xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision d2999e1b)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 
289 /*
290  * This function is called in real mode. Strictly no printk's please.
291  *
292  * regs->nip and regs->msr contains srr0 and ssr1.
293  */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 	long handled = 0;
297 
298 	__get_cpu_var(irq_stat).mce_exceptions++;
299 
300 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
301 		handled = cur_cpu_spec->machine_check_early(regs);
302 	return handled;
303 }
304 
305 #endif
306 
307 /*
308  * I/O accesses can cause machine checks on powermacs.
309  * Check if the NIP corresponds to the address of a sync
310  * instruction for which there is an entry in the exception
311  * table.
312  * Note that the 601 only takes a machine check on TEA
313  * (transfer error ack) signal assertion, and does not
314  * set any of the top 16 bits of SRR1.
315  *  -- paulus.
316  */
317 static inline int check_io_access(struct pt_regs *regs)
318 {
319 #ifdef CONFIG_PPC32
320 	unsigned long msr = regs->msr;
321 	const struct exception_table_entry *entry;
322 	unsigned int *nip = (unsigned int *)regs->nip;
323 
324 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
325 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
326 		/*
327 		 * Check that it's a sync instruction, or somewhere
328 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
329 		 * As the address is in the exception table
330 		 * we should be able to read the instr there.
331 		 * For the debug message, we look at the preceding
332 		 * load or store.
333 		 */
334 		if (*nip == 0x60000000)		/* nop */
335 			nip -= 2;
336 		else if (*nip == 0x4c00012c)	/* isync */
337 			--nip;
338 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
339 			/* sync or twi */
340 			unsigned int rb;
341 
342 			--nip;
343 			rb = (*nip >> 11) & 0x1f;
344 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
345 			       (*nip & 0x100)? "OUT to": "IN from",
346 			       regs->gpr[rb] - _IO_BASE, nip);
347 			regs->msr |= MSR_RI;
348 			regs->nip = entry->fixup;
349 			return 1;
350 		}
351 	}
352 #endif /* CONFIG_PPC32 */
353 	return 0;
354 }
355 
356 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
357 /* On 4xx, the reason for the machine check or program exception
358    is in the ESR. */
359 #define get_reason(regs)	((regs)->dsisr)
360 #ifndef CONFIG_FSL_BOOKE
361 #define get_mc_reason(regs)	((regs)->dsisr)
362 #else
363 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
364 #endif
365 #define REASON_FP		ESR_FP
366 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
367 #define REASON_PRIVILEGED	ESR_PPR
368 #define REASON_TRAP		ESR_PTR
369 
370 /* single-step stuff */
371 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
372 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
373 
374 #else
375 /* On non-4xx, the reason for the machine check or program
376    exception is in the MSR. */
377 #define get_reason(regs)	((regs)->msr)
378 #define get_mc_reason(regs)	((regs)->msr)
379 #define REASON_TM		0x200000
380 #define REASON_FP		0x100000
381 #define REASON_ILLEGAL		0x80000
382 #define REASON_PRIVILEGED	0x40000
383 #define REASON_TRAP		0x20000
384 
385 #define single_stepping(regs)	((regs)->msr & MSR_SE)
386 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
387 #endif
388 
389 #if defined(CONFIG_4xx)
390 int machine_check_4xx(struct pt_regs *regs)
391 {
392 	unsigned long reason = get_mc_reason(regs);
393 
394 	if (reason & ESR_IMCP) {
