xref: /openbmc/linux/arch/powerpc/kernel/watchdog.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28 
29 #include <asm/paca.h>
30 
31 /*
32  * The powerpc watchdog ensures that each CPU is able to service timers.
33  * The watchdog sets up a simple timer on each CPU to run once per timer
34  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35  * the heartbeat.
36  *
37  * Then there are two systems to check that the heartbeat is still running.
38  * The local soft-NMI, and the SMP checker.
39  *
40  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41  * are disabled with local_irq_disable(), platforms that use soft-masking
42  * can leave hardware interrupts enabled and handle them with a masked
43  * interrupt handler. The masked handler can send the timer interrupt to the
44  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46  *
47  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48  * with the current time, and take action if the difference exceeds the
49  * watchdog threshold.
50  *
51  * The limitation of the soft-NMI watchdog is that it does not work when
52  * interrupts are hard disabled or otherwise not being serviced. This is
53  * solved by also having a SMP watchdog where all CPUs check all other
54  * CPUs heartbeat.
55  *
56  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57  * cpumask is kept, containing all CPUs which enable the watchdog. Each
58  * CPU clears their pending bit in their heartbeat timer. When the bitmask
59  * becomes empty, the last CPU to clear its pending bit updates a global
60  * timestamp and refills the pending bitmask.
61  *
62  * In the heartbeat timer, if any CPU notices that the global timestamp has
63  * not been updated for a period exceeding the watchdog threshold, then it
64  * means the CPU(s) with their bit still set in the pending mask have had
65  * their heartbeat stop, and action is taken.
66  *
67  * Some platforms implement true NMI IPIs, which can by used by the SMP
68  * watchdog to detect an unresponsive CPU and pull it out of its stuck
69  * state with the NMI IPI, to get crash/debug data from it. This way the
70  * SMP watchdog can detect hardware interrupts off lockups.
71  */
72 
73 static cpumask_t wd_cpus_enabled __read_mostly;
74 
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77 
78 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
79 
80 static DEFINE_PER_CPU(struct timer_list, wd_timer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82 
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88 
89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91 	/*
92 	 * Avoid locking layers if possible.
93 	 * This may be called from low level interrupt handlers at some
94 	 * point in future.
95 	 */
96 	raw_local_irq_save(*flags);
97 	hard_irq_disable(); /* Make it soft-NMI safe */
98 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99 		raw_local_irq_restore(*flags);
100 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
101 		raw_local_irq_save(*flags);
102 		hard_irq_disable();
103 	}
104 }
105 
106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108 	clear_bit_unlock(0, &__wd_smp_lock);
109 	raw_local_irq_restore(*flags);
110 }
111 
112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114 	pr_emerg("CPU %d Hard LOCKUP\n", raw_smp_processor_id());
115 	print_modules();
116 	print_irqtrace_events(current);
117 	if (regs)
118 		show_regs(regs);
119 	else
120 		dump_stack();
121 
122 	/* Do not panic from here because that can recurse into NMI IPI layer */
123 }
124 
125 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
126 {
127 	cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
128 	cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
129 	if (cpumask_empty(&wd_smp_cpus_pending)) {
130 		wd_smp_last_reset_tb = tb;
131 		cpumask_andnot(&wd_smp_cpus_pending,
132 				&wd_cpus_enabled,
133 				&wd_smp_cpus_stuck);
134 	}
135 }
136 static void set_cpu_stuck(int cpu, u64 tb)
137 {
138 	set_cpumask_stuck(cpumask_of(cpu), tb);
139 }
140 
141 static void watchdog_smp_panic(int cpu, u64 tb)
142 {
143 	unsigned long flags;
144 	int c;
145 
146 	wd_smp_lock(&flags);
147 	/* Double check some things under lock */
148 	if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
149 		goto out;
150 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
151 		goto out;
152 	if (cpumask_weight(&wd_smp_cpus_pending) == 0)
153 		goto out;
154 
155 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
156 		 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
157 
158 	if (!sysctl_hardlockup_all_cpu_backtrace) {
159 		/*
160 		 * Try to trigger the stuck CPUs, unless we are going to
161 		 * get a backtrace on all of them anyway.
162 		 */
163 		for_each_cpu(c, &wd_smp_cpus_pending) {
164 			if (c == cpu)
165 				continue;
166 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
167 		}
168 		smp_flush_nmi_ipi(1000000);
169 	}
170 
171 	/* Take the stuck CPUs out of the watch group */
172 	set_cpumask_stuck(&wd_smp_cpus_pending, tb);
173 
174 	wd_smp_unlock(&flags);
175 
176 	printk_safe_flush();
177 	/*
178 	 * printk_safe_flush() seems to require another print
179 	 * before anything actually goes out to console.
