xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision e23feb16)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 #endif
289 
290 /*
291  * I/O accesses can cause machine checks on powermacs.
292  * Check if the NIP corresponds to the address of a sync
293  * instruction for which there is an entry in the exception
294  * table.
295  * Note that the 601 only takes a machine check on TEA
296  * (transfer error ack) signal assertion, and does not
297  * set any of the top 16 bits of SRR1.
298  *  -- paulus.
299  */
300 static inline int check_io_access(struct pt_regs *regs)
301 {
302 #ifdef CONFIG_PPC32
303 	unsigned long msr = regs->msr;
304 	const struct exception_table_entry *entry;
305 	unsigned int *nip = (unsigned int *)regs->nip;
306 
307 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
308 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
309 		/*
310 		 * Check that it's a sync instruction, or somewhere
311 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
312 		 * As the address is in the exception table
313 		 * we should be able to read the instr there.
314 		 * For the debug message, we look at the preceding
315 		 * load or store.
316 		 */
317 		if (*nip == 0x60000000)		/* nop */
318 			nip -= 2;
319 		else if (*nip == 0x4c00012c)	/* isync */
320 			--nip;
321 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
322 			/* sync or twi */
323 			unsigned int rb;
324 
325 			--nip;
326 			rb = (*nip >> 11) & 0x1f;
327 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
328 			       (*nip & 0x100)? "OUT to": "IN from",
329 			       regs->gpr[rb] - _IO_BASE, nip);
330 			regs->msr |= MSR_RI;
331 			regs->nip = entry->fixup;
332 			return 1;
333 		}
334 	}
335 #endif /* CONFIG_PPC32 */
336 	return 0;
337 }
338 
339 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
340 /* On 4xx, the reason for the machine check or program exception
341    is in the ESR. */
342 #define get_reason(regs)	((regs)->dsisr)
343 #ifndef CONFIG_FSL_BOOKE
344 #define get_mc_reason(regs)	((regs)->dsisr)
345 #else
346 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
347 #endif
348 #define REASON_FP		ESR_FP
349 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
350 #define REASON_PRIVILEGED	ESR_PPR
351 #define REASON_TRAP		ESR_PTR
352 
353 /* single-step stuff */
354 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
355 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
356 
357 #else
358 /* On non-4xx, the reason for the machine check or program
359    exception is in the MSR. */
360 #define get_reason(regs)	((regs)->msr)
361 #define get_mc_reason(regs)	((regs)->msr)
362 #define REASON_TM		0x200000
363 #define REASON_FP		0x100000
364 #define REASON_ILLEGAL		0x80000
365 #define REASON_PRIVILEGED	0x40000
366 #define REASON_TRAP		0x20000
367 
368 #define single_stepping(regs)	((regs)->msr & MSR_SE)
369 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
370 #endif
371 
372 #if defined(CONFIG_4xx)
373 int machine_check_4xx(struct pt_regs *regs)
374 {
375 	unsigned long reason = get_mc_reason(regs);
376 
377 	if (reason & ESR_IMCP) {
378 		printk("Instruction");
379 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
380 	} else
381 		printk("Data");
382 	printk(" machine check in kernel mode.\n");
383 
384 	return 0;
385 }
386 
387 int machine_check_440A(struct pt_regs *regs)
388 {
389 	unsigned long reason = get_mc_reason(regs);
390 
391 	printk("Machine check in kernel mode.\n");
392 	if (reason & ESR_IMCP){
393 		printk("Instruction Synchronous Machine Check exception\n");
394 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 	}
396 	else {
397 		u32 mcsr = mfspr(SPRN_MCSR);
398 		if (mcsr & MCSR_IB)
399 			printk("Instruction Read PLB Error\n");
400 		if (mcsr & MCSR_DRB)
401 			printk("Data Read PLB Error\n");
402 		if (mcsr & MCSR_DWB)
403 			printk("Data Write PLB Error\n");
404 		if (mcsr & MCSR_TLBP)
405 			printk("TLB Parity Error\n");
406 		if (mcsr & MCSR_ICP){
407 			flush_instruction_cache();
408 			printk("I-Cache Parity Error\n");
409 		}
410 		if (mcsr & MCSR_DCSP)
411 			printk("D-Cache Search Parity Error\n");
412 		if (mcsr & MCSR_DCFP)
413 			printk("D-Cache Flush Parity Error\n");
414 		if (mcsr & MCSR_IMPE)
415 			printk("Machine Check exception is imprecise\n");
416 
417 		/* Clear MCSR */
418 		mtspr(SPRN_MCSR, mcsr);
419 	}
420 	return 0;
421 }
422 
423 int machine_check_47x(struct pt_regs *regs)
424 {
425 	unsigned long reason = get_mc_reason(regs);
426 	u32 mcsr;
427 
428 	printk(KERN_ERR "Machine check in kernel mode.\n");
429 	if (reason & ESR_IMCP) {
430 		printk(KERN_ERR
431 		       "Instruction Synchronous Machine Check exception\n");
432 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
433 		return 0;
434 	}
435 	mcsr = mfspr(SPRN_MCSR);
436 	if (mcsr & MCSR_IB)
437 		printk(KERN_ERR "Instruction Read PLB Error\n");
438 	if (mcsr & MCSR_DRB)
439 		printk(KERN_ERR "Data Read PLB Error\n");
440 	if (mcsr & MCSR_DWB)
441 		printk(KERN_ERR "Data Write PLB Error\n");
442 	if (mcsr & MCSR_TLBP)
443 		printk(KERN_ERR "TLB Parity Error\n");
444 	if (mcsr & MCSR_ICP) {
445 		flush_instruction_cache();
446 		printk(KERN_ERR "I-Cache Parity Error\n");
447 	}
448 	if (mcsr & MCSR_DCSP)
449 		printk(KERN_ERR "D-Cache Search Parity Error\n");
450 	if (mcsr & PPC47x_MCSR_GPR)
451 		printk(KERN_ERR "GPR Parity Error\n");
452 	if (mcsr & PPC47x_MCSR_FPR)
453 		printk(KERN_ERR "FPR Parity Error\n");
454 	if (mcsr & PPC47x_MCSR_IPR)
455 		printk(KERN_ERR "Machine Check exception is imprecise\n");
456 
457 	/* Clear MCSR */
458 	mtspr(SPRN_MCSR, mcsr);
459 
460 	return 0;
461 }
462 #elif defined(CONFIG_E500)
463 int machine_check_e500mc(struct pt_regs *regs)
464 {
465 	unsigned long mcsr = mfspr(SPRN_MCSR);
466 	unsigned long reason = mcsr;
467 	int recoverable = 1;
468 
469 	if (reason & MCSR_LD) {
470 		recoverable = fsl_rio_mcheck_exception(regs);
471 		if (recoverable == 1)
472 			goto silent_out;
473 	}
474 
475 	printk("Machine check in kernel mode.\n");
476 	printk("Caused by (from MCSR=%lx): ", reason);
477 
478 	if (reason & MCSR_MCP)
479 		printk("Machine Check Signal\n");
480 
481 	if (reason & MCSR_ICPERR) {
482 		printk("Instruction Cache Parity Error\n");
483 
484 		/*
485 		 * This is recoverable by invalidating the i-cache.
