xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision f220d3eb)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/pkeys.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/extable.h>
31 #include <linux/module.h>	/* print_modules */
32 #include <linux/prctl.h>
33 #include <linux/delay.h>
34 #include <linux/kprobes.h>
35 #include <linux/kexec.h>
36 #include <linux/backlight.h>
37 #include <linux/bug.h>
38 #include <linux/kdebug.h>
39 #include <linux/ratelimit.h>
40 #include <linux/context_tracking.h>
41 #include <linux/smp.h>
42 #include <linux/console.h>
43 #include <linux/kmsg_dump.h>
44 
45 #include <asm/emulated_ops.h>
46 #include <asm/pgtable.h>
47 #include <linux/uaccess.h>
48 #include <asm/debugfs.h>
49 #include <asm/io.h>
50 #include <asm/machdep.h>
51 #include <asm/rtas.h>
52 #include <asm/pmc.h>
53 #include <asm/reg.h>
54 #ifdef CONFIG_PMAC_BACKLIGHT
55 #include <asm/backlight.h>
56 #endif
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #include <asm/processor.h>
60 #include <asm/tm.h>
61 #endif
62 #include <asm/kexec.h>
63 #include <asm/ppc-opcode.h>
64 #include <asm/rio.h>
65 #include <asm/fadump.h>
66 #include <asm/switch_to.h>
67 #include <asm/tm.h>
68 #include <asm/debug.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/hmi.h>
71 #include <sysdev/fsl_pci.h>
72 #include <asm/kprobes.h>
73 #include <asm/stacktrace.h>
74 
75 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
76 int (*__debugger)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
81 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
82 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
83 
84 EXPORT_SYMBOL(__debugger);
85 EXPORT_SYMBOL(__debugger_ipi);
86 EXPORT_SYMBOL(__debugger_bpt);
87 EXPORT_SYMBOL(__debugger_sstep);
88 EXPORT_SYMBOL(__debugger_iabr_match);
89 EXPORT_SYMBOL(__debugger_break_match);
90 EXPORT_SYMBOL(__debugger_fault_handler);
91 #endif
92 
93 /* Transactional Memory trap debug */
94 #ifdef TM_DEBUG_SW
95 #define TM_DEBUG(x...) printk(KERN_INFO x)
96 #else
97 #define TM_DEBUG(x...) do { } while(0)
98 #endif
99 
100 static const char *signame(int signr)
101 {
102 	switch (signr) {
103 	case SIGBUS:	return "bus error";
104 	case SIGFPE:	return "floating point exception";
105 	case SIGILL:	return "illegal instruction";
106 	case SIGSEGV:	return "segfault";
107 	case SIGTRAP:	return "unhandled trap";
108 	}
109 
110 	return "unknown signal";
111 }
112 
113 /*
114  * Trap & Exception support
115  */
116 
117 #ifdef CONFIG_PMAC_BACKLIGHT
118 static void pmac_backlight_unblank(void)
119 {
120 	mutex_lock(&pmac_backlight_mutex);
121 	if (pmac_backlight) {
122 		struct backlight_properties *props;
123 
124 		props = &pmac_backlight->props;
125 		props->brightness = props->max_brightness;
126 		props->power = FB_BLANK_UNBLANK;
127 		backlight_update_status(pmac_backlight);
128 	}
129 	mutex_unlock(&pmac_backlight_mutex);
130 }
131 #else
132 static inline void pmac_backlight_unblank(void) { }
133 #endif
134 
135 /*
136  * If oops/die is expected to crash the machine, return true here.
137  *
138  * This should not be expected to be 100% accurate, there may be
139  * notifiers registered or other unexpected conditions that may bring
140  * down the kernel. Or if the current process in the kernel is holding
141  * locks or has other critical state, the kernel may become effectively
142  * unusable anyway.
143  */
144 bool die_will_crash(void)
145 {
146 	if (should_fadump_crash())
147 		return true;
148 	if (kexec_should_crash(current))
149 		return true;
150 	if (in_interrupt() || panic_on_oops ||
151 			!current->pid || is_global_init(current))
152 		return true;
153 
154 	return false;
155 }
156 
157 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
158 static int die_owner = -1;
159 static unsigned int die_nest_count;
160 static int die_counter;
161 
162 extern void panic_flush_kmsg_start(void)
163 {
164 	/*
165 	 * These are mostly taken from kernel/panic.c, but tries to do
166 	 * relatively minimal work. Don't use delay functions (TB may
167 	 * be broken), don't crash dump (need to set a firmware log),
168 	 * don't run notifiers. We do want to get some information to
169 	 * Linux console.
170 	 */
171 	console_verbose();
172 	bust_spinlocks(1);
173 }
174 
175 extern void panic_flush_kmsg_end(void)
176 {
177 	printk_safe_flush_on_panic();
178 	kmsg_dump(KMSG_DUMP_PANIC);
179 	bust_spinlocks(0);
180 	debug_locks_off();
181 	console_flush_on_panic();
182 }
183 
184 static unsigned long oops_begin(struct pt_regs *regs)
185 {
186 	int cpu;
187 	unsigned long flags;
188 
189 	oops_enter();
190 
191 	/* racy, but better than risking deadlock. */
192 	raw_local_irq_save(flags);
193 	cpu = smp_processor_id();
194 	if (!arch_spin_trylock(&die_lock)) {
195 		if (cpu == die_owner)
196 			/* nested oops. should stop eventually */;
197 		else
198 			arch_spin_lock(&die_lock);
199 	}
200 	die_nest_count++;
201 	die_owner = cpu;
202 	console_verbose();
203 	bust_spinlocks(1);
204 	if (machine_is(powermac))
205 		pmac_backlight_unblank();
206 	return flags;
207 }
208 NOKPROBE_SYMBOL(oops_begin);
209 
210 static void oops_end(unsigned long flags, struct pt_regs *regs,
211 			       int signr)
212 {
213 	bust_spinlocks(0);
214 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
215 	die_nest_count--;
216 	oops_exit();
217 	printk("\n");
218 	if (!die_nest_count) {
219 		/* Nest count reaches zero, release the lock. */
220 		die_owner = -1;
221 		arch_spin_unlock(&die_lock);
222 	}
223 	raw_local_irq_restore(flags);
224 
225 	/*
226 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
227 	 */
228 	if (TRAP(regs) == 0x100)
229 		return;
230 
231 	crash_fadump(regs, "die oops");
232 
233 	if (kexec_should_crash(current))
234 		crash_kexec(regs);
235 
236 	if (!signr)
237 		return;
238 
239 	/*
240 	 * While our oops output is serialised by a spinlock, output
241 	 * from panic() called below can race and corrupt it. If we
242 	 * know we are going to panic, delay for 1 second so we have a
243 	 * chance to get clean backtraces from all CPUs that are oopsing.
244 	 */
245 	if (in_interrupt() || panic_on_oops || !current->pid ||
246 	    is_global_init(current)) {
247 		mdelay(MSEC_PER_SEC);
248 	}
249 
250 	if (in_interrupt())
251 		panic("Fatal exception in interrupt");
252 	if (panic_on_oops)
253 		panic("Fatal exception");
254 	do_exit(signr);
255 }
256 NOKPROBE_SYMBOL(oops_end);
257 
258 static int __die(const char *str, struct pt_regs *regs, long err)
259 {
260 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
261 
262 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
263 		printk("LE ");
264 	else
265 		printk("BE ");
266 
267 	if (IS_ENABLED(CONFIG_PREEMPT))
268 		pr_cont("PREEMPT ");
269 
270 	if (IS_ENABLED(CONFIG_SMP))
271 		pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
272 
273 	if (debug_pagealloc_enabled())
274 		pr_cont("DEBUG_PAGEALLOC ");
275 
276 	if (IS_ENABLED(CONFIG_NUMA))
277 		pr_cont("NUMA ");
278 
279 	pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
280 
281 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
282 		return 1;
283 
284 	print_modules();
285 	show_regs(regs);
286 
287 	return 0;
288 }
289 NOKPROBE_SYMBOL(__die);
290 
291 void die(const char *str, struct pt_regs *regs, long err)
292 {
293 	unsigned long flags;
294 
295 	/*
296 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
297 	 */
298 	if (TRAP(regs) != 0x100) {
299 		if (debugger(regs))
300 			return;
301 	}
302 
303 	flags = oops_begin(regs);
304 	if (__die(str, regs, err))
305 		err = 0;
306 	oops_end(flags, regs, err);
307 }
308 NOKPROBE_SYMBOL(die);
309 
310 void user_single_step_siginfo(struct task_struct *tsk,
311 				struct pt_regs *regs, siginfo_t *info)
312 {
313 	info->si_signo = SIGTRAP;
314 	info->si_code = TRAP_TRACE;
315 	info->si_addr = (void __user *)regs->nip;
316 }
317 
318 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
319 			    unsigned long addr)
320 {
321 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
322 				      DEFAULT_RATELIMIT_BURST);
323 
324 	if (!show_unhandled_signals)
325 		return;
326 
327 	if (!unhandled_signal(current, signr))
328 		return;
329 
330 	if (!__ratelimit(&rs))
331 		return;
332 
333 	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
334 		current->comm, current->pid, signame(signr), signr,
335 		addr, regs->nip, regs->link, code);
336 
337 	print_vma_addr(KERN_CONT " in ", regs->nip);
338 
339 	pr_cont("\n");
340 
341 	show_user_instructions(regs);
342 }
343 
344 void _exception_pkey(int signr, struct pt_regs *regs, int code,
345 		     unsigned long addr, int key)
346 {
347 	siginfo_t info;
348 
349 	if (!user_mode(regs)) {
350 		die("Exception in kernel mode", regs, signr);
351 		return;
352 	}
353 
354 	show_signal_msg(signr, regs, code, addr);
355 
356 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
357 		local_irq_enable();
358 
359 	current->thread.trap_nr = code;
360 
361 	/*
362 	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
363 	 * to capture the content, if the task gets killed.