395 		printk("Instruction");
396 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
397 	} else
398 		printk("Data");
399 	printk(" machine check in kernel mode.\n");
400 
401 	return 0;
402 }
403 
404 int machine_check_440A(struct pt_regs *regs)
405 {
406 	unsigned long reason = get_mc_reason(regs);
407 
408 	printk("Machine check in kernel mode.\n");
409 	if (reason & ESR_IMCP){
410 		printk("Instruction Synchronous Machine Check exception\n");
411 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
412 	}
413 	else {
414 		u32 mcsr = mfspr(SPRN_MCSR);
415 		if (mcsr & MCSR_IB)
416 			printk("Instruction Read PLB Error\n");
417 		if (mcsr & MCSR_DRB)
418 			printk("Data Read PLB Error\n");
419 		if (mcsr & MCSR_DWB)
420 			printk("Data Write PLB Error\n");
421 		if (mcsr & MCSR_TLBP)
422 			printk("TLB Parity Error\n");
423 		if (mcsr & MCSR_ICP){
424 			flush_instruction_cache();
425 			printk("I-Cache Parity Error\n");
426 		}
427 		if (mcsr & MCSR_DCSP)
428 			printk("D-Cache Search Parity Error\n");
429 		if (mcsr & MCSR_DCFP)
430 			printk("D-Cache Flush Parity Error\n");
431 		if (mcsr & MCSR_IMPE)
432 			printk("Machine Check exception is imprecise\n");
433 
434 		/* Clear MCSR */
435 		mtspr(SPRN_MCSR, mcsr);
436 	}
437 	return 0;
438 }
439 
440 int machine_check_47x(struct pt_regs *regs)
441 {
442 	unsigned long reason = get_mc_reason(regs);
443 	u32 mcsr;
444 
445 	printk(KERN_ERR "Machine check in kernel mode.\n");
446 	if (reason & ESR_IMCP) {
447 		printk(KERN_ERR
448 		       "Instruction Synchronous Machine Check exception\n");
449 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
450 		return 0;
451 	}
452 	mcsr = mfspr(SPRN_MCSR);
453 	if (mcsr & MCSR_IB)
454 		printk(KERN_ERR "Instruction Read PLB Error\n");
455 	if (mcsr & MCSR_DRB)
456 		printk(KERN_ERR "Data Read PLB Error\n");
457 	if (mcsr & MCSR_DWB)
458 		printk(KERN_ERR "Data Write PLB Error\n");
459 	if (mcsr & MCSR_TLBP)
460 		printk(KERN_ERR "TLB Parity Error\n");
461 	if (mcsr & MCSR_ICP) {
462 		flush_instruction_cache();
463 		printk(KERN_ERR "I-Cache Parity Error\n");
464 	}
465 	if (mcsr & MCSR_DCSP)
466 		printk(KERN_ERR "D-Cache Search Parity Error\n");
467 	if (mcsr & PPC47x_MCSR_GPR)
468 		printk(KERN_ERR "GPR Parity Error\n");
469 	if (mcsr & PPC47x_MCSR_FPR)
470 		printk(KERN_ERR "FPR Parity Error\n");
471 	if (mcsr & PPC47x_MCSR_IPR)
472 		printk(KERN_ERR "Machine Check exception is imprecise\n");
473 
474 	/* Clear MCSR */
475 	mtspr(SPRN_MCSR, mcsr);
476 
477 	return 0;
478 }
479 #elif defined(CONFIG_E500)
480 int machine_check_e500mc(struct pt_regs *regs)
481 {
482 	unsigned long mcsr = mfspr(SPRN_MCSR);
483 	unsigned long reason = mcsr;
484 	int recoverable = 1;
485 
486 	if (reason & MCSR_LD) {
487 		recoverable = fsl_rio_mcheck_exception(regs);
488 		if (recoverable == 1)
489 			goto silent_out;
490 	}
491 
492 	printk("Machine check in kernel mode.\n");
493 	printk("Caused by (from MCSR=%lx): ", reason);
494 
495 	if (reason & MCSR_MCP)
496 		printk("Machine Check Signal\n");
497 
498 	if (reason & MCSR_ICPERR) {
499 		printk("Instruction Cache Parity Error\n");
500 
501 		/*
502 		 * This is recoverable by invalidating the i-cache.
503 		 */
504 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
505 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
506 			;
507 
508 		/*
509 		 * This will generally be accompanied by an instruction
510 		 * fetch error report -- only treat MCSR_IF as fatal
511 		 * if it wasn't due to an L1 parity error.