486 		 */
487 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
488 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
489 			;
490 
491 		/*
492 		 * This will generally be accompanied by an instruction
493 		 * fetch error report -- only treat MCSR_IF as fatal
494 		 * if it wasn't due to an L1 parity error.
495 		 */
496 		reason &= ~MCSR_IF;
497 	}
498 
499 	if (reason & MCSR_DCPERR_MC) {
500 		printk("Data Cache Parity Error\n");
501 
502 		/*
503 		 * In write shadow mode we auto-recover from the error, but it
504 		 * may still get logged and cause a machine check.  We should
505 		 * only treat the non-write shadow case as non-recoverable.
506 		 */
507 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
508 			recoverable = 0;
509 	}
510 
511 	if (reason & MCSR_L2MMU_MHIT) {
512 		printk("Hit on multiple TLB entries\n");
513 		recoverable = 0;
514 	}
515 
516 	if (reason & MCSR_NMI)
517 		printk("Non-maskable interrupt\n");
518 
519 	if (reason & MCSR_IF) {
520 		printk("Instruction Fetch Error Report\n");
521 		recoverable = 0;
522 	}
523 
524 	if (reason & MCSR_LD) {
525 		printk("Load Error Report\n");
526 		recoverable = 0;
527 	}
528 
529 	if (reason & MCSR_ST) {
530 		printk("Store Error Report\n");
531 		recoverable = 0;
532 	}
533 
534 	if (reason & MCSR_LDG) {
535 		printk("Guarded Load Error Report\n");
536 		recoverable = 0;
537 	}
538 
539 	if (reason & MCSR_TLBSYNC)
540 		printk("Simultaneous tlbsync operations\n");
541 
542 	if (reason & MCSR_BSL2_ERR) {
543 		printk("Level 2 Cache Error\n");
544 		recoverable = 0;
545 	}
546 
547 	if (reason & MCSR_MAV) {
548 		u64 addr;
549 
550 		addr = mfspr(SPRN_MCAR);
551 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
552 
553 		printk("Machine Check %s Address: %#llx\n",
554 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
555 	}
556 
557 silent_out:
558 	mtspr(SPRN_MCSR, mcsr);
559 	return mfspr(SPRN_MCSR) == 0 && recoverable;
560 }
561 
562 int machine_check_e500(struct pt_regs *regs)
563 {
564 	unsigned long reason = get_mc_reason(regs);
565 
566 	if (reason & MCSR_BUS_RBERR) {
567 		if (fsl_rio_mcheck_exception(regs))
568 			return 1;
569 		if (fsl_pci_mcheck_exception(regs))
570 			return 1;
571 	}
572 
573 	printk("Machine check in kernel mode.\n");
574 	printk("Caused by (from MCSR=%lx): ", reason);
575 
576 	if (reason & MCSR_MCP)
577 		printk("Machine Check Signal\n");
578 	if (reason & MCSR_ICPERR)
579 		printk("Instruction Cache Parity Error\n");
580 	if (reason & MCSR_DCP_PERR)
581 		printk("Data Cache Push Parity Error\n");
582 	if (reason & MCSR_DCPERR)
583 		printk("Data Cache Parity Error\n");
584 	if (reason & MCSR_BUS_IAERR)
585 		printk("Bus - Instruction Address Error\n");
586 	if (reason & MCSR_BUS_RAERR)
587 		printk("Bus - Read Address Error\n");
588 	if (reason & MCSR_BUS_WAERR)
589 		printk("Bus - Write Address Error\n");
590 	if (reason & MCSR_BUS_IBERR)
591 		printk("Bus - Instruction Data Error\n");
592 	if (reason & MCSR_BUS_RBERR)
593 		printk("Bus - Read Data Bus Error\n");
594 	if (reason & MCSR_BUS_WBERR)
595 		printk("Bus - Read Data Bus Error\n");
596 	if (reason & MCSR_BUS_IPERR)
597 		printk("Bus - Instruction Parity Error\n");
598 	if (reason & MCSR_BUS_RPERR)
599 		printk("Bus - Read Parity Error\n");
600 
601 	return 0;
602 }
603 
604 int machine_check_generic(struct pt_regs *regs)
605 {
606 	return 0;
607 }
608 #elif defined(CONFIG_E200)
609 int machine_check_e200(struct pt_regs *regs)
610 {
611 	unsigned long reason = get_mc_reason(regs);
612 
613 	printk("Machine check in kernel mode.\n");
614 	printk("Caused by (from MCSR=%lx): ", reason);
615 
616 	if (reason & MCSR_MCP)
617 		printk("Machine Check Signal\n");
618 	if (reason & MCSR_CP_PERR)
619 		printk("Cache Push Parity Error\n");
620 	if (reason & MCSR_CPERR)
621 		printk("Cache Parity Error\n");
622 	if (reason & MCSR_EXCP_ERR)
623 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
624 	if (reason & MCSR_BUS_IRERR)
625 		printk("Bus - Read Bus Error on instruction fetch\n");
626 	if (reason & MCSR_BUS_DRERR)
627 		printk("Bus - Read Bus Error on data load\n");
628 	if (reason & MCSR_BUS_WRERR)
629 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
630 
631 	return 0;
632 }
633 #else
634 int machine_check_generic(struct pt_regs *regs)
635 {
636 	unsigned long reason = get_mc_reason(regs);
637 
638 	printk("Machine check in kernel mode.\n");
639 	printk("Caused by (from SRR1=%lx): ", reason);
640 	switch (reason & 0x601F0000) {
641 	case 0x80000:
642 		printk("Machine check signal\n");
643 		break;
644 	case 0:		/* for 601 */
645 	case 0x40000:
646 	case 0x140000:	/* 7450 MSS error and TEA */
647 		printk("Transfer error ack signal\n");
648 		break;
649 	case 0x20000:
650 		printk("Data parity error signal\n");
651 		break;
652 	case 0x10000:
653 		printk("Address parity error signal\n");
654 		break;
655 	case 0x20000000:
656 		printk("L1 Data Cache error\n");
657 		break;
658 	case 0x40000000:
659 		printk("L1 Instruction Cache error\n");
660 		break;
661 	case 0x00100000:
662 		printk("L2 data cache parity error\n");
663 		break;
664 	default:
665 		printk("Unknown values in msr\n");
666 	}
667 	return 0;
668 }
669 #endif /* everything else */
670 
671 void machine_check_exception(struct pt_regs *regs)
672 {
673 	enum ctx_state prev_state = exception_enter();
674 	int recover = 0;
675 
676 	__get_cpu_var(irq_stat).mce_exceptions++;
677 
678 	/* See if any machine dependent calls. In theory, we would want
679 	 * to call the CPU first, and call the ppc_md. one if the CPU
680 	 * one returns a positive number. However there is existing code
681 	 * that assumes the board gets a first chance, so let's keep it
682 	 * that way for now and fix things later. --BenH.