364 	 */
365 	thread_pkey_regs_save(&current->thread);
366 
367 	clear_siginfo(&info);
368 	info.si_signo = signr;
369 	info.si_code = code;
370 	info.si_addr = (void __user *) addr;
371 	info.si_pkey = key;
372 
373 	force_sig_info(signr, &info, current);
374 }
375 
376 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
377 {
378 	_exception_pkey(signr, regs, code, addr, 0);
379 }
380 
381 void system_reset_exception(struct pt_regs *regs)
382 {
383 	/*
384 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
385 	 * is determined by RI and in_nmi
386 	 */
387 	bool nested = in_nmi();
388 	if (!nested)
389 		nmi_enter();
390 
391 	__this_cpu_inc(irq_stat.sreset_irqs);
392 
393 	/* See if any machine dependent calls */
394 	if (ppc_md.system_reset_exception) {
395 		if (ppc_md.system_reset_exception(regs))
396 			goto out;
397 	}
398 
399 	if (debugger(regs))
400 		goto out;
401 
402 	/*
403 	 * A system reset is a request to dump, so we always send
404 	 * it through the crashdump code (if fadump or kdump are
405 	 * registered).
406 	 */
407 	crash_fadump(regs, "System Reset");
408 
409 	crash_kexec(regs);
410 
411 	/*
412 	 * We aren't the primary crash CPU. We need to send it
413 	 * to a holding pattern to avoid it ending up in the panic
414 	 * code.
415 	 */
416 	crash_kexec_secondary(regs);
417 
418 	/*
419 	 * No debugger or crash dump registered, print logs then
420 	 * panic.
421 	 */
422 	die("System Reset", regs, SIGABRT);
423 
424 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
425 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
426 	nmi_panic(regs, "System Reset");
427 
428 out:
429 #ifdef CONFIG_PPC_BOOK3S_64
430 	BUG_ON(get_paca()->in_nmi == 0);
431 	if (get_paca()->in_nmi > 1)
432 		nmi_panic(regs, "Unrecoverable nested System Reset");
433 #endif
434 	/* Must die if the interrupt is not recoverable */
435 	if (!(regs->msr & MSR_RI))
436 		nmi_panic(regs, "Unrecoverable System Reset");
437 
438 	if (!nested)
439 		nmi_exit();
440 
441 	/* What should we do here? We could issue a shutdown or hard reset. */
442 }
443 
444 /*
445  * I/O accesses can cause machine checks on powermacs.
446  * Check if the NIP corresponds to the address of a sync
447  * instruction for which there is an entry in the exception
448  * table.
449  * Note that the 601 only takes a machine check on TEA
450  * (transfer error ack) signal assertion, and does not
451  * set any of the top 16 bits of SRR1.
452  *  -- paulus.
453  */
454 static inline int check_io_access(struct pt_regs *regs)
455 {
456 #ifdef CONFIG_PPC32
457 	unsigned long msr = regs->msr;
458 	const struct exception_table_entry *entry;
459 	unsigned int *nip = (unsigned int *)regs->nip;
460 
461 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
462 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
463 		/*
464 		 * Check that it's a sync instruction, or somewhere
465 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
466 		 * As the address is in the exception table
467 		 * we should be able to read the instr there.
468 		 * For the debug message, we look at the preceding
469 		 * load or store.
470 		 */
471 		if (*nip == PPC_INST_NOP)
472 			nip -= 2;
473 		else if (*nip == PPC_INST_ISYNC)
474 			--nip;
475 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
476 			unsigned int rb;
477 
478 			--nip;
479 			rb = (*nip >> 11) & 0x1f;
480 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
481 			       (*nip & 0x100)? "OUT to": "IN from",
482 			       regs->gpr[rb] - _IO_BASE, nip);
483 			regs->msr |= MSR_RI;
484 			regs->nip = extable_fixup(entry);
485 			return 1;
486 		}
487 	}
488 #endif /* CONFIG_PPC32 */
489 	return 0;
490 }
491 
492 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
493 /* On 4xx, the reason for the machine check or program exception
494    is in the ESR. */
495 #define get_reason(regs)	((regs)->dsisr)
496 #define REASON_FP		ESR_FP
497 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
498 #define REASON_PRIVILEGED	ESR_PPR
499 #define REASON_TRAP		ESR_PTR
500 
501 /* single-step stuff */
502 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
503 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
504 #define clear_br_trace(regs)	do {} while(0)
505 #else
506 /* On non-4xx, the reason for the machine check or program
507    exception is in the MSR. */
508 #define get_reason(regs)	((regs)->msr)
509 #define REASON_TM		SRR1_PROGTM
510 #define REASON_FP		SRR1_PROGFPE
511 #define REASON_ILLEGAL		SRR1_PROGILL
512 #define REASON_PRIVILEGED	SRR1_PROGPRIV
513 #define REASON_TRAP		SRR1_PROGTRAP
514 
515 #define single_stepping(regs)	((regs)->msr & MSR_SE)
516 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
517 #define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
518 #endif
519 
520 #if defined(CONFIG_E500)
521 int machine_check_e500mc(struct pt_regs *regs)
522 {
523 	unsigned long mcsr = mfspr(SPRN_MCSR);
524 	unsigned long pvr = mfspr(SPRN_PVR);
525 	unsigned long reason = mcsr;
526 	int recoverable = 1;
527 
528 	if (reason & MCSR_LD) {
529 		recoverable = fsl_rio_mcheck_exception(regs);
530 		if (recoverable == 1)
531 			goto silent_out;
532 	}
533 
534 	printk("Machine check in kernel mode.\n");
535 	printk("Caused by (from MCSR=%lx): ", reason);
536 
537 	if (reason & MCSR_MCP)
538 		printk("Machine Check Signal\n");
539 
540 	if (reason & MCSR_ICPERR) {
541 		printk("Instruction Cache Parity Error\n");
542 
543 		/*
544 		 * This is recoverable by invalidating the i-cache.
545 		 */
546 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
547 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
548 			;
549 
550 		/*
551 		 * This will generally be accompanied by an instruction
552 		 * fetch error report -- only treat MCSR_IF as fatal
553 		 * if it wasn't due to an L1 parity error.
554 		 */
555 		reason &= ~MCSR_IF;
556 	}
557 
558 	if (reason & MCSR_DCPERR_MC) {
559 		printk("Data Cache Parity Error\n");
560 
561 		/*
562 		 * In write shadow mode we auto-recover from the error, but it
563 		 * may still get logged and cause a machine check.  We should
564 		 * only treat the non-write shadow case as non-recoverable.
565 		 */
566 		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
567 		 * is not implemented but L1 data cache always runs in write
568 		 * shadow mode. Hence on data cache parity errors HW will
569 		 * automatically invalidate the L1 Data Cache.
