299 	t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
300 	if (wd_timer_period_ms > 1000)
301 		t->expires = __round_jiffies_up(t->expires, cpu);
302 	add_timer_on(t, cpu);
303 }
304 
305 static void wd_timer_fn(struct timer_list *t)
306 {
307 	int cpu = smp_processor_id();
308 
309 	watchdog_timer_interrupt(cpu);
310 
311 	wd_timer_reset(cpu, t);
312 }
313 
314 void arch_touch_nmi_watchdog(void)
315 {
316 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
317 	int cpu = smp_processor_id();
318 	u64 tb = get_tb();
319 
320 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
321 		per_cpu(wd_timer_tb, cpu) = tb;
322 		wd_smp_clear_cpu_pending(cpu, tb);
323 	}
324 }
325 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
326 
327 static void start_watchdog_timer_on(unsigned int cpu)
328 {
329 	struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
330 
331 	per_cpu(wd_timer_tb, cpu) = get_tb();
332 
333 	timer_setup(t, wd_timer_fn, TIMER_PINNED);
334 	wd_timer_reset(cpu, t);
335 }
336 
337 static void stop_watchdog_timer_on(unsigned int cpu)
338 {
339 	struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
340 
341 	del_timer_sync(t);
342 }
343 
344 static int start_wd_on_cpu(unsigned int cpu)
345 {
346 	unsigned long flags;
347 
348 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
349 		WARN_ON(1);
350 		return 0;
351 	}
352 
353 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
354 		return 0;
355 
356 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
357 		return 0;
358 
359 	wd_smp_lock(&flags);
360 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
361 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
362 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
363 		wd_smp_last_reset_tb = get_tb();
364 	}
365 	wd_smp_unlock(&flags);
366 
367 	start_watchdog_timer_on(cpu);
368 
369 	return 0;
370 }
371 
372 static int stop_wd_on_cpu(unsigned int cpu)
373 {
374 	unsigned long flags;
375 
376 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
377 		return 0; /* Can happen in CPU unplug case */
378 
379 	stop_watchdog_timer_on(cpu);
380 
381 	wd_smp_lock(&flags);
382 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
383 	wd_smp_unlock(&flags);
384 
385 	wd_smp_clear_cpu_pending(cpu, get_tb());
386 
387 	return 0;
388 }
389 
390 static void watchdog_calc_timeouts(void)
391 {
392 	wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
393 
394 	/* Have the SMP detector trigger a bit later */
395 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
396 
397 	/* 2/5 is the factor that the perf based detector uses */
398 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
399 }
400 
401 void watchdog_nmi_stop(void)
402 {
403 	int cpu;
404 
405 	for_each_cpu(cpu, &wd_cpus_enabled)
406 		stop_wd_on_cpu(cpu);
407 }
408 
409 void watchdog_nmi_start(void)
410 {
411 	int cpu;
412 
413 	watchdog_calc_timeouts();
414 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
415 		start_wd_on_cpu(cpu);
416 }
417 
418 /*
419  * Invoked from core watchdog init.
420  */
421 int __init watchdog_nmi_probe(void)
422 {
423 	int err;
424 
425 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
426 					"powerpc/watchdog:online",
427 					start_wd_on_cpu, stop_wd_on_cpu);
428 	if (err < 0) {
429 		pr_warn("could not be initialized");
430 		return err;
431 	}
432 	return 0;
433 }
434