683 	 */
684 	if (ppc_md.machine_check_exception)
685 		recover = ppc_md.machine_check_exception(regs);
686 	else if (cur_cpu_spec->machine_check)
687 		recover = cur_cpu_spec->machine_check(regs);
688 
689 	if (recover > 0)
690 		goto bail;
691 
692 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
693 	/* the qspan pci read routines can cause machine checks -- Cort
694 	 *
695 	 * yuck !!! that totally needs to go away ! There are better ways
696 	 * to deal with that than having a wart in the mcheck handler.
697 	 * -- BenH
698 	 */
699 	bad_page_fault(regs, regs->dar, SIGBUS);
700 	goto bail;
701 #endif
702 
703 	if (debugger_fault_handler(regs))
704 		goto bail;
705 
706 	if (check_io_access(regs))
707 		goto bail;
708 
709 	die("Machine check", regs, SIGBUS);
710 
711 	/* Must die if the interrupt is not recoverable */
712 	if (!(regs->msr & MSR_RI))
713 		panic("Unrecoverable Machine check");
714 
715 bail:
716 	exception_exit(prev_state);
717 }
718 
719 void SMIException(struct pt_regs *regs)
720 {
721 	die("System Management Interrupt", regs, SIGABRT);
722 }
723 
724 void unknown_exception(struct pt_regs *regs)
725 {
726 	enum ctx_state prev_state = exception_enter();
727 
728 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
729 	       regs->nip, regs->msr, regs->trap);
730 
731 	_exception(SIGTRAP, regs, 0, 0);
732 
733 	exception_exit(prev_state);
734 }
735 
736 void instruction_breakpoint_exception(struct pt_regs *regs)
737 {
738 	enum ctx_state prev_state = exception_enter();
739 
740 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
741 					5, SIGTRAP) == NOTIFY_STOP)
742 		goto bail;
743 	if (debugger_iabr_match(regs))
744 		goto bail;
745 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
746 
747 bail:
748 	exception_exit(prev_state);
749 }
750 
751 void RunModeException(struct pt_regs *regs)
752 {
753 	_exception(SIGTRAP, regs, 0, 0);
754 }
755 
756 void __kprobes single_step_exception(struct pt_regs *regs)
757 {
758 	enum ctx_state prev_state = exception_enter();
759 
760 	clear_single_step(regs);
761 
762 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
763 					5, SIGTRAP) == NOTIFY_STOP)
764 		goto bail;
765 	if (debugger_sstep(regs))
766 		goto bail;
767 
768 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
769 
770 bail:
771 	exception_exit(prev_state);
772 }
773 
774 /*
775  * After we have successfully emulated an instruction, we have to
776  * check if the instruction was being single-stepped, and if so,
777  * pretend we got a single-step exception.  This was pointed out
778  * by Kumar Gala.  -- paulus
779  */
780 static void emulate_single_step(struct pt_regs *regs)
781 {
782 	if (single_stepping(regs))
783 		single_step_exception(regs);
784 }
785 
786 static inline int __parse_fpscr(unsigned long fpscr)
787 {
788 	int ret = 0;
789 
790 	/* Invalid operation */
791 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
792 		ret = FPE_FLTINV;
793 
794 	/* Overflow */
795 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
796 		ret = FPE_FLTOVF;
797 
798 	/* Underflow */
799 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
800 		ret = FPE_FLTUND;
801 
802 	/* Divide by zero */
803 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
804 		ret = FPE_FLTDIV;
805 
806 	/* Inexact result */
807 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
808 		ret = FPE_FLTRES;
809 
810 	return ret;
811 }
812 
813 static void parse_fpe(struct pt_regs *regs)
814 {
815 	int code = 0;
816 
817 	flush_fp_to_thread(current);
818 
819 	code = __parse_fpscr(current->thread.fpscr.val);
820 
821 	_exception(SIGFPE, regs, code, regs->nip);
822 }
823 
824 /*
825  * Illegal instruction emulation support.  Originally written to
826  * provide the PVR to user applications using the mfspr rd, PVR.
827  * Return non-zero if we can't emulate, or -EFAULT if the associated
828  * memory access caused an access fault.  Return zero on success.
829  *
830  * There are a couple of ways to do this, either "decode" the instruction
831  * or directly match lots of bits.  In this case, matching lots of
832  * bits is faster and easier.