570 		 */
571 		if (PVR_VER(pvr) != PVR_VER_E6500) {
572 			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
573 				recoverable = 0;
574 		}
575 	}
576 
577 	if (reason & MCSR_L2MMU_MHIT) {
578 		printk("Hit on multiple TLB entries\n");
579 		recoverable = 0;
580 	}
581 
582 	if (reason & MCSR_NMI)
583 		printk("Non-maskable interrupt\n");
584 
585 	if (reason & MCSR_IF) {
586 		printk("Instruction Fetch Error Report\n");
587 		recoverable = 0;
588 	}
589 
590 	if (reason & MCSR_LD) {
591 		printk("Load Error Report\n");
592 		recoverable = 0;
593 	}
594 
595 	if (reason & MCSR_ST) {
596 		printk("Store Error Report\n");
597 		recoverable = 0;
598 	}
599 
600 	if (reason & MCSR_LDG) {
601 		printk("Guarded Load Error Report\n");
602 		recoverable = 0;
603 	}
604 
605 	if (reason & MCSR_TLBSYNC)
606 		printk("Simultaneous tlbsync operations\n");
607 
608 	if (reason & MCSR_BSL2_ERR) {
609 		printk("Level 2 Cache Error\n");
610 		recoverable = 0;
611 	}
612 
613 	if (reason & MCSR_MAV) {
614 		u64 addr;
615 
616 		addr = mfspr(SPRN_MCAR);
617 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
618 
619 		printk("Machine Check %s Address: %#llx\n",
620 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
621 	}
622 
623 silent_out:
624 	mtspr(SPRN_MCSR, mcsr);
625 	return mfspr(SPRN_MCSR) == 0 && recoverable;
626 }
627 
628 int machine_check_e500(struct pt_regs *regs)
629 {
630 	unsigned long reason = mfspr(SPRN_MCSR);
631 
632 	if (reason & MCSR_BUS_RBERR) {
633 		if (fsl_rio_mcheck_exception(regs))
634 			return 1;
635 		if (fsl_pci_mcheck_exception(regs))
636 			return 1;
637 	}
638 
639 	printk("Machine check in kernel mode.\n");
640 	printk("Caused by (from MCSR=%lx): ", reason);
641 
642 	if (reason & MCSR_MCP)
643 		printk("Machine Check Signal\n");
644 	if (reason & MCSR_ICPERR)
645 		printk("Instruction Cache Parity Error\n");
646 	if (reason & MCSR_DCP_PERR)
647 		printk("Data Cache Push Parity Error\n");
648 	if (reason & MCSR_DCPERR)
649 		printk("Data Cache Parity Error\n");
650 	if (reason & MCSR_BUS_IAERR)
651 		printk("Bus - Instruction Address Error\n");
652 	if (reason & MCSR_BUS_RAERR)
653 		printk("Bus - Read Address Error\n");
654 	if (reason & MCSR_BUS_WAERR)
655 		printk("Bus - Write Address Error\n");
656 	if (reason & MCSR_BUS_IBERR)
657 		printk("Bus - Instruction Data Error\n");
658 	if (reason & MCSR_BUS_RBERR)
659 		printk("Bus - Read Data Bus Error\n");
660 	if (reason & MCSR_BUS_WBERR)
661 		printk("Bus - Write Data Bus Error\n");
662 	if (reason & MCSR_BUS_IPERR)
663 		printk("Bus - Instruction Parity Error\n");
664 	if (reason & MCSR_BUS_RPERR)
665 		printk("Bus - Read Parity Error\n");
666 
667 	return 0;
668 }
669 
670 int machine_check_generic(struct pt_regs *regs)
671 {
672 	return 0;
673 }
674 #elif defined(CONFIG_E200)
675 int machine_check_e200(struct pt_regs *regs)
676 {
677 	unsigned long reason = mfspr(SPRN_MCSR);
678 
679 	printk("Machine check in kernel mode.\n");
680 	printk("Caused by (from MCSR=%lx): ", reason);
681 
682 	if (reason & MCSR_MCP)
683 		printk("Machine Check Signal\n");
684 	if (reason & MCSR_CP_PERR)
685 		printk("Cache Push Parity Error\n");
686 	if (reason & MCSR_CPERR)
687 		printk("Cache Parity Error\n");
688 	if (reason & MCSR_EXCP_ERR)
689 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
690 	if (reason & MCSR_BUS_IRERR)
691 		printk("Bus - Read Bus Error on instruction fetch\n");
692 	if (reason & MCSR_BUS_DRERR)
693 		printk("Bus - Read Bus Error on data load\n");
694 	if (reason & MCSR_BUS_WRERR)
695 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
696 
697 	return 0;
698 }
699 #elif defined(CONFIG_PPC32)
700 int machine_check_generic(struct pt_regs *regs)
701 {
702 	unsigned long reason = regs->msr;
703 
704 	printk("Machine check in kernel mode.\n");
705 	printk("Caused by (from SRR1=%lx): ", reason);
706 	switch (reason & 0x601F0000) {
707 	case 0x80000:
708 		printk("Machine check signal\n");
709 		break;
710 	case 0:		/* for 601 */
711 	case 0x40000:
712 	case 0x140000:	/* 7450 MSS error and TEA */
713 		printk("Transfer error ack signal\n");
714 		break;
715 	case 0x20000:
716 		printk("Data parity error signal\n");
717 		break;
718 	case 0x10000:
719 		printk("Address parity error signal\n");
720 		break;
721 	case 0x20000000:
722 		printk("L1 Data Cache error\n");
723 		break;
724 	case 0x40000000:
725 		printk("L1 Instruction Cache error\n");
726 		break;
727 	case 0x00100000:
728 		printk("L2 data cache parity error\n");
729 		break;
730 	default:
731 		printk("Unknown values in msr\n");
732 	}
733 	return 0;
734 }
735 #endif /* everything else */
736 
737 void machine_check_exception(struct pt_regs *regs)
738 {
739 	int recover = 0;
740 	bool nested = in_nmi();
741 	if (!nested)
742 		nmi_enter();
743 
744 	/* 64s accounts the mce in machine_check_early when in HVMODE */
745 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
746 		__this_cpu_inc(irq_stat.mce_exceptions);
747 
748 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
749 
750 	/* See if any machine dependent calls. In theory, we would want
751 	 * to call the CPU first, and call the ppc_md. one if the CPU
752 	 * one returns a positive number. However there is existing code
753 	 * that assumes the board gets a first chance, so let's keep it
754 	 * that way for now and fix things later. --BenH.
755 	 */
756 	if (ppc_md.machine_check_exception)
757 		recover = ppc_md.machine_check_exception(regs);
758 	else if (cur_cpu_spec->machine_check)
759 		recover = cur_cpu_spec->machine_check(regs);
760 
761 	if (recover > 0)
762 		goto bail;
763 
764 	if (debugger_fault_handler(regs))
765 		goto bail;
766 
767 	if (check_io_access(regs))
768 		goto bail;
769 
770 	die("Machine check", regs, SIGBUS);
771 
772 	/* Must die if the interrupt is not recoverable */
773 	if (!(regs->msr & MSR_RI))
774 		nmi_panic(regs, "Unrecoverable Machine check");
775 
776 bail:
777 	if (!nested)
778 		nmi_exit();
779 }
780 
781 void SMIException(struct pt_regs *regs)
782 {
783 	die("System Management Interrupt", regs, SIGABRT);
784 }
785 
786 #ifdef CONFIG_VSX
787 static void p9_hmi_special_emu(struct pt_regs *regs)
788 {
789 	unsigned int ra, rb, t, i, sel, instr, rc;
790 	const void __user *addr;
791 	u8 vbuf[16], *vdst;
792 	unsigned long ea, msr, msr_mask;
793 	bool swap;
794 
795 	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
796 		return;
797 
798 	/*
799 	 * lxvb16x	opcode: 0x7c0006d8
800 	 * lxvd2x	opcode: 0x7c000698
801 	 * lxvh8x	opcode: 0x7c000658
802 	 * lxvw4x	opcode: 0x7c000618
803 	 */
804 	if ((instr & 0xfc00073e) != 0x7c000618) {
805 		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
806 			 " instr=%08x\n",
807 			 smp_processor_id(), current->comm, current->pid,
808 			 regs->nip, instr);
809 		return;
810 	}
811 
812 	/* Grab vector registers into the task struct */
813 	msr = regs->msr; /* Grab msr before we flush the bits */
814 	flush_vsx_to_thread(current);
815 	enable_kernel_altivec();
816 
817 	/*
818 	 * Is userspace running with a different endian (this is rare but
819 	 * not impossible)
820 	 */
821 	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
822 
823 	/* Decode the instruction */
824 	ra = (instr >> 16) & 0x1f;
825 	rb = (instr >> 11) & 0x1f;
826 	t = (instr >> 21) & 0x1f;
827 	if (instr & 1)
828 		vdst = (u8 *)&current->thread.vr_state.vr[t];
829 	else
830 		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
831 
832 	/* Grab the vector address */
833 	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
834 	if (is_32bit_task())
835 		ea &= 0xfffffffful;
836 	addr = (__force const void __user *)ea;
837 
838 	/* Check it */
839 	if (!access_ok(VERIFY_READ, addr, 16)) {
840 		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
841 			 " instr=%08x addr=%016lx\n",
842 			 smp_processor_id(), current->comm, current->pid,
843 			 regs->nip, instr, (unsigned long)addr);
844 		return;
845 	}
846 
847 	/* Read the vector */
848 	rc = 0;
849 	if ((unsigned long)addr & 0xfUL)
850 		/* unaligned case */
851 		rc = __copy_from_user_inatomic(vbuf, addr, 16);
852 	else
853 		__get_user_atomic_128_aligned(vbuf, addr, rc);
854 	if (rc) {
855 		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
856 			 " instr=%08x addr=%016lx\n",
857 			 smp_processor_id(), current->comm, current->pid,
858 			 regs->nip, instr, (unsigned long)addr);
859 		return;
860 	}
861 
862 	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
863 		 " instr=%08x addr=%016lx\n",
864 		 smp_processor_id(), current->comm, current->pid, regs->nip,
865 		 instr, (unsigned long) addr);
866 
867 	/* Grab instruction "selector" */
868 	sel = (instr >> 6) & 3;
869 
870 	/*
871 	 * Check to make sure the facility is actually enabled. This
872 	 * could happen if we get a false positive hit.