512 		 */
513 		reason &= ~MCSR_IF;
514 	}
515 
516 	if (reason & MCSR_DCPERR_MC) {
517 		printk("Data Cache Parity Error\n");
518 
519 		/*
520 		 * In write shadow mode we auto-recover from the error, but it
521 		 * may still get logged and cause a machine check.  We should
522 		 * only treat the non-write shadow case as non-recoverable.
523 		 */
524 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
525 			recoverable = 0;
526 	}
527 
528 	if (reason & MCSR_L2MMU_MHIT) {
529 		printk("Hit on multiple TLB entries\n");
530 		recoverable = 0;
531 	}
532 
533 	if (reason & MCSR_NMI)
534 		printk("Non-maskable interrupt\n");
535 
536 	if (reason & MCSR_IF) {
537 		printk("Instruction Fetch Error Report\n");
538 		recoverable = 0;
539 	}
540 
541 	if (reason & MCSR_LD) {
542 		printk("Load Error Report\n");
543 		recoverable = 0;
544 	}
545 
546 	if (reason & MCSR_ST) {
547 		printk("Store Error Report\n");
548 		recoverable = 0;
549 	}
550 
551 	if (reason & MCSR_LDG) {
552 		printk("Guarded Load Error Report\n");
553 		recoverable = 0;
554 	}
555 
556 	if (reason & MCSR_TLBSYNC)
557 		printk("Simultaneous tlbsync operations\n");
558 
559 	if (reason & MCSR_BSL2_ERR) {
560 		printk("Level 2 Cache Error\n");
561 		recoverable = 0;
562 	}
563 
564 	if (reason & MCSR_MAV) {
565 		u64 addr;
566 
567 		addr = mfspr(SPRN_MCAR);
568 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
569 
570 		printk("Machine Check %s Address: %#llx\n",
571 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
572 	}
573 
574 silent_out:
575 	mtspr(SPRN_MCSR, mcsr);
576 	return mfspr(SPRN_MCSR) == 0 && recoverable;
577 }
578 
579 int machine_check_e500(struct pt_regs *regs)
580 {
581 	unsigned long reason = get_mc_reason(regs);
582 
583 	if (reason & MCSR_BUS_RBERR) {
584 		if (fsl_rio_mcheck_exception(regs))
585 			return 1;
586 		if (fsl_pci_mcheck_exception(regs))
587 			return 1;
588 	}
589 
590 	printk("Machine check in kernel mode.\n");
591 	printk("Caused by (from MCSR=%lx): ", reason);
592 
593 	if (reason & MCSR_MCP)
594 		printk("Machine Check Signal\n");
595 	if (reason & MCSR_ICPERR)
596 		printk("Instruction Cache Parity Error\n");
597 	if (reason & MCSR_DCP_PERR)
598 		printk("Data Cache Push Parity Error\n");
599 	if (reason & MCSR_DCPERR)
600 		printk("Data Cache Parity Error\n");
601 	if (reason & MCSR_BUS_IAERR)
602 		printk("Bus - Instruction Address Error\n");
603 	if (reason & MCSR_BUS_RAERR)
604 		printk("Bus - Read Address Error\n");
605 	if (reason & MCSR_BUS_WAERR)
606 		printk("Bus - Write Address Error\n");
607 	if (reason & MCSR_BUS_IBERR)
608 		printk("Bus - Instruction Data Error\n");
609 	if (reason & MCSR_BUS_RBERR)
610 		printk("Bus - Read Data Bus Error\n");
611 	if (reason & MCSR_BUS_WBERR)
612 		printk("Bus - Read Data Bus Error\n");
613 	if (reason & MCSR_BUS_IPERR)
614 		printk("Bus - Instruction Parity Error\n");
615 	if (reason & MCSR_BUS_RPERR)
616 		printk("Bus - Read Parity Error\n");
617 
618 	return 0;