833  *
834  */
835 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
836 {
837 	u8 rT = (instword >> 21) & 0x1f;
838 	u8 rA = (instword >> 16) & 0x1f;
839 	u8 NB_RB = (instword >> 11) & 0x1f;
840 	u32 num_bytes;
841 	unsigned long EA;
842 	int pos = 0;
843 
844 	/* Early out if we are an invalid form of lswx */
845 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
846 		if ((rT == rA) || (rT == NB_RB))
847 			return -EINVAL;
848 
849 	EA = (rA == 0) ? 0 : regs->gpr[rA];
850 
851 	switch (instword & PPC_INST_STRING_MASK) {
852 		case PPC_INST_LSWX:
853 		case PPC_INST_STSWX:
854 			EA += NB_RB;
855 			num_bytes = regs->xer & 0x7f;
856 			break;
857 		case PPC_INST_LSWI:
858 		case PPC_INST_STSWI:
859 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
860 			break;
861 		default:
862 			return -EINVAL;
863 	}
864 
865 	while (num_bytes != 0)
866 	{
867 		u8 val;
868 		u32 shift = 8 * (3 - (pos & 0x3));
869 
870 		/* if process is 32-bit, clear upper 32 bits of EA */
871 		if ((regs->msr & MSR_64BIT) == 0)
872 			EA &= 0xFFFFFFFF;
873 
874 		switch ((instword & PPC_INST_STRING_MASK)) {
875 			case PPC_INST_LSWX:
876 			case PPC_INST_LSWI:
877 				if (get_user(val, (u8 __user *)EA))
878 					return -EFAULT;
879 				/* first time updating this reg,
880 				 * zero it out */
881 				if (pos == 0)
882 					regs->gpr[rT] = 0;
883 				regs->gpr[rT] |= val << shift;
884 				break;
885 			case PPC_INST_STSWI:
886 			case PPC_INST_STSWX:
887 				val = regs->gpr[rT] >> shift;
888 				if (put_user(val, (u8 __user *)EA))
889 					return -EFAULT;
890 				break;
891 		}
892 		/* move EA to next address */
893 		EA += 1;
894 		num_bytes--;
895 
896 		/* manage our position within the register */
897 		if (++pos == 4) {
898 			pos = 0;
899 			if (++rT == 32)
900 				rT = 0;
901 		}
902 	}
903 
904 	return 0;
905 }
906 
907 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
908 {
909 	u32 ra,rs;
910 	unsigned long tmp;
911 
912 	ra = (instword >> 16) & 0x1f;
913 	rs = (instword >> 21) & 0x1f;
914 
915 	tmp = regs->gpr[rs];
916 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
917 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
918 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
919 	regs->gpr[ra] = tmp;
920 
921 	return 0;
922 }
923 
924 static int emulate_isel(struct pt_regs *regs, u32 instword)
925 {
926 	u8 rT = (instword >> 21) & 0x1f;
927 	u8 rA = (instword >> 16) & 0x1f;
928 	u8 rB = (instword >> 11) & 0x1f;
929 	u8 BC = (instword >> 6) & 0x1f;
930 	u8 bit;
931 	unsigned long tmp;
932 
933 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
934 	bit = (regs->ccr >> (31 - BC)) & 0x1;
935 
936 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
937 
938 	return 0;
939 }
940 
941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
942 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
943 {
944         /* If we're emulating a load/store in an active transaction, we cannot
945          * emulate it as the kernel operates in transaction suspended context.
946          * We need to abort the transaction.  This creates a persistent TM
947          * abort so tell the user what caused it with a new code.
948 	 */
949 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
950 		tm_enable();
951 		tm_abort(cause);
952 		return true;
953 	}
954 	return false;
955 }
956 #else
957 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
958 {
959 	return false;
960 }
961 #endif
962 
963 static int emulate_instruction(struct pt_regs *regs)
964 {
965 	u32 instword;
966 	u32 rd;
967 
968 	if (!user_mode(regs))
969 		return -EINVAL;
970 	CHECK_FULL_REGS(regs);
971 
972 	if (get_user(instword, (u32 __user *)(regs->nip)))
973 		return -EFAULT;
974 
975 	/* Emulate the mfspr rD, PVR. */
976 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
977 		PPC_WARN_EMULATED(mfpvr, regs);
978 		rd = (instword >> 21) & 0x1f;
979 		regs->gpr[rd] = mfspr(SPRN_PVR);
980 		return 0;
981 	}
982 
983 	/* Emulating the dcba insn is just a no-op.  */
984 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
985 		PPC_WARN_EMULATED(dcba, regs);
986 		return 0;
987 	}
988 
989 	/* Emulate the mcrxr insn.  */
990 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
991 		int shift = (instword >> 21) & 0x1c;
992 		unsigned long msk = 0xf0000000UL >> shift;
993 
994 		PPC_WARN_EMULATED(mcrxr, regs);
995 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
996 		regs->xer &= ~0xf0000000UL;
997 		return 0;
998 	}
999 
1000 	/* Emulate load/store string insn. */
1001 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1002 		if (tm_abort_check(regs,
1003 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1004 			return -EINVAL;
1005 		PPC_WARN_EMULATED(string, regs);
1006 		return emulate_string_inst(regs, instword);
1007 	}
1008 
1009 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1010 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1011 		PPC_WARN_EMULATED(popcntb, regs);
1012 		return emulate_popcntb_inst(regs, instword);
1013 	}
1014 
1015 	/* Emulate isel (Integer Select) instruction */
1016 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1017 		PPC_WARN_EMULATED(isel, regs);
1018 		return emulate_isel(regs, instword);
1019 	}
1020 
1021 #ifdef CONFIG_PPC64
1022 	/* Emulate the mfspr rD, DSCR. */
1023 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1024 		PPC_INST_MFSPR_DSCR_USER) ||
1025 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1026 		PPC_INST_MFSPR_DSCR)) &&
1027 			cpu_has_feature(CPU_FTR_DSCR)) {
1028 		PPC_WARN_EMULATED(mfdscr, regs);
1029 		rd = (instword >> 21) & 0x1f;