873 	 *
874 	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
875 	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
876 	 */
877 	msr_mask = MSR_VSX;
878 	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
879 		msr_mask = MSR_VEC;
880 	if (!(msr & msr_mask)) {
881 		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
882 			 " instr=%08x msr:%016lx\n",
883 			 smp_processor_id(), current->comm, current->pid,
884 			 regs->nip, instr, msr);
885 		return;
886 	}
887 
888 	/* Do logging here before we modify sel based on endian */
889 	switch (sel) {
890 	case 0:	/* lxvw4x */
891 		PPC_WARN_EMULATED(lxvw4x, regs);
892 		break;
893 	case 1: /* lxvh8x */
894 		PPC_WARN_EMULATED(lxvh8x, regs);
895 		break;
896 	case 2: /* lxvd2x */
897 		PPC_WARN_EMULATED(lxvd2x, regs);
898 		break;
899 	case 3: /* lxvb16x */
900 		PPC_WARN_EMULATED(lxvb16x, regs);
901 		break;
902 	}
903 
904 #ifdef __LITTLE_ENDIAN__
905 	/*
906 	 * An LE kernel stores the vector in the task struct as an LE
907 	 * byte array (effectively swapping both the components and
908 	 * the content of the components). Those instructions expect
909 	 * the components to remain in ascending address order, so we
910 	 * swap them back.
911 	 *
912 	 * If we are running a BE user space, the expectation is that
913 	 * of a simple memcpy, so forcing the emulation to look like
914 	 * a lxvb16x should do the trick.
915 	 */
916 	if (swap)
917 		sel = 3;
918 
919 	switch (sel) {
920 	case 0:	/* lxvw4x */
921 		for (i = 0; i < 4; i++)
922 			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
923 		break;
924 	case 1: /* lxvh8x */
925 		for (i = 0; i < 8; i++)
926 			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
927 		break;
928 	case 2: /* lxvd2x */
929 		for (i = 0; i < 2; i++)
930 			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
931 		break;
932 	case 3: /* lxvb16x */
933 		for (i = 0; i < 16; i++)
934 			vdst[i] = vbuf[15-i];
935 		break;
936 	}
937 #else /* __LITTLE_ENDIAN__ */
938 	/* On a big endian kernel, a BE userspace only needs a memcpy */
939 	if (!swap)
940 		sel = 3;
941 
942 	/* Otherwise, we need to swap the content of the components */
943 	switch (sel) {
944 	case 0:	/* lxvw4x */
945 		for (i = 0; i < 4; i++)
946 			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
947 		break;
948 	case 1: /* lxvh8x */
949 		for (i = 0; i < 8; i++)
950 			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
951 		break;
952 	case 2: /* lxvd2x */
953 		for (i = 0; i < 2; i++)
954 			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
955 		break;
956 	case 3: /* lxvb16x */
957 		memcpy(vdst, vbuf, 16);
958 		break;
959 	}
960 #endif /* !__LITTLE_ENDIAN__ */
961 
962 	/* Go to next instruction */
963 	regs->nip += 4;
964 }
965 #endif /* CONFIG_VSX */
966 
967 void handle_hmi_exception(struct pt_regs *regs)
968 {
969 	struct pt_regs *old_regs;
970 
971 	old_regs = set_irq_regs(regs);
972 	irq_enter();
973 
974 #ifdef CONFIG_VSX
975 	/* Real mode flagged P9 special emu is needed */
976 	if (local_paca->hmi_p9_special_emu) {
977 		local_paca->hmi_p9_special_emu = 0;
978 
979 		/*
980 		 * We don't want to take page faults while doing the
981 		 * emulation, we just replay the instruction if necessary.
982 		 */
983 		pagefault_disable();
984 		p9_hmi_special_emu(regs);
985 		pagefault_enable();
986 	}
987 #endif /* CONFIG_VSX */
988 
989 	if (ppc_md.handle_hmi_exception)
990 		ppc_md.handle_hmi_exception(regs);
991 
992 	irq_exit();
993 	set_irq_regs(old_regs);
994 }
995 
996 void unknown_exception(struct pt_regs *regs)
997 {
998 	enum ctx_state prev_state = exception_enter();
999 
1000 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1001 	       regs->nip, regs->msr, regs->trap);
1002 
1003 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1004 
1005 	exception_exit(prev_state);
1006 }
1007 
1008 void instruction_breakpoint_exception(struct pt_regs *regs)
1009 {
1010 	enum ctx_state prev_state = exception_enter();
1011 
1012 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1013 					5, SIGTRAP) == NOTIFY_STOP)
1014 		goto bail;
1015 	if (debugger_iabr_match(regs))
1016 		goto bail;
1017 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1018 
1019 bail:
1020 	exception_exit(prev_state);
1021 }
1022 
1023 void RunModeException(struct pt_regs *regs)
1024 {
1025 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1026 }
1027 
1028 void single_step_exception(struct pt_regs *regs)
1029 {
1030 	enum ctx_state prev_state = exception_enter();
1031 
1032 	clear_single_step(regs);
1033 	clear_br_trace(regs);
1034 
1035 	if (kprobe_post_handler(regs))
1036 		return;
1037 
1038 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1039 					5, SIGTRAP) == NOTIFY_STOP)
1040 		goto bail;
1041 	if (debugger_sstep(regs))
1042 		goto bail;
1043 
1044 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1045 
1046 bail:
1047 	exception_exit(prev_state);
1048 }
1049 NOKPROBE_SYMBOL(single_step_exception);
1050 
1051 /*
1052  * After we have successfully emulated an instruction, we have to
1053  * check if the instruction was being single-stepped, and if so,
1054  * pretend we got a single-step exception.  This was pointed out
1055  * by Kumar Gala.  -- paulus
1056  */
1057 static void emulate_single_step(struct pt_regs *regs)
1058 {
1059 	if (single_stepping(regs))
1060 		single_step_exception(regs);
1061 }
1062 
1063 static inline int __parse_fpscr(unsigned long fpscr)
1064 {
1065 	int ret = FPE_FLTUNK;
1066 
1067 	/* Invalid operation */
1068 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1069 		ret = FPE_FLTINV;
1070 
1071 	/* Overflow */
1072 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1073 		ret = FPE_FLTOVF;
1074 
1075 	/* Underflow */
1076 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1077 		ret = FPE_FLTUND;
1078 
1079 	/* Divide by zero */
1080 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1081 		ret = FPE_FLTDIV;
1082 
1083 	/* Inexact result */
1084 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1085 		ret = FPE_FLTRES;
1086 
1087 	return ret;
1088 }
1089 
1090 static void parse_fpe(struct pt_regs *regs)
1091 {
1092 	int code = 0;
1093 
1094 	flush_fp_to_thread(current);
1095 
1096 	code = __parse_fpscr(current->thread.fp_state.fpscr);
1097 
1098 	_exception(SIGFPE, regs, code, regs->nip);
1099 }
1100 
1101 /*
1102  * Illegal instruction emulation support.  Originally written to
1103  * provide the PVR to user applications using the mfspr rd, PVR.
1104  * Return non-zero if we can't emulate, or -EFAULT if the associated
1105  * memory access caused an access fault.  Return zero on success.
1106  *
1107  * There are a couple of ways to do this, either "decode" the instruction
1108  * or directly match lots of bits.  In this case, matching lots of
1109  * bits is faster and easier.