180 	 */
181 	if (sysctl_hardlockup_all_cpu_backtrace)
182 		trigger_allbutself_cpu_backtrace();
183 
184 	if (hardlockup_panic)
185 		nmi_panic(NULL, "Hard LOCKUP");
186 
187 	return;
188 
189 out:
190 	wd_smp_unlock(&flags);
191 }
192 
193 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
194 {
195 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
196 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
197 			unsigned long flags;
198 
199 			pr_emerg("CPU %d became unstuck\n", cpu);
200 			wd_smp_lock(&flags);
201 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
202 			wd_smp_unlock(&flags);
203 		}
204 		return;
205 	}
206 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
207 	if (cpumask_empty(&wd_smp_cpus_pending)) {
208 		unsigned long flags;
209 
210 		wd_smp_lock(&flags);
211 		if (cpumask_empty(&wd_smp_cpus_pending)) {
212 			wd_smp_last_reset_tb = tb;
213 			cpumask_andnot(&wd_smp_cpus_pending,
214 					&wd_cpus_enabled,
215 					&wd_smp_cpus_stuck);
216 		}
217 		wd_smp_unlock(&flags);
218 	}
219 }
220 
221 static void watchdog_timer_interrupt(int cpu)
222 {
223 	u64 tb = get_tb();
224 
225 	per_cpu(wd_timer_tb, cpu) = tb;
226 
227 	wd_smp_clear_cpu_pending(cpu, tb);
228 
229 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
230 		watchdog_smp_panic(cpu, tb);
231 }
232 
233 void soft_nmi_interrupt(struct pt_regs *regs)
234 {
235 	unsigned long flags;
236 	int cpu = raw_smp_processor_id();
237 	u64 tb;
238 
239 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
240 		return;
241 
242 	nmi_enter();
243 
244 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
245 
246 	tb = get_tb();
247 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
248 		per_cpu(wd_timer_tb, cpu) = tb;
249 
250 		wd_smp_lock(&flags);
251 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
252 			wd_smp_unlock(&flags);
253 			goto out;
254 		}
255 		set_cpu_stuck(cpu, tb);
256 
257 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", cpu, (void *)regs->nip);
258 		print_modules();
259 		print_irqtrace_events(current);
260 		show_regs(regs);
261 
262 		wd_smp_unlock(&flags);
263 
264 		if (sysctl_hardlockup_all_cpu_backtrace)
265 			trigger_allbutself_cpu_backtrace();
266 
267 		if (hardlockup_panic)
268 			nmi_panic(regs, "Hard LOCKUP");
269 	}
270 	if (wd_panic_timeout_tb < 0x7fffffff)
271 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
272 
273 out:
274 	nmi_exit();
275 }
276 
277 static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
278 {
279 	t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
280 	if (wd_timer_period_ms > 1000)
281 		t->expires = __round_jiffies_up(t->expires, cpu);
282 	add_timer_on(t, cpu);
283 }
284 
285 static void wd_timer_fn(struct timer_list *t)
286 {
287 	int cpu = smp_processor_id();
288 
289 	watchdog_timer_interrupt(cpu);
290 
291 	wd_timer_reset(cpu, t);
292 }
293 
294 void arch_touch_nmi_watchdog(void)
295 {
296 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
297 	int cpu = smp_processor_id();
298 	u64 tb = get_tb();
299 
300 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
301 		per_cpu(wd_timer_tb, cpu) = tb;
302 		wd_smp_clear_cpu_pending(cpu, tb);
303 	}
304 }
305 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
306 
307 static void start_watchdog_timer_on(unsigned int cpu)
308 {
309 	struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
310 
311 	per_cpu(wd_timer_tb, cpu) = get_tb();
312 
313 	timer_setup(t, wd_timer_fn, TIMER_PINNED);
314 	wd_timer_reset(cpu, t);
315 }
316 
317 static void stop_watchdog_timer_on(unsigned int cpu)
318 {
319 	struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
320 
321 	del_timer_sync(t);
322 }
323 
324 static int start_wd_on_cpu(unsigned int cpu)
325 {
326 	unsigned long flags;
327 
328 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
329 		WARN_ON(1);
330 		return 0;
331 	}
332 
333 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
334 		return 0;
335 
336 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
337 		return 0;
338 
339 	wd_smp_lock(&flags);
340 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
341 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
342 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
343 		wd_smp_last_reset_tb = get_tb();
344 	}
345 	wd_smp_unlock(&flags);
346 
347 	start_watchdog_timer_on(cpu);
348 
349 	return 0;
350 }
351 
352 static int stop_wd_on_cpu(unsigned int cpu)
353 {
354 	unsigned long flags;
355 
356 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
357 		return 0; /* Can happen in CPU unplug case */
358 
359 	stop_watchdog_timer_on(cpu);
360 
361 	wd_smp_lock(&flags);
362 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
363 	wd_smp_unlock(&flags);
364 
365 	wd_smp_clear_cpu_pending(cpu, get_tb());
366 
367 	return 0;
368 }
369 
370 static void watchdog_calc_timeouts(void)
371 {
372 	wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
373 
374 	/* Have the SMP detector trigger a bit later */
375 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
376 
377 	/* 2/5 is the factor that the perf based detector uses */
378 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
379 }
380 
381 void watchdog_nmi_stop(void)
382 {
383 	int cpu;
384 
385 	for_each_cpu(cpu, &wd_cpus_enabled)
386 		stop_wd_on_cpu(cpu);
387 }
388 
389 void watchdog_nmi_start(void)
390 {
391 	int cpu;
392 
393 	watchdog_calc_timeouts();
394 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
395 		start_wd_on_cpu(cpu);
396 }
397 
398 /*
399  * Invoked from core watchdog init.
400  */
401 int __init watchdog_nmi_probe(void)
402 {
403 	int err;
404 
405 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
406 					"powerpc/watchdog:online",
407 					start_wd_on_cpu, stop_wd_on_cpu);
408 	if (err < 0) {
409 		pr_warn("could not be initialized");
410 		return err;
411 	}
412 	return 0;
413 }
414