1030 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1031 		return 0;
1032 	}
1033 	/* Emulate the mtspr DSCR, rD. */
1034 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1035 		PPC_INST_MTSPR_DSCR_USER) ||
1036 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1037 		PPC_INST_MTSPR_DSCR)) &&
1038 			cpu_has_feature(CPU_FTR_DSCR)) {
1039 		PPC_WARN_EMULATED(mtdscr, regs);
1040 		rd = (instword >> 21) & 0x1f;
1041 		current->thread.dscr = regs->gpr[rd];
1042 		current->thread.dscr_inherit = 1;
1043 		mtspr(SPRN_DSCR, current->thread.dscr);
1044 		return 0;
1045 	}
1046 #endif
1047 
1048 	return -EINVAL;
1049 }
1050 
1051 int is_valid_bugaddr(unsigned long addr)
1052 {
1053 	return is_kernel_addr(addr);
1054 }
1055 
1056 #ifdef CONFIG_MATH_EMULATION
1057 static int emulate_math(struct pt_regs *regs)
1058 {
1059 	int ret;
1060 	extern int do_mathemu(struct pt_regs *regs);
1061 
1062 	ret = do_mathemu(regs);
1063 	if (ret >= 0)
1064 		PPC_WARN_EMULATED(math, regs);
1065 
1066 	switch (ret) {
1067 	case 0:
1068 		emulate_single_step(regs);
1069 		return 0;
1070 	case 1: {
1071 			int code = 0;
1072 			code = __parse_fpscr(current->thread.fpscr.val);
1073 			_exception(SIGFPE, regs, code, regs->nip);
1074 			return 0;
1075 		}
1076 	case -EFAULT:
1077 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1078 		return 0;
1079 	}
1080 
1081 	return -1;
1082 }
1083 #else
1084 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1085 #endif
1086 
1087 void __kprobes program_check_exception(struct pt_regs *regs)
1088 {
1089 	enum ctx_state prev_state = exception_enter();
1090 	unsigned int reason = get_reason(regs);
1091 
1092 	/* We can now get here via a FP Unavailable exception if the core
1093 	 * has no FPU, in that case the reason flags will be 0 */
1094 
1095 	if (reason & REASON_FP) {
1096 		/* IEEE FP exception */
1097 		parse_fpe(regs);
1098 		goto bail;
1099 	}
1100 	if (reason & REASON_TRAP) {
1101 		/* Debugger is first in line to stop recursive faults in
1102 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1103 		if (debugger_bpt(regs))
1104 			goto bail;
1105 
1106 		/* trap exception */
1107 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1108 				== NOTIFY_STOP)
1109 			goto bail;
1110 
1111 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1112 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1113 			regs->nip += 4;
1114 			goto bail;
1115 		}
1116 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1117 		goto bail;
1118 	}
1119 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1120 	if (reason & REASON_TM) {
1121 		/* This is a TM "Bad Thing Exception" program check.
1122 		 * This occurs when:
1123 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1124 		 *    transition in TM states.
1125 		 * -  A trechkpt is attempted when transactional.
1126 		 * -  A treclaim is attempted when non transactional.
1127 		 * -  A tend is illegally attempted.
1128 		 * -  writing a TM SPR when transactional.
1129 		 */
1130 		if (!user_mode(regs) &&
1131 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1132 			regs->nip += 4;
1133 			goto bail;
1134 		}
1135 		/* If usermode caused this, it's done something illegal and
1136 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1137 		 * operand to distinguish from the instruction just being bad
1138 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1139 		 * illegal /placement/ of a valid instruction.
1140 		 */
1141 		if (user_mode(regs)) {
1142 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1143 			goto bail;
1144 		} else {
1145 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1146 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1147 			die("Unrecoverable exception", regs, SIGABRT);
1148 		}
1149 	}
1150 #endif
1151 
1152 	/*
1153 	 * If we took the program check in the kernel skip down to sending a
1154 	 * SIGILL. The subsequent cases all relate to emulating instructions
1155 	 * which we should only do for userspace. We also do not want to enable
1156 	 * interrupts for kernel faults because that might lead to further
1157 	 * faults, and loose the context of the original exception.
1158 	 */
1159 	if (!user_mode(regs))
1160 		goto sigill;
1161 
1162 	/* We restore the interrupt state now */
1163 	if (!arch_irq_disabled_regs(regs))
1164 		local_irq_enable();
1165 
1166 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1167 	 * but there seems to be a hardware bug on the 405GP (RevD)
1168 	 * that means ESR is sometimes set incorrectly - either to
1169 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1170 	 * hardware people - not sure if it can happen on any illegal
1171 	 * instruction or only on FP instructions, whether there is a
1172 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1173 	 */
1174 	if (!emulate_math(regs))
1175 		goto bail;
1176 
1177 	/* Try to emulate it if we should. */
1178 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1179 		switch (emulate_instruction(regs)) {
1180 		case 0:
1181 			regs->nip += 4;
1182 			emulate_single_step(regs);
1183 			goto bail;
1184 		case -EFAULT:
1185 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1186 			goto bail;
1187 		}
1188 	}
1189 
1190 sigill:
1191 	if (reason & REASON_PRIVILEGED)
1192 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1193 	else
1194 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1195 
1196 bail:
1197 	exception_exit(prev_state);
1198 }
1199 
1200 /*
1201  * This occurs when running in hypervisor mode on POWER6 or later
1202  * and an illegal instruction is encountered.