1110  *
1111  */
1112 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1113 {
1114 	u8 rT = (instword >> 21) & 0x1f;
1115 	u8 rA = (instword >> 16) & 0x1f;
1116 	u8 NB_RB = (instword >> 11) & 0x1f;
1117 	u32 num_bytes;
1118 	unsigned long EA;
1119 	int pos = 0;
1120 
1121 	/* Early out if we are an invalid form of lswx */
1122 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1123 		if ((rT == rA) || (rT == NB_RB))
1124 			return -EINVAL;
1125 
1126 	EA = (rA == 0) ? 0 : regs->gpr[rA];
1127 
1128 	switch (instword & PPC_INST_STRING_MASK) {
1129 		case PPC_INST_LSWX:
1130 		case PPC_INST_STSWX:
1131 			EA += NB_RB;
1132 			num_bytes = regs->xer & 0x7f;
1133 			break;
1134 		case PPC_INST_LSWI:
1135 		case PPC_INST_STSWI:
1136 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1137 			break;
1138 		default:
1139 			return -EINVAL;
1140 	}
1141 
1142 	while (num_bytes != 0)
1143 	{
1144 		u8 val;
1145 		u32 shift = 8 * (3 - (pos & 0x3));
1146 
1147 		/* if process is 32-bit, clear upper 32 bits of EA */
1148 		if ((regs->msr & MSR_64BIT) == 0)
1149 			EA &= 0xFFFFFFFF;
1150 
1151 		switch ((instword & PPC_INST_STRING_MASK)) {
1152 			case PPC_INST_LSWX:
1153 			case PPC_INST_LSWI:
1154 				if (get_user(val, (u8 __user *)EA))
1155 					return -EFAULT;
1156 				/* first time updating this reg,
1157 				 * zero it out */
1158 				if (pos == 0)
1159 					regs->gpr[rT] = 0;
1160 				regs->gpr[rT] |= val << shift;
1161 				break;
1162 			case PPC_INST_STSWI:
1163 			case PPC_INST_STSWX:
1164 				val = regs->gpr[rT] >> shift;
1165 				if (put_user(val, (u8 __user *)EA))
1166 					return -EFAULT;
1167 				break;
1168 		}
1169 		/* move EA to next address */
1170 		EA += 1;
1171 		num_bytes--;
1172 
1173 		/* manage our position within the register */
1174 		if (++pos == 4) {
1175 			pos = 0;
1176 			if (++rT == 32)
1177 				rT = 0;
1178 		}
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1185 {
1186 	u32 ra,rs;
1187 	unsigned long tmp;
1188 
1189 	ra = (instword >> 16) & 0x1f;
1190 	rs = (instword >> 21) & 0x1f;
1191 
1192 	tmp = regs->gpr[rs];
1193 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1194 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1195 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1196 	regs->gpr[ra] = tmp;
1197 
1198 	return 0;
1199 }
1200 
1201 static int emulate_isel(struct pt_regs *regs, u32 instword)
1202 {
1203 	u8 rT = (instword >> 21) & 0x1f;
1204 	u8 rA = (instword >> 16) & 0x1f;
1205 	u8 rB = (instword >> 11) & 0x1f;
1206 	u8 BC = (instword >> 6) & 0x1f;
1207 	u8 bit;
1208 	unsigned long tmp;
1209 
1210 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1211 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1212 
1213 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1214 
1215 	return 0;
1216 }
1217 
1218 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1219 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1220 {
1221         /* If we're emulating a load/store in an active transaction, we cannot
1222          * emulate it as the kernel operates in transaction suspended context.
1223          * We need to abort the transaction.  This creates a persistent TM
1224          * abort so tell the user what caused it with a new code.
1225 	 */
1226 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1227 		tm_enable();
1228 		tm_abort(cause);
1229 		return true;
1230 	}
1231 	return false;
1232 }
1233 #else
1234 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1235 {
1236 	return false;
1237 }
1238 #endif
1239 
1240 static int emulate_instruction(struct pt_regs *regs)
1241 {
1242 	u32 instword;
1243 	u32 rd;
1244 
1245 	if (!user_mode(regs))
1246 		return -EINVAL;
1247 	CHECK_FULL_REGS(regs);
1248 
1249 	if (get_user(instword, (u32 __user *)(regs->nip)))
1250 		return -EFAULT;
1251 
1252 	/* Emulate the mfspr rD, PVR. */
1253 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1254 		PPC_WARN_EMULATED(mfpvr, regs);
1255 		rd = (instword >> 21) & 0x1f;
1256 		regs->gpr[rd] = mfspr(SPRN_PVR);
1257 		return 0;
1258 	}
1259 
1260 	/* Emulating the dcba insn is just a no-op.  */
1261 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1262 		PPC_WARN_EMULATED(dcba, regs);
1263 		return 0;
1264 	}
1265 
1266 	/* Emulate the mcrxr insn.  */
1267 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1268 		int shift = (instword >> 21) & 0x1c;
1269 		unsigned long msk = 0xf0000000UL >> shift;
1270 
1271 		PPC_WARN_EMULATED(mcrxr, regs);
1272 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1273 		regs->xer &= ~0xf0000000UL;
1274 		return 0;
1275 	}
1276 
1277 	/* Emulate load/store string insn. */
1278 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1279 		if (tm_abort_check(regs,
1280 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1281 			return -EINVAL;
1282 		PPC_WARN_EMULATED(string, regs);
1283 		return emulate_string_inst(regs, instword);
1284 	}
1285 
1286 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1287 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1288 		PPC_WARN_EMULATED(popcntb, regs);
1289 		return emulate_popcntb_inst(regs, instword);
1290 	}
1291 
1292 	/* Emulate isel (Integer Select) instruction */
1293 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1294 		PPC_WARN_EMULATED(isel, regs);
1295 		return emulate_isel(regs, instword);
1296 	}
1297 
1298 	/* Emulate sync instruction variants */
1299 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1300 		PPC_WARN_EMULATED(sync, regs);
1301 		asm volatile("sync");
1302 		return 0;
1303 	}
1304 
1305 #ifdef CONFIG_PPC64
1306 	/* Emulate the mfspr rD, DSCR. */
1307 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1308 		PPC_INST_MFSPR_DSCR_USER) ||
1309 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1310 		PPC_INST_MFSPR_DSCR)) &&
1311 			cpu_has_feature(CPU_FTR_DSCR)) {
1312 		PPC_WARN_EMULATED(mfdscr, regs);
1313 		rd = (instword >> 21) & 0x1f;
1314 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1315 		return 0;
1316 	}
1317 	/* Emulate the mtspr DSCR, rD. */
1318 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1319 		PPC_INST_MTSPR_DSCR_USER) ||
1320 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1321 		PPC_INST_MTSPR_DSCR)) &&
1322 			cpu_has_feature(CPU_FTR_DSCR)) {
1323 		PPC_WARN_EMULATED(mtdscr, regs);
1324 		rd = (instword >> 21) & 0x1f;
1325 		current->thread.dscr = regs->gpr[rd];
1326 		current->thread.dscr_inherit = 1;
1327 		mtspr(SPRN_DSCR, current->thread.dscr);
1328 		return 0;
1329 	}
1330 #endif
1331 
1332 	return -EINVAL;
1333 }
1334 
1335 int is_valid_bugaddr(unsigned long addr)
1336 {
1337 	return is_kernel_addr(addr);
1338 }
1339 
1340 #ifdef CONFIG_MATH_EMULATION
1341 static int emulate_math(struct pt_regs *regs)
1342 {
1343 	int ret;
1344 	extern int do_mathemu(struct pt_regs *regs);
1345 
1346 	ret = do_mathemu(regs);
1347 	if (ret >= 0)
1348 		PPC_WARN_EMULATED(math, regs);
1349 
1350 	switch (ret) {
1351 	case 0:
1352 		emulate_single_step(regs);
1353 		return 0;
1354 	case 1: {
1355 			int code = 0;
1356 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1357 			_exception(SIGFPE, regs, code, regs->nip);
1358 			return 0;
1359 		}
1360 	case -EFAULT:
1361 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1362 		return 0;
1363 	}
1364 
1365 	return -1;
1366 }
1367 #else
1368 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1369 #endif
1370 
1371 void program_check_exception(struct pt_regs *regs)
1372 {
1373 	enum ctx_state prev_state = exception_enter();
1374 	unsigned int reason = get_reason(regs);
1375 
1376 	/* We can now get here via a FP Unavailable exception if the core
1377 	 * has no FPU, in that case the reason flags will be 0 */
1378 
1379 	if (reason & REASON_FP) {
1380 		/* IEEE FP exception */
1381 		parse_fpe(regs);
1382 		goto bail;
1383 	}
1384 	if (reason & REASON_TRAP) {
1385 		unsigned long bugaddr;
1386 		/* Debugger is first in line to stop recursive faults in
1387 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1388 		if (debugger_bpt(regs))
1389 			goto bail;
1390 
1391 		if (kprobe_handler(regs))
1392 			goto bail;
1393 
1394 		/* trap exception */
1395 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1396 				== NOTIFY_STOP)
1397 			goto bail;
1398 
1399 		bugaddr = regs->nip;
1400 		/*
1401 		 * Fixup bugaddr for BUG_ON() in real mode
1402 		 */
1403 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1404 			bugaddr += PAGE_OFFSET;
1405 
1406 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1407 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1408 			regs->nip += 4;
1409 			goto bail;
1410 		}
1411 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1412 		goto bail;
1413 	}
1414 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1415 	if (reason & REASON_TM) {
1416 		/* This is a TM "Bad Thing Exception" program check.