619 }
620 
621 int machine_check_generic(struct pt_regs *regs)
622 {
623 	return 0;
624 }
625 #elif defined(CONFIG_E200)
626 int machine_check_e200(struct pt_regs *regs)
627 {
628 	unsigned long reason = get_mc_reason(regs);
629 
630 	printk("Machine check in kernel mode.\n");
631 	printk("Caused by (from MCSR=%lx): ", reason);
632 
633 	if (reason & MCSR_MCP)
634 		printk("Machine Check Signal\n");
635 	if (reason & MCSR_CP_PERR)
636 		printk("Cache Push Parity Error\n");
637 	if (reason & MCSR_CPERR)
638 		printk("Cache Parity Error\n");
639 	if (reason & MCSR_EXCP_ERR)
640 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
641 	if (reason & MCSR_BUS_IRERR)
642 		printk("Bus - Read Bus Error on instruction fetch\n");
643 	if (reason & MCSR_BUS_DRERR)
644 		printk("Bus - Read Bus Error on data load\n");
645 	if (reason & MCSR_BUS_WRERR)
646 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
647 
648 	return 0;
649 }
650 #else
651 int machine_check_generic(struct pt_regs *regs)
652 {
653 	unsigned long reason = get_mc_reason(regs);
654 
655 	printk("Machine check in kernel mode.\n");
656 	printk("Caused by (from SRR1=%lx): ", reason);
657 	switch (reason & 0x601F0000) {
658 	case 0x80000:
659 		printk("Machine check signal\n");
660 		break;
661 	case 0:		/* for 601 */
662 	case 0x40000:
663 	case 0x140000:	/* 7450 MSS error and TEA */
664 		printk("Transfer error ack signal\n");
665 		break;
666 	case 0x20000:
667 		printk("Data parity error signal\n");
668 		break;
669 	case 0x10000:
670 		printk("Address parity error signal\n");
671 		break;
672 	case 0x20000000:
673 		printk("L1 Data Cache error\n");
674 		break;
675 	case 0x40000000:
676 		printk("L1 Instruction Cache error\n");
677 		break;
678 	case 0x00100000:
679 		printk("L2 data cache parity error\n");
680 		break;
681 	default:
682 		printk("Unknown values in msr\n");
683 	}
684 	return 0;
685 }
686 #endif /* everything else */
687 
688 void machine_check_exception(struct pt_regs *regs)
689 {
690 	enum ctx_state prev_state = exception_enter();
691 	int recover = 0;
692 
693 	__get_cpu_var(irq_stat).mce_exceptions++;
694 
695 	/* See if any machine dependent calls. In theory, we would want
696 	 * to call the CPU first, and call the ppc_md. one if the CPU
697 	 * one returns a positive number. However there is existing code
698 	 * that assumes the board gets a first chance, so let's keep it
699 	 * that way for now and fix things later. --BenH.
700 	 */
701 	if (ppc_md.machine_check_exception)
702 		recover = ppc_md.machine_check_exception(regs);
703 	else if (cur_cpu_spec->machine_check)
704 		recover = cur_cpu_spec->machine_check(regs);
705 
706 	if (recover > 0)
707 		goto bail;
708 
709 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
710 	/* the qspan pci read routines can cause machine checks -- Cort
711 	 *
712 	 * yuck !!! that totally needs to go away ! There are better ways
713 	 * to deal with that than having a wart in the mcheck handler.