1203  */
1204 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1205 {
1206 	regs->msr |= REASON_ILLEGAL;
1207 	program_check_exception(regs);
1208 }
1209 
1210 void alignment_exception(struct pt_regs *regs)
1211 {
1212 	enum ctx_state prev_state = exception_enter();
1213 	int sig, code, fixed = 0;
1214 
1215 	/* We restore the interrupt state now */
1216 	if (!arch_irq_disabled_regs(regs))
1217 		local_irq_enable();
1218 
1219 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1220 		goto bail;
1221 
1222 	/* we don't implement logging of alignment exceptions */
1223 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1224 		fixed = fix_alignment(regs);
1225 
1226 	if (fixed == 1) {
1227 		regs->nip += 4;	/* skip over emulated instruction */
1228 		emulate_single_step(regs);
1229 		goto bail;
1230 	}
1231 
1232 	/* Operand address was bad */
1233 	if (fixed == -EFAULT) {
1234 		sig = SIGSEGV;
1235 		code = SEGV_ACCERR;
1236 	} else {
1237 		sig = SIGBUS;
1238 		code = BUS_ADRALN;
1239 	}
1240 	if (user_mode(regs))
1241 		_exception(sig, regs, code, regs->dar);
1242 	else
1243 		bad_page_fault(regs, regs->dar, sig);
1244 
1245 bail:
1246 	exception_exit(prev_state);
1247 }
1248 
1249 void StackOverflow(struct pt_regs *regs)
1250 {
1251 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1252 	       current, regs->gpr[1]);
1253 	debugger(regs);
1254 	show_regs(regs);
1255 	panic("kernel stack overflow");
1256 }
1257 
1258 void nonrecoverable_exception(struct pt_regs *regs)
1259 {
1260 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1261 	       regs->nip, regs->msr);
1262 	debugger(regs);
1263 	die("nonrecoverable exception", regs, SIGKILL);
1264 }
1265 
1266 void trace_syscall(struct pt_regs *regs)
1267 {
1268 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1269 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1270 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1271 }
1272 
1273 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1274 {
1275 	enum ctx_state prev_state = exception_enter();
1276 
1277 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1278 			  "%lx at %lx\n", regs->trap, regs->nip);
1279 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1280 
1281 	exception_exit(prev_state);
1282 }
1283 
1284 void altivec_unavailable_exception(struct pt_regs *regs)
1285 {
1286 	enum ctx_state prev_state = exception_enter();
1287 
1288 	if (user_mode(regs)) {
1289 		/* A user program has executed an altivec instruction,
1290 		   but this kernel doesn't support altivec. */
1291 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1292 		goto bail;
1293 	}
1294 
1295 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1296 			"%lx at %lx\n", regs->trap, regs->nip);
1297 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1298 
1299 bail:
1300 	exception_exit(prev_state);
1301 }
1302 
1303 void vsx_unavailable_exception(struct pt_regs *regs)
1304 {
1305 	if (user_mode(regs)) {
1306 		/* A user program has executed an vsx instruction,
1307 		   but this kernel doesn't support vsx. */
1308 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1309 		return;
1310 	}
1311 
1312 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1313 			"%lx at %lx\n", regs->trap, regs->nip);
1314 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1315 }
1316 
1317 #ifdef CONFIG_PPC64
1318 void facility_unavailable_exception(struct pt_regs *regs)
1319 {
1320 	static char *facility_strings[] = {
1321 		[FSCR_FP_LG] = "FPU",
1322 		[FSCR_VECVSX_LG] = "VMX/VSX",
1323 		[FSCR_DSCR_LG] = "DSCR",
1324 		[FSCR_PM_LG] = "PMU SPRs",
1325 		[FSCR_BHRB_LG] = "BHRB",
1326 		[FSCR_TM_LG] = "TM",
1327 		[FSCR_EBB_LG] = "EBB",
1328 		[FSCR_TAR_LG] = "TAR",
1329 	};
1330 	char *facility = "unknown";
1331 	u64 value;
1332 	u8 status;
1333 	bool hv;
1334 
1335 	hv = (regs->trap == 0xf80);
1336 	if (hv)
1337 		value = mfspr(SPRN_HFSCR);
1338 	else
1339 		value = mfspr(SPRN_FSCR);
1340 
1341 	status = value >> 56;
1342 	if (status == FSCR_DSCR_LG) {
1343 		/* User is acessing the DSCR.  Set the inherit bit and allow
1344 		 * the user to set it directly in future by setting via the
1345 		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1346 		 */
1347 		current->thread.dscr_inherit = 1;
1348 		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1349 		return;
1350 	}
1351 
1352 	if ((status < ARRAY_SIZE(facility_strings)) &&
1353 	    facility_strings[status])
1354 		facility = facility_strings[status];
1355 
1356 	/* We restore the interrupt state now */
1357 	if (!arch_irq_disabled_regs(regs))
1358 		local_irq_enable();
1359 
1360 	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1361 	       hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1362 
1363 	if (user_mode(regs)) {
1364 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1365 		return;
1366 	}
1367 
1368 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1369 }
1370 #endif
1371 
1372 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1373 
1374 extern void do_load_up_fpu(struct pt_regs *regs);
1375 
1376 void fp_unavailable_tm(struct pt_regs *regs)
1377 {
1378 	/* Note:  This does not handle any kind of FP laziness. */
1379 
1380 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1381 		 regs->nip, regs->msr);
1382 	tm_enable();
1383 
1384         /* We can only have got here if the task started using FP after
1385          * beginning the transaction.  So, the transactional regs are just a
1386          * copy of the checkpointed ones.  But, we still need to recheckpoint
1387          * as we're enabling FP for the process; it will return, abort the
1388          * transaction, and probably retry but now with FP enabled.  So the
1389          * checkpointed FP registers need to be loaded.
1390 	 */
1391 	tm_reclaim(&current->thread, current->thread.regs->msr,
1392 		   TM_CAUSE_FAC_UNAV);
1393 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1394 
1395 	/* Enable FP for the task: */
1396 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1397 
1398 	/* This loads and recheckpoints the FP registers from
1399 	 * thread.fpr[].  They will remain in registers after the
1400 	 * checkpoint so we don't need to reload them after.
1401 	 */
1402 	tm_recheckpoint(&current->thread, regs->msr);
1403 }
1404 
1405 #ifdef CONFIG_ALTIVEC
1406 extern void do_load_up_altivec(struct pt_regs *regs);
1407 
1408 void altivec_unavailable_tm(struct pt_regs *regs)
1409 {
1410 	/* See the comments in fp_unavailable_tm().  This function operates
1411 	 * the same way.
1412 	 */
1413 
1414 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1415 		 "MSR=%lx\n",
1416 		 regs->nip, regs->msr);
1417 	tm_enable();
1418 	tm_reclaim(&current->thread, current->thread.regs->msr,
1419 		   TM_CAUSE_FAC_UNAV);
1420 	regs->msr |= MSR_VEC;
1421 	tm_recheckpoint(&current->thread, regs->msr);
1422 	current->thread.used_vr = 1;
1423 }
1424 #endif
1425 
1426 #ifdef CONFIG_VSX
1427 void vsx_unavailable_tm(struct pt_regs *regs)
1428 {
1429 	/* See the comments in fp_unavailable_tm().  This works similarly,
1430 	 * though we're loading both FP and VEC registers in here.
1431 	 *
1432 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1433 	 * regs.  Either way, set MSR_VSX.