1417 		 * This occurs when:
1418 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1419 		 *    transition in TM states.
1420 		 * -  A trechkpt is attempted when transactional.
1421 		 * -  A treclaim is attempted when non transactional.
1422 		 * -  A tend is illegally attempted.
1423 		 * -  writing a TM SPR when transactional.
1424 		 *
1425 		 * If usermode caused this, it's done something illegal and
1426 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1427 		 * operand to distinguish from the instruction just being bad
1428 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1429 		 * illegal /placement/ of a valid instruction.
1430 		 */
1431 		if (user_mode(regs)) {
1432 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1433 			goto bail;
1434 		} else {
1435 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1436 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1437 			die("Unrecoverable exception", regs, SIGABRT);
1438 		}
1439 	}
1440 #endif
1441 
1442 	/*
1443 	 * If we took the program check in the kernel skip down to sending a
1444 	 * SIGILL. The subsequent cases all relate to emulating instructions
1445 	 * which we should only do for userspace. We also do not want to enable
1446 	 * interrupts for kernel faults because that might lead to further
1447 	 * faults, and loose the context of the original exception.
1448 	 */
1449 	if (!user_mode(regs))
1450 		goto sigill;
1451 
1452 	/* We restore the interrupt state now */
1453 	if (!arch_irq_disabled_regs(regs))
1454 		local_irq_enable();
1455 
1456 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1457 	 * but there seems to be a hardware bug on the 405GP (RevD)
1458 	 * that means ESR is sometimes set incorrectly - either to
1459 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1460 	 * hardware people - not sure if it can happen on any illegal
1461 	 * instruction or only on FP instructions, whether there is a
1462 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1463 	 */
1464 	if (!emulate_math(regs))
1465 		goto bail;
1466 
1467 	/* Try to emulate it if we should. */
1468 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1469 		switch (emulate_instruction(regs)) {
1470 		case 0:
1471 			regs->nip += 4;
1472 			emulate_single_step(regs);
1473 			goto bail;
1474 		case -EFAULT:
1475 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1476 			goto bail;
1477 		}
1478 	}
1479 
1480 sigill:
1481 	if (reason & REASON_PRIVILEGED)
1482 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1483 	else
1484 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1485 
1486 bail:
1487 	exception_exit(prev_state);
1488 }
1489 NOKPROBE_SYMBOL(program_check_exception);
1490 
1491 /*
1492  * This occurs when running in hypervisor mode on POWER6 or later
1493  * and an illegal instruction is encountered.
1494  */
1495 void emulation_assist_interrupt(struct pt_regs *regs)
1496 {
1497 	regs->msr |= REASON_ILLEGAL;
1498 	program_check_exception(regs);
1499 }
1500 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1501 
1502 void alignment_exception(struct pt_regs *regs)
1503 {
1504 	enum ctx_state prev_state = exception_enter();
1505 	int sig, code, fixed = 0;
1506 
1507 	/* We restore the interrupt state now */
1508 	if (!arch_irq_disabled_regs(regs))
1509 		local_irq_enable();
1510 
1511 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1512 		goto bail;
1513 
1514 	/* we don't implement logging of alignment exceptions */
1515 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1516 		fixed = fix_alignment(regs);
1517 
1518 	if (fixed == 1) {
1519 		regs->nip += 4;	/* skip over emulated instruction */
1520 		emulate_single_step(regs);
1521 		goto bail;
1522 	}
1523 
1524 	/* Operand address was bad */
1525 	if (fixed == -EFAULT) {
1526 		sig = SIGSEGV;
1527 		code = SEGV_ACCERR;
1528 	} else {
1529 		sig = SIGBUS;
1530 		code = BUS_ADRALN;
1531 	}
1532 	if (user_mode(regs))
1533 		_exception(sig, regs, code, regs->dar);
1534 	else
1535 		bad_page_fault(regs, regs->dar, sig);
1536 
1537 bail:
1538 	exception_exit(prev_state);
1539 }
1540 
1541 void StackOverflow(struct pt_regs *regs)
1542 {
1543 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1544 	       current, regs->gpr[1]);
1545 	debugger(regs);
1546 	show_regs(regs);
1547 	panic("kernel stack overflow");
1548 }
1549 
1550 void nonrecoverable_exception(struct pt_regs *regs)
1551 {
1552 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1553 	       regs->nip, regs->msr);
1554 	debugger(regs);
1555 	die("nonrecoverable exception", regs, SIGKILL);
1556 }
1557 
1558 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1559 {
1560 	enum ctx_state prev_state = exception_enter();
1561 
1562 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1563 			  "%lx at %lx\n", regs->trap, regs->nip);
1564 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1565 
1566 	exception_exit(prev_state);
1567 }
1568 
1569 void altivec_unavailable_exception(struct pt_regs *regs)
1570 {
1571 	enum ctx_state prev_state = exception_enter();
1572 
1573 	if (user_mode(regs)) {
1574 		/* A user program has executed an altivec instruction,
1575 		   but this kernel doesn't support altivec. */
1576 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1577 		goto bail;
1578 	}
1579 
1580 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1581 			"%lx at %lx\n", regs->trap, regs->nip);
1582 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1583 
1584 bail:
1585 	exception_exit(prev_state);
1586 }
1587 
1588 void vsx_unavailable_exception(struct pt_regs *regs)
1589 {
1590 	if (user_mode(regs)) {
1591 		/* A user program has executed an vsx instruction,
1592 		   but this kernel doesn't support vsx. */
1593 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1594 		return;
1595 	}
1596 
1597 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1598 			"%lx at %lx\n", regs->trap, regs->nip);
1599 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1600 }
1601 
1602 #ifdef CONFIG_PPC64
1603 static void tm_unavailable(struct pt_regs *regs)
1604 {
1605 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1606 	if (user_mode(regs)) {
1607 		current->thread.load_tm++;
1608 		regs->msr |= MSR_TM;
1609 		tm_enable();
1610 		tm_restore_sprs(&current->thread);
1611 		return;
1612 	}
1613 #endif
1614 	pr_emerg("Unrecoverable TM Unavailable Exception "
1615 			"%lx at %lx\n", regs->trap, regs->nip);
1616 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1617 }
1618 
1619 void facility_unavailable_exception(struct pt_regs *regs)
1620 {
1621 	static char *facility_strings[] = {
1622 		[FSCR_FP_LG] = "FPU",
1623 		[FSCR_VECVSX_LG] = "VMX/VSX",
1624 		[FSCR_DSCR_LG] = "DSCR",
1625 		[FSCR_PM_LG] = "PMU SPRs",
1626 		[FSCR_BHRB_LG] = "BHRB",
1627 		[FSCR_TM_LG] = "TM",
1628 		[FSCR_EBB_LG] = "EBB",
1629 		[FSCR_TAR_LG] = "TAR",
1630 		[FSCR_MSGP_LG] = "MSGP",
1631 		[FSCR_SCV_LG] = "SCV",
1632 	};
1633 	char *facility = "unknown";
1634 	u64 value;
1635 	u32 instword, rd;
1636 	u8 status;
1637 	bool hv;
1638 
1639 	hv = (TRAP(regs) == 0xf80);
1640 	if (hv)
1641 		value = mfspr(SPRN_HFSCR);
1642 	else
1643 		value = mfspr(SPRN_FSCR);
1644 
1645 	status = value >> 56;
1646 	if ((hv || status >= 2) &&
1647 	    (status < ARRAY_SIZE(facility_strings)) &&
1648 	    facility_strings[status])
1649 		facility = facility_strings[status];
1650 
1651 	/* We should not have taken this interrupt in kernel */
1652 	if (!user_mode(regs)) {
1653 		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1654 			 facility, status, regs->nip);
1655 		die("Unexpected facility unavailable exception", regs, SIGABRT);
1656 	}
1657 
1658 	/* We restore the interrupt state now */
1659 	if (!arch_irq_disabled_regs(regs))
1660 		local_irq_enable();
1661 
1662 	if (status == FSCR_DSCR_LG) {
1663 		/*
1664 		 * User is accessing the DSCR register using the problem
1665 		 * state only SPR number (0x03) either through a mfspr or
1666 		 * a mtspr instruction. If it is a write attempt through
1667 		 * a mtspr, then we set the inherit bit. This also allows
1668 		 * the user to write or read the register directly in the
1669 		 * future by setting via the FSCR DSCR bit. But in case it
1670 		 * is a read DSCR attempt through a mfspr instruction, we
1671 		 * just emulate the instruction instead. This code path will
1672 		 * always emulate all the mfspr instructions till the user
1673 		 * has attempted at least one mtspr instruction. This way it
1674 		 * preserves the same behaviour when the user is accessing
1675 		 * the DSCR through privilege level only SPR number (0x11)
1676 		 * which is emulated through illegal instruction exception.