714 	 * -- BenH
715 	 */
716 	bad_page_fault(regs, regs->dar, SIGBUS);
717 	goto bail;
718 #endif
719 
720 	if (debugger_fault_handler(regs))
721 		goto bail;
722 
723 	if (check_io_access(regs))
724 		goto bail;
725 
726 	die("Machine check", regs, SIGBUS);
727 
728 	/* Must die if the interrupt is not recoverable */
729 	if (!(regs->msr & MSR_RI))
730 		panic("Unrecoverable Machine check");
731 
732 bail:
733 	exception_exit(prev_state);
734 }
735 
736 void SMIException(struct pt_regs *regs)
737 {
738 	die("System Management Interrupt", regs, SIGABRT);
739 }
740 
741 void unknown_exception(struct pt_regs *regs)
742 {
743 	enum ctx_state prev_state = exception_enter();
744 
745 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
746 	       regs->nip, regs->msr, regs->trap);
747 
748 	_exception(SIGTRAP, regs, 0, 0);
749 
750 	exception_exit(prev_state);
751 }
752 
753 void instruction_breakpoint_exception(struct pt_regs *regs)
754 {
755 	enum ctx_state prev_state = exception_enter();
756 
757 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
758 					5, SIGTRAP) == NOTIFY_STOP)
759 		goto bail;
760 	if (debugger_iabr_match(regs))
761 		goto bail;
762 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
763 
764 bail:
765 	exception_exit(prev_state);
766 }
767 
768 void RunModeException(struct pt_regs *regs)
769 {
770 	_exception(SIGTRAP, regs, 0, 0);
771 }
772 
773 void __kprobes single_step_exception(struct pt_regs *regs)
774 {
775 	enum ctx_state prev_state = exception_enter();
776 
777 	clear_single_step(regs);
778 
779 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
780 					5, SIGTRAP) == NOTIFY_STOP)
781 		goto bail;
782 	if (debugger_sstep(regs))
783 		goto bail;
784 
785 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
786 
787 bail:
788 	exception_exit(prev_state);
789 }
790 
791 /*
792  * After we have successfully emulated an instruction, we have to
793  * check if the instruction was being single-stepped, and if so,
794  * pretend we got a single-step exception.  This was pointed out
795  * by Kumar Gala.  -- paulus
796  */
797 static void emulate_single_step(struct pt_regs *regs)
798 {
799 	if (single_stepping(regs))
800 		single_step_exception(regs);
801 }
802 
803 static inline int __parse_fpscr(unsigned long fpscr)
804 {
805 	int ret = 0;
806 
807 	/* Invalid operation */
808 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
809 		ret = FPE_FLTINV;
810 
811 	/* Overflow */
812 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
813 		ret = FPE_FLTOVF;
814 
815 	/* Underflow */
816 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
817 		ret = FPE_FLTUND;
818 
819 	/* Divide by zero */
820 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
821 		ret = FPE_FLTDIV;
822 
823 	/* Inexact result */
824 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
825 		ret = FPE_FLTRES;
826 
827 	return ret;
828 }
829 
830 static void parse_fpe(struct pt_regs *regs)
831 {
832 	int code = 0;
833 
834 	flush_fp_to_thread(current);
835 
836 	code = __parse_fpscr(current->thread.fp_state.fpscr);
837 
838 	_exception(SIGFPE, regs, code, regs->nip);
839 }
840 
841 /*
842  * Illegal instruction emulation support.  Originally written to
843  * provide the PVR to user applications using the mfspr rd, PVR.
844  * Return non-zero if we can't emulate, or -EFAULT if the associated
845  * memory access caused an access fault.  Return zero on success.
846  *
847  * There are a couple of ways to do this, either "decode" the instruction
848  * or directly match lots of bits.  In this case, matching lots of
849  * bits is faster and easier.
850  *
851  */
852 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
853 {
854 	u8 rT = (instword >> 21) & 0x1f;
855 	u8 rA = (instword >> 16) & 0x1f;
856 	u8 NB_RB = (instword >> 11) & 0x1f;
857 	u32 num_bytes;
858 	unsigned long EA;
859 	int pos = 0;
860 
861 	/* Early out if we are an invalid form of lswx */
862 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
863 		if ((rT == rA) || (rT == NB_RB))
864 			return -EINVAL;
865 
866 	EA = (rA == 0) ? 0 : regs->gpr[rA];
867 