1434 	 */
1435 
1436 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1437 		 "MSR=%lx\n",
1438 		 regs->nip, regs->msr);
1439 
1440 	tm_enable();
1441 	/* This reclaims FP and/or VR regs if they're already enabled */
1442 	tm_reclaim(&current->thread, current->thread.regs->msr,
1443 		   TM_CAUSE_FAC_UNAV);
1444 
1445 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1446 		MSR_VSX;
1447 	/* This loads & recheckpoints FP and VRs. */
1448 	tm_recheckpoint(&current->thread, regs->msr);
1449 	current->thread.used_vsr = 1;
1450 }
1451 #endif
1452 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1453 
1454 void performance_monitor_exception(struct pt_regs *regs)
1455 {
1456 	__get_cpu_var(irq_stat).pmu_irqs++;
1457 
1458 	perf_irq(regs);
1459 }
1460 
1461 #ifdef CONFIG_8xx
1462 void SoftwareEmulation(struct pt_regs *regs)
1463 {
1464 	CHECK_FULL_REGS(regs);
1465 
1466 	if (!user_mode(regs)) {
1467 		debugger(regs);
1468 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1469 	}
1470 
1471 	if (!emulate_math(regs))
1472 		return;
1473 
1474 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1475 }
1476 #endif /* CONFIG_8xx */
1477 
1478 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1479 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1480 {
1481 	int changed = 0;
1482 	/*
1483 	 * Determine the cause of the debug event, clear the
1484 	 * event flags and send a trap to the handler. Torez
1485 	 */
1486 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1487 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1488 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1489 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1490 #endif
1491 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1492 			     5);
1493 		changed |= 0x01;
1494 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1495 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1496 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1497 			     6);
1498 		changed |= 0x01;
1499 	}  else if (debug_status & DBSR_IAC1) {
1500 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1501 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1502 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1503 			     1);
1504 		changed |= 0x01;
1505 	}  else if (debug_status & DBSR_IAC2) {
1506 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1507 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1508 			     2);
1509 		changed |= 0x01;
1510 	}  else if (debug_status & DBSR_IAC3) {
1511 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1512 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1513 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1514 			     3);
1515 		changed |= 0x01;
1516 	}  else if (debug_status & DBSR_IAC4) {
1517 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1518 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1519 			     4);
1520 		changed |= 0x01;
1521 	}
1522 	/*
1523 	 * At the point this routine was called, the MSR(DE) was turned off.
1524 	 * Check all other debug flags and see if that bit needs to be turned
1525 	 * back on or not.
1526 	 */
1527 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1528 		regs->msr |= MSR_DE;
1529 	else
1530 		/* Make sure the IDM flag is off */
1531 		current->thread.dbcr0 &= ~DBCR0_IDM;
1532 
1533 	if (changed & 0x01)
1534 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1535 }
1536 
1537 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1538 {
1539 	current->thread.dbsr = debug_status;
1540 
1541 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1542 	 * on server, it stops on the target of the branch. In order to simulate
1543 	 * the server behaviour, we thus restart right away with a single step
1544 	 * instead of stopping here when hitting a BT
1545 	 */
1546 	if (debug_status & DBSR_BT) {
1547 		regs->msr &= ~MSR_DE;
1548 
1549 		/* Disable BT */
1550 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1551 		/* Clear the BT event */
1552 		mtspr(SPRN_DBSR, DBSR_BT);
1553 
1554 		/* Do the single step trick only when coming from userspace */
1555 		if (user_mode(regs)) {
1556 			current->thread.dbcr0 &= ~DBCR0_BT;
1557 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1558 			regs->msr |= MSR_DE;
1559 			return;
1560 		}
1561 
1562 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1563 			       5, SIGTRAP) == NOTIFY_STOP) {
1564 			return;
1565 		}
1566 		if (debugger_sstep(regs))
1567 			return;
1568 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1569 		regs->msr &= ~MSR_DE;
1570 
1571 		/* Disable instruction completion */
1572 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1573 		/* Clear the instruction completion event */
1574 		mtspr(SPRN_DBSR, DBSR_IC);
1575 
1576 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1577 			       5, SIGTRAP) == NOTIFY_STOP) {
1578 			return;
1579 		}
1580 
1581 		if (debugger_sstep(regs))
1582 			return;
1583 
1584 		if (user_mode(regs)) {
1585 			current->thread.dbcr0 &= ~DBCR0_IC;
1586 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1587 					       current->thread.dbcr1))
1588 				regs->msr |= MSR_DE;
1589 			else
1590 				/* Make sure the IDM bit is off */
1591 				current->thread.dbcr0 &= ~DBCR0_IDM;
1592 		}
1593 
1594 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1595 	} else
1596 		handle_debug(regs, debug_status);
1597 }
1598 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1599 
1600 #if !defined(CONFIG_TAU_INT)
1601 void TAUException(struct pt_regs *regs)
1602 {
1603 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1604 	       regs->nip, regs->msr, regs->trap, print_tainted());
1605 }
1606 #endif /* CONFIG_INT_TAU */
1607 
1608 #ifdef CONFIG_ALTIVEC
1609 void altivec_assist_exception(struct pt_regs *regs)
1610 {
1611 	int err;
1612 
1613 	if (!user_mode(regs)) {
1614 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1615 		       " at %lx\n", regs->nip);
1616 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1617 	}
1618 
1619 	flush_altivec_to_thread(current);
1620 
1621 	PPC_WARN_EMULATED(altivec, regs);
1622 	err = emulate_altivec(regs);
1623 	if (err == 0) {
1624 		regs->nip += 4;		/* skip emulated instruction */
1625 		emulate_single_step(regs);
1626 		return;
1627 	}
1628 
1629 	if (err == -EFAULT) {
1630 		/* got an error reading the instruction */
1631 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1632 	} else {
1633 		/* didn't recognize the instruction */
1634 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1635 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1636 				   "in %s at %lx\n", current->comm, regs->nip);
1637 		current->thread.vscr.u[3] |= 0x10000;
1638 	}
1639 }
1640 #endif /* CONFIG_ALTIVEC */