1677 		 * We always leave HFSCR DSCR set.
1678 		 */
1679 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1680 			pr_err("Failed to fetch the user instruction\n");
1681 			return;
1682 		}
1683 
1684 		/* Write into DSCR (mtspr 0x03, RS) */
1685 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1686 				== PPC_INST_MTSPR_DSCR_USER) {
1687 			rd = (instword >> 21) & 0x1f;
1688 			current->thread.dscr = regs->gpr[rd];
1689 			current->thread.dscr_inherit = 1;
1690 			current->thread.fscr |= FSCR_DSCR;
1691 			mtspr(SPRN_FSCR, current->thread.fscr);
1692 		}
1693 
1694 		/* Read from DSCR (mfspr RT, 0x03) */
1695 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1696 				== PPC_INST_MFSPR_DSCR_USER) {
1697 			if (emulate_instruction(regs)) {
1698 				pr_err("DSCR based mfspr emulation failed\n");
1699 				return;
1700 			}
1701 			regs->nip += 4;
1702 			emulate_single_step(regs);
1703 		}
1704 		return;
1705 	}
1706 
1707 	if (status == FSCR_TM_LG) {
1708 		/*
1709 		 * If we're here then the hardware is TM aware because it
1710 		 * generated an exception with FSRM_TM set.
1711 		 *
1712 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1713 		 * told us not to do TM, or the kernel is not built with TM
1714 		 * support.
1715 		 *
1716 		 * If both of those things are true, then userspace can spam the
1717 		 * console by triggering the printk() below just by continually
1718 		 * doing tbegin (or any TM instruction). So in that case just
1719 		 * send the process a SIGILL immediately.
1720 		 */
1721 		if (!cpu_has_feature(CPU_FTR_TM))
1722 			goto out;
1723 
1724 		tm_unavailable(regs);
1725 		return;
1726 	}
1727 
1728 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1729 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1730 
1731 out:
1732 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1733 }
1734 #endif
1735 
1736 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1737 
1738 void fp_unavailable_tm(struct pt_regs *regs)
1739 {
1740 	/* Note:  This does not handle any kind of FP laziness. */
1741 
1742 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1743 		 regs->nip, regs->msr);
1744 
1745         /* We can only have got here if the task started using FP after
1746          * beginning the transaction.  So, the transactional regs are just a
1747          * copy of the checkpointed ones.  But, we still need to recheckpoint
1748          * as we're enabling FP for the process; it will return, abort the
1749          * transaction, and probably retry but now with FP enabled.  So the
1750          * checkpointed FP registers need to be loaded.
1751 	 */
1752 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1753 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1754 
1755 	/* Enable FP for the task: */
1756 	current->thread.load_fp = 1;
1757 
1758 	/* This loads and recheckpoints the FP registers from
1759 	 * thread.fpr[].  They will remain in registers after the
1760 	 * checkpoint so we don't need to reload them after.
1761 	 * If VMX is in use, the VRs now hold checkpointed values,
1762 	 * so we don't want to load the VRs from the thread_struct.
1763 	 */
1764 	tm_recheckpoint(&current->thread);
1765 }
1766 
1767 void altivec_unavailable_tm(struct pt_regs *regs)
1768 {
1769 	/* See the comments in fp_unavailable_tm().  This function operates
1770 	 * the same way.
1771 	 */
1772 
1773 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1774 		 "MSR=%lx\n",
1775 		 regs->nip, regs->msr);
1776 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1777 	current->thread.load_vec = 1;
1778 	tm_recheckpoint(&current->thread);
1779 	current->thread.used_vr = 1;
1780 }
1781 
1782 void vsx_unavailable_tm(struct pt_regs *regs)
1783 {
1784 	/* See the comments in fp_unavailable_tm().  This works similarly,
1785 	 * though we're loading both FP and VEC registers in here.
1786 	 *
1787 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1788 	 * regs.  Either way, set MSR_VSX.
1789 	 */
1790 
1791 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1792 		 "MSR=%lx\n",
1793 		 regs->nip, regs->msr);
1794 
1795 	current->thread.used_vsr = 1;
1796 
1797 	/* This reclaims FP and/or VR regs if they're already enabled */
1798 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1799 
1800 	current->thread.load_vec = 1;
1801 	current->thread.load_fp = 1;
1802 
1803 	tm_recheckpoint(&current->thread);
1804 }
1805 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1806 
1807 void performance_monitor_exception(struct pt_regs *regs)
1808 {
1809 	__this_cpu_inc(irq_stat.pmu_irqs);
1810 
1811 	perf_irq(regs);
1812 }
1813 
1814 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1815 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1816 {
1817 	int changed = 0;
1818 	/*
1819 	 * Determine the cause of the debug event, clear the
1820 	 * event flags and send a trap to the handler. Torez
1821 	 */
1822 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1823 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1824 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1825 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1826 #endif
1827 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1828 			     5);
1829 		changed |= 0x01;
1830 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1831 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1832 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1833 			     6);
1834 		changed |= 0x01;
1835 	}  else if (debug_status & DBSR_IAC1) {
1836 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1837 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1838 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1839 			     1);
1840 		changed |= 0x01;
1841 	}  else if (debug_status & DBSR_IAC2) {
1842 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1843 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1844 			     2);
1845 		changed |= 0x01;
1846 	}  else if (debug_status & DBSR_IAC3) {
1847 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1848 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1849 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1850 			     3);
1851 		changed |= 0x01;
1852 	}  else if (debug_status & DBSR_IAC4) {
1853 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1854 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1855 			     4);
1856 		changed |= 0x01;
1857 	}
1858 	/*
1859 	 * At the point this routine was called, the MSR(DE) was turned off.
1860 	 * Check all other debug flags and see if that bit needs to be turned
1861 	 * back on or not.