868 	switch (instword & PPC_INST_STRING_MASK) {
869 		case PPC_INST_LSWX:
870 		case PPC_INST_STSWX:
871 			EA += NB_RB;
872 			num_bytes = regs->xer & 0x7f;
873 			break;
874 		case PPC_INST_LSWI:
875 		case PPC_INST_STSWI:
876 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
877 			break;
878 		default:
879 			return -EINVAL;
880 	}
881 
882 	while (num_bytes != 0)
883 	{
884 		u8 val;
885 		u32 shift = 8 * (3 - (pos & 0x3));
886 
887 		/* if process is 32-bit, clear upper 32 bits of EA */
888 		if ((regs->msr & MSR_64BIT) == 0)
889 			EA &= 0xFFFFFFFF;
890 
891 		switch ((instword & PPC_INST_STRING_MASK)) {
892 			case PPC_INST_LSWX:
893 			case PPC_INST_LSWI:
894 				if (get_user(val, (u8 __user *)EA))
895 					return -EFAULT;
896 				/* first time updating this reg,
897 				 * zero it out */
898 				if (pos == 0)
899 					regs->gpr[rT] = 0;
900 				regs->gpr[rT] |= val << shift;
901 				break;
902 			case PPC_INST_STSWI:
903 			case PPC_INST_STSWX:
904 				val = regs->gpr[rT] >> shift;
905 				if (put_user(val, (u8 __user *)EA))
906 					return -EFAULT;
907 				break;
908 		}
909 		/* move EA to next address */
910 		EA += 1;
911 		num_bytes--;
912 
913 		/* manage our position within the register */
914 		if (++pos == 4) {
915 			pos = 0;
916 			if (++rT == 32)
917 				rT = 0;
918 		}
919 	}
920 
921 	return 0;
922 }
923 
924 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
925 {
926 	u32 ra,rs;
927 	unsigned long tmp;
928 
929 	ra = (instword >> 16) & 0x1f;
930 	rs = (instword >> 21) & 0x1f;
931 
932 	tmp = regs->gpr[rs];
933 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
934 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
935 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
936 	regs->gpr[ra] = tmp;
937 
938 	return 0;
939 }
940 
941 static int emulate_isel(struct pt_regs *regs, u32 instword)
942 {
943 	u8 rT = (instword >> 21) & 0x1f;
944 	u8 rA = (instword >> 16) & 0x1f;
945 	u8 rB = (instword >> 11) & 0x1f;
946 	u8 BC = (instword >> 6) & 0x1f;
947 	u8 bit;
948 	unsigned long tmp;
949 
950 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
951 	bit = (regs->ccr >> (31 - BC)) & 0x1;
952 
953 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
954 
955 	return 0;
956 }
957 
958 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
959 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
960 {
961         /* If we're emulating a load/store in an active transaction, we cannot
962          * emulate it as the kernel operates in transaction suspended context.
963          * We need to abort the transaction.  This creates a persistent TM
964          * abort so tell the user what caused it with a new code.
965 	 */
966 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
967 		tm_enable();
968 		tm_abort(cause);
969 		return true;
970 	}
971 	return false;
972 }
973 #else
974 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
975 {
976 	return false;
977 }
978 #endif
979 
980 static int emulate_instruction(struct pt_regs *regs)
981 {
982 	u32 instword;
983 	u32 rd;
984 
985 	if (!user_mode(regs))
986 		return -EINVAL;
987 	CHECK_FULL_REGS(regs);
988 
989 	if (get_user(instword, (u32 __user *)(regs->nip)))
990 		return -EFAULT;
991 
992 	/* Emulate the mfspr rD, PVR. */
993 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
994 		PPC_WARN_EMULATED(mfpvr, regs);
995 		rd = (instword >> 21) & 0x1f;
996 		regs->gpr[rd] = mfspr(SPRN_PVR);
997 		return 0;
998 	}
999 
1000 	/* Emulating the dcba insn is just a no-op.  */
1001 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1002 		PPC_WARN_EMULATED(dcba, regs);
1003 		return 0;
1004 	}
1005 
1006 	/* Emulate the mcrxr insn.  */
1007 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1008 		int shift = (instword >> 21) & 0x1c;
1009 		unsigned long msk = 0xf0000000UL >> shift;
1010 
1011 		PPC_WARN_EMULATED(mcrxr, regs);
1012 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1013 		regs->xer &= ~0xf0000000UL;
1014 		return 0;
1015 	}
1016 
1017 	/* Emulate load/store string insn. */
1018 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1019 		if (tm_abort_check(regs,