1641 
1642 #ifdef CONFIG_VSX
1643 void vsx_assist_exception(struct pt_regs *regs)
1644 {
1645 	if (!user_mode(regs)) {
1646 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1647 		       " at %lx\n", regs->nip);
1648 		die("Kernel VSX assist exception", regs, SIGILL);
1649 	}
1650 
1651 	flush_vsx_to_thread(current);
1652 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1653 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1654 }
1655 #endif /* CONFIG_VSX */
1656 
1657 #ifdef CONFIG_FSL_BOOKE
1658 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1659 			   unsigned long error_code)
1660 {
1661 	/* We treat cache locking instructions from the user
1662 	 * as priv ops, in the future we could try to do
1663 	 * something smarter
1664 	 */
1665 	if (error_code & (ESR_DLK|ESR_ILK))
1666 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1667 	return;
1668 }
1669 #endif /* CONFIG_FSL_BOOKE */
1670 
1671 #ifdef CONFIG_SPE
1672 void SPEFloatingPointException(struct pt_regs *regs)
1673 {
1674 	extern int do_spe_mathemu(struct pt_regs *regs);
1675 	unsigned long spefscr;
1676 	int fpexc_mode;
1677 	int code = 0;
1678 	int err;
1679 
1680 	flush_spe_to_thread(current);
1681 
1682 	spefscr = current->thread.spefscr;
1683 	fpexc_mode = current->thread.fpexc_mode;
1684 
1685 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1686 		code = FPE_FLTOVF;
1687 	}
1688 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1689 		code = FPE_FLTUND;
1690 	}
1691 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1692 		code = FPE_FLTDIV;
1693 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1694 		code = FPE_FLTINV;
1695 	}
1696 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1697 		code = FPE_FLTRES;
1698 
1699 	err = do_spe_mathemu(regs);
1700 	if (err == 0) {
1701 		regs->nip += 4;		/* skip emulated instruction */
1702 		emulate_single_step(regs);
1703 		return;
1704 	}
1705 
1706 	if (err == -EFAULT) {
1707 		/* got an error reading the instruction */
1708 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1709 	} else if (err == -EINVAL) {
1710 		/* didn't recognize the instruction */
1711 		printk(KERN_ERR "unrecognized spe instruction "
1712 		       "in %s at %lx\n", current->comm, regs->nip);
1713 	} else {
1714 		_exception(SIGFPE, regs, code, regs->nip);
1715 	}
1716 
1717 	return;
1718 }
1719 
1720 void SPEFloatingPointRoundException(struct pt_regs *regs)
1721 {
1722 	extern int speround_handler(struct pt_regs *regs);
1723 	int err;
1724 
1725 	preempt_disable();
1726 	if (regs->msr & MSR_SPE)
1727 		giveup_spe(current);
1728 	preempt_enable();
1729 
1730 	regs->nip -= 4;
1731 	err = speround_handler(regs);
1732 	if (err == 0) {
1733 		regs->nip += 4;		/* skip emulated instruction */
1734 		emulate_single_step(regs);
1735 		return;
1736 	}
1737 
1738 	if (err == -EFAULT) {
1739 		/* got an error reading the instruction */
1740 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1741 	} else if (err == -EINVAL) {
1742 		/* didn't recognize the instruction */
1743 		printk(KERN_ERR "unrecognized spe instruction "
1744 		       "in %s at %lx\n", current->comm, regs->nip);
1745 	} else {
1746 		_exception(SIGFPE, regs, 0, regs->nip);
1747 		return;
1748 	}
1749 }
1750 #endif
1751 
1752 /*
1753  * We enter here if we get an unrecoverable exception, that is, one
1754  * that happened at a point where the RI (recoverable interrupt) bit
1755  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1756  * we therefore lost state by taking this exception.
1757  */
1758 void unrecoverable_exception(struct pt_regs *regs)
1759 {
1760 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1761 	       regs->trap, regs->nip);
1762 	die("Unrecoverable exception", regs, SIGABRT);
1763 }
1764 
1765 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1766 /*
1767  * Default handler for a Watchdog exception,
1768  * spins until a reboot occurs
1769  */
1770 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1771 {
1772 	/* Generic WatchdogHandler, implement your own */
1773 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1774 	return;
1775 }
1776 
1777 void WatchdogException(struct pt_regs *regs)
1778 {
1779 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1780 	WatchdogHandler(regs);
1781 }
1782 #endif
1783 
1784 /*
1785  * We enter here if we discover during exception entry that we are
1786  * running in supervisor mode with a userspace value in the stack pointer.
1787  */
1788 void kernel_bad_stack(struct pt_regs *regs)
1789 {
1790 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1791 	       regs->gpr[1], regs->nip);
1792 	die("Bad kernel stack pointer", regs, SIGABRT);
1793 }
1794 
1795 void __init trap_init(void)
1796 {
1797 }
1798 
1799 
1800 #ifdef CONFIG_PPC_EMULATED_STATS
1801 
1802 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1803 
1804 struct ppc_emulated ppc_emulated = {
1805 #ifdef CONFIG_ALTIVEC
1806 	WARN_EMULATED_SETUP(altivec),
1807 #endif
1808 	WARN_EMULATED_SETUP(dcba),
1809 	WARN_EMULATED_SETUP(dcbz),
1810 	WARN_EMULATED_SETUP(fp_pair),
1811 	WARN_EMULATED_SETUP(isel),
1812 	WARN_EMULATED_SETUP(mcrxr),
1813 	WARN_EMULATED_SETUP(mfpvr),
1814 	WARN_EMULATED_SETUP(multiple),
1815 	WARN_EMULATED_SETUP(popcntb),
1816 	WARN_EMULATED_SETUP(spe),
1817 	WARN_EMULATED_SETUP(string),
1818 	WARN_EMULATED_SETUP(unaligned),
1819 #ifdef CONFIG_MATH_EMULATION
1820 	WARN_EMULATED_SETUP(math),
1821 #endif
1822 #ifdef CONFIG_VSX
1823 	WARN_EMULATED_SETUP(vsx),
1824 #endif
1825 #ifdef CONFIG_PPC64
1826 	WARN_EMULATED_SETUP(mfdscr),
1827 	WARN_EMULATED_SETUP(mtdscr),
1828 #endif
1829 };
1830 
1831 u32 ppc_warn_emulated;
1832 
1833 void ppc_warn_emulated_print(const char *type)
1834 {
1835 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1836 			    type);
1837 }
1838 
1839 static int __init ppc_warn_emulated_init(void)
1840 {
1841 	struct dentry *dir, *d;
1842 	unsigned int i;
1843 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1844 
1845 	if (!powerpc_debugfs_root)
1846 		return -ENODEV;
1847 
1848 	dir = debugfs_create_dir("emulated_instructions",
1849 				 powerpc_debugfs_root);
1850 	if (!dir)
1851 		return -ENOMEM;
1852 
1853 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1854 			       &ppc_warn_emulated);
1855 	if (!d)
1856 		goto fail;
1857 
1858 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1859 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1860 				       (u32 *)&entries[i].val.counter);
1861 		if (!d)
1862 			goto fail;
1863 	}
1864 
1865 	return 0;
1866 
1867 fail:
1868 	debugfs_remove_recursive(dir);
1869 	return -ENOMEM;
1870 }
1871 
1872 device_initcall(ppc_warn_emulated_init);
1873 
1874 #endif /* CONFIG_PPC_EMULATED_STATS */
1875