1862 	 */
1863 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1864 			       current->thread.debug.dbcr1))
1865 		regs->msr |= MSR_DE;
1866 	else
1867 		/* Make sure the IDM flag is off */
1868 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1869 
1870 	if (changed & 0x01)
1871 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1872 }
1873 
1874 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1875 {
1876 	current->thread.debug.dbsr = debug_status;
1877 
1878 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1879 	 * on server, it stops on the target of the branch. In order to simulate
1880 	 * the server behaviour, we thus restart right away with a single step
1881 	 * instead of stopping here when hitting a BT
1882 	 */
1883 	if (debug_status & DBSR_BT) {
1884 		regs->msr &= ~MSR_DE;
1885 
1886 		/* Disable BT */
1887 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1888 		/* Clear the BT event */
1889 		mtspr(SPRN_DBSR, DBSR_BT);
1890 
1891 		/* Do the single step trick only when coming from userspace */
1892 		if (user_mode(regs)) {
1893 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1894 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1895 			regs->msr |= MSR_DE;
1896 			return;
1897 		}
1898 
1899 		if (kprobe_post_handler(regs))
1900 			return;
1901 
1902 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1903 			       5, SIGTRAP) == NOTIFY_STOP) {
1904 			return;
1905 		}
1906 		if (debugger_sstep(regs))
1907 			return;
1908 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1909 		regs->msr &= ~MSR_DE;
1910 
1911 		/* Disable instruction completion */
1912 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1913 		/* Clear the instruction completion event */
1914 		mtspr(SPRN_DBSR, DBSR_IC);
1915 
1916 		if (kprobe_post_handler(regs))
1917 			return;
1918 
1919 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1920 			       5, SIGTRAP) == NOTIFY_STOP) {
1921 			return;
1922 		}
1923 
1924 		if (debugger_sstep(regs))
1925 			return;
1926 
1927 		if (user_mode(regs)) {
1928 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1929 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1930 					       current->thread.debug.dbcr1))
1931 				regs->msr |= MSR_DE;
1932 			else
1933 				/* Make sure the IDM bit is off */
1934 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1935 		}
1936 
1937 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1938 	} else
1939 		handle_debug(regs, debug_status);
1940 }
1941 NOKPROBE_SYMBOL(DebugException);
1942 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1943 
1944 #if !defined(CONFIG_TAU_INT)
1945 void TAUException(struct pt_regs *regs)
1946 {
1947 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1948 	       regs->nip, regs->msr, regs->trap, print_tainted());
1949 }
1950 #endif /* CONFIG_INT_TAU */
1951 
1952 #ifdef CONFIG_ALTIVEC
1953 void altivec_assist_exception(struct pt_regs *regs)
1954 {
1955 	int err;
1956 
1957 	if (!user_mode(regs)) {
1958 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1959 		       " at %lx\n", regs->nip);
1960 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1961 	}
1962 
1963 	flush_altivec_to_thread(current);
1964 
1965 	PPC_WARN_EMULATED(altivec, regs);
1966 	err = emulate_altivec(regs);
1967 	if (err == 0) {
1968 		regs->nip += 4;		/* skip emulated instruction */
1969 		emulate_single_step(regs);
1970 		return;
1971 	}
1972 
1973 	if (err == -EFAULT) {
1974 		/* got an error reading the instruction */
1975 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1976 	} else {
1977 		/* didn't recognize the instruction */
1978 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1979 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1980 				   "in %s at %lx\n", current->comm, regs->nip);
1981 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1982 	}
1983 }
1984 #endif /* CONFIG_ALTIVEC */
1985 
1986 #ifdef CONFIG_FSL_BOOKE
1987 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1988 			   unsigned long error_code)
1989 {
1990 	/* We treat cache locking instructions from the user
1991 	 * as priv ops, in the future we could try to do
1992 	 * something smarter
1993 	 */
1994 	if (error_code & (ESR_DLK|ESR_ILK))
1995 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1996 	return;
1997 }
1998 #endif /* CONFIG_FSL_BOOKE */
1999 
2000 #ifdef CONFIG_SPE
2001 void SPEFloatingPointException(struct pt_regs *regs)
2002 {
2003 	extern int do_spe_mathemu(struct pt_regs *regs);
2004 	unsigned long spefscr;
2005 	int fpexc_mode;
2006 	int code = FPE_FLTUNK;
2007 	int err;
2008 
2009 	flush_spe_to_thread(current);
2010 
2011 	spefscr = current->thread.spefscr;
2012 	fpexc_mode = current->thread.fpexc_mode;
2013 
2014 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2015 		code = FPE_FLTOVF;
2016 	}
2017 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2018 		code = FPE_FLTUND;
2019 	}
2020 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2021 		code = FPE_FLTDIV;
2022 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2023 		code = FPE_FLTINV;
2024 	}
2025 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2026 		code = FPE_FLTRES;
2027 
2028 	err = do_spe_mathemu(regs);
2029 	if (err == 0) {
2030 		regs->nip += 4;		/* skip emulated instruction */
2031 		emulate_single_step(regs);
2032 		return;
2033 	}
2034 
2035 	if (err == -EFAULT) {
2036 		/* got an error reading the instruction */
2037 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2038 	} else if (err == -EINVAL) {
2039 		/* didn't recognize the instruction */
2040 		printk(KERN_ERR "unrecognized spe instruction "
2041 		       "in %s at %lx\n", current->comm, regs->nip);
2042 	} else {
2043 		_exception(SIGFPE, regs, code, regs->nip);
2044 	}
2045 
2046 	return;
2047 }
2048 
2049 void SPEFloatingPointRoundException(struct pt_regs *regs)
2050 {
2051 	extern int speround_handler(struct pt_regs *regs);
2052 	int err;
2053 
2054 	preempt_disable();
2055 	if (regs->msr & MSR_SPE)
2056 		giveup_spe(current);
2057 	preempt_enable();
2058 
2059 	regs->nip -= 4;
2060 	err = speround_handler(regs);
2061 	if (err == 0) {
2062 		regs->nip += 4;		/* skip emulated instruction */
2063 		emulate_single_step(regs);
2064 		return;
2065 	}
2066 
2067 	if (err == -EFAULT) {
2068 		/* got an error reading the instruction */
2069 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2070 	} else if (err == -EINVAL) {
2071 		/* didn't recognize the instruction */
2072 		printk(KERN_ERR "unrecognized spe instruction "
2073 		       "in %s at %lx\n", current->comm, regs->nip);
2074 	} else {
2075 		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2076 		return;
2077 	}
2078 }
2079 #endif
2080 
2081 /*
2082  * We enter here if we get an unrecoverable exception, that is, one
2083  * that happened at a point where the RI (recoverable interrupt) bit
2084  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2085  * we therefore lost state by taking this exception.
2086  */
2087 void unrecoverable_exception(struct pt_regs *regs)
2088 {
2089 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
2090 	       regs->trap, regs->nip);
2091 	die("Unrecoverable exception", regs, SIGABRT);
2092 }
2093 NOKPROBE_SYMBOL(unrecoverable_exception);
2094 
2095 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2096 /*
2097  * Default handler for a Watchdog exception,
2098  * spins until a reboot occurs
2099  */
2100 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2101 {
2102 	/* Generic WatchdogHandler, implement your own */
2103 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2104 	return;
2105 }
2106 
2107 void WatchdogException(struct pt_regs *regs)
2108 {
2109 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2110 	WatchdogHandler(regs);
2111 }
2112 #endif
2113 
2114 /*
2115  * We enter here if we discover during exception entry that we are
2116  * running in supervisor mode with a userspace value in the stack pointer.
2117  */
2118 void kernel_bad_stack(struct pt_regs *regs)
2119 {
2120 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2121 	       regs->gpr[1], regs->nip);
2122 	die("Bad kernel stack pointer", regs, SIGABRT);
2123 }
2124 NOKPROBE_SYMBOL(kernel_bad_stack);
2125 
2126 void __init trap_init(void)
2127 {
2128 }
2129 
2130 
2131 #ifdef CONFIG_PPC_EMULATED_STATS
2132 
2133 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2134 
2135 struct ppc_emulated ppc_emulated = {
2136 #ifdef CONFIG_ALTIVEC
2137 	WARN_EMULATED_SETUP(altivec),
2138 #endif
2139 	WARN_EMULATED_SETUP(dcba),
2140 	WARN_EMULATED_SETUP(dcbz),
2141 	WARN_EMULATED_SETUP(fp_pair),
2142 	WARN_EMULATED_SETUP(isel),
2143 	WARN_EMULATED_SETUP(mcrxr),
2144 	WARN_EMULATED_SETUP(mfpvr),
2145 	WARN_EMULATED_SETUP(multiple),
2146 	WARN_EMULATED_SETUP(popcntb),
2147 	WARN_EMULATED_SETUP(spe),
2148 	WARN_EMULATED_SETUP(string),
2149 	WARN_EMULATED_SETUP(sync),
2150 	WARN_EMULATED_SETUP(unaligned),
2151 #ifdef CONFIG_MATH_EMULATION
2152 	WARN_EMULATED_SETUP(math),
2153 #endif
2154 #ifdef CONFIG_VSX
2155 	WARN_EMULATED_SETUP(vsx),
2156 #endif
2157 #ifdef CONFIG_PPC64
2158 	WARN_EMULATED_SETUP(mfdscr),
2159 	WARN_EMULATED_SETUP(mtdscr),
2160 	WARN_EMULATED_SETUP(lq_stq),
2161 	WARN_EMULATED_SETUP(lxvw4x),
2162 	WARN_EMULATED_SETUP(lxvh8x),
2163 	WARN_EMULATED_SETUP(lxvd2x),
2164 	WARN_EMULATED_SETUP(lxvb16x),
2165 #endif
2166 };
2167 
2168 u32 ppc_warn_emulated;
2169 
2170 void ppc_warn_emulated_print(const char *type)
2171 {
2172 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2173 			    type);
2174 }
2175 
2176 static int __init ppc_warn_emulated_init(void)
2177 {
2178 	struct dentry *dir, *d;
2179 	unsigned int i;
2180 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2181 
2182 	if (!powerpc_debugfs_root)
2183 		return -ENODEV;
2184 
2185 	dir = debugfs_create_dir("emulated_instructions",
2186 				 powerpc_debugfs_root);
2187 	if (!dir)
2188 		return -ENOMEM;
2189 
2190 	d = debugfs_create_u32("do_warn", 0644, dir,
2191 			       &ppc_warn_emulated);
2192 	if (!d)
2193 		goto fail;
2194 
2195 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2196 		d = debugfs_create_u32(entries[i].name, 0644, dir,
2197 				       (u32 *)&entries[i].val.counter);
2198 		if (!d)
2199 			goto fail;
2200 	}
2201 
2202 	return 0;
2203 
2204 fail:
2205 	debugfs_remove_recursive(dir);
2206 	return -ENOMEM;
2207 }
2208 
2209 device_initcall(ppc_warn_emulated_init);
2210 
2211 #endif /* CONFIG_PPC_EMULATED_STATS */
2212