1020 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1021 			return -EINVAL;
1022 		PPC_WARN_EMULATED(string, regs);
1023 		return emulate_string_inst(regs, instword);
1024 	}
1025 
1026 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1027 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1028 		PPC_WARN_EMULATED(popcntb, regs);
1029 		return emulate_popcntb_inst(regs, instword);
1030 	}
1031 
1032 	/* Emulate isel (Integer Select) instruction */
1033 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1034 		PPC_WARN_EMULATED(isel, regs);
1035 		return emulate_isel(regs, instword);
1036 	}
1037 
1038 	/* Emulate sync instruction variants */
1039 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1040 		PPC_WARN_EMULATED(sync, regs);
1041 		asm volatile("sync");
1042 		return 0;
1043 	}
1044 
1045 #ifdef CONFIG_PPC64
1046 	/* Emulate the mfspr rD, DSCR. */
1047 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1048 		PPC_INST_MFSPR_DSCR_USER) ||
1049 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1050 		PPC_INST_MFSPR_DSCR)) &&
1051 			cpu_has_feature(CPU_FTR_DSCR)) {
1052 		PPC_WARN_EMULATED(mfdscr, regs);
1053 		rd = (instword >> 21) & 0x1f;
1054 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1055 		return 0;
1056 	}
1057 	/* Emulate the mtspr DSCR, rD. */
1058 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1059 		PPC_INST_MTSPR_DSCR_USER) ||
1060 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1061 		PPC_INST_MTSPR_DSCR)) &&
1062 			cpu_has_feature(CPU_FTR_DSCR)) {
1063 		PPC_WARN_EMULATED(mtdscr, regs);
1064 		rd = (instword >> 21) & 0x1f;
1065 		current->thread.dscr = regs->gpr[rd];
1066 		current->thread.dscr_inherit = 1;
1067 		mtspr(SPRN_DSCR, current->thread.dscr);
1068 		return 0;
1069 	}
1070 #endif
1071 
1072 	return -EINVAL;
1073 }
1074 
1075 int is_valid_bugaddr(unsigned long addr)
1076 {
1077 	return is_kernel_addr(addr);
1078 }
1079 
1080 #ifdef CONFIG_MATH_EMULATION
1081 static int emulate_math(struct pt_regs *regs)
1082 {
1083 	int ret;
1084 	extern int do_mathemu(struct pt_regs *regs);
1085 
1086 	ret = do_mathemu(regs);
1087 	if (ret >= 0)
1088 		PPC_WARN_EMULATED(math, regs);
1089 
1090 	switch (ret) {
1091 	case 0:
1092 		emulate_single_step(regs);
1093 		return 0;
1094 	case 1: {
1095 			int code = 0;
1096 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1097 			_exception(SIGFPE, regs, code, regs->nip);
1098 			return 0;
1099 		}
1100 	case -EFAULT:
1101 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1102 		return 0;
1103 	}
1104 
1105 	return -1;
1106 }
1107 #else
1108 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1109 #endif
1110 
1111 void __kprobes program_check_exception(struct pt_regs *regs)
1112 {
1113 	enum ctx_state prev_state = exception_enter();
1114 	unsigned int reason = get_reason(regs);
1115 
1116 	/* We can now get here via a FP Unavailable exception if the core
1117 	 * has no FPU, in that case the reason flags will be 0 */
1118 
1119 	if (reason & REASON_FP) {
1120 		/* IEEE FP exception */
1121 		parse_fpe(regs);
1122 		goto bail;
1123 	}
1124 	if (reason & REASON_TRAP) {
1125 		/* Debugger is first in line to stop recursive faults in
1126 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1127 		if (debugger_bpt(regs))
1128 			goto bail;
1129 
1130 		/* trap exception */
1131 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1132 				== NOTIFY_STOP)
1133 			goto bail;
1134 
1135 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1136 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1137 			regs->nip += 4;
1138 			goto bail;
1139 		}
1140 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1141 		goto bail;
1142 	}
1143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1144 	if (reason & REASON_TM) {
1145 		/* This is a TM "Bad Thing Exception" program check.
1146 		 * This occurs when:
1147 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1148 		 *    transition in TM states.
1149 		 * -  A trechkpt is attempted when transactional.
1150 		 * -  A treclaim is attempted when non transactional.
1151 		 * -  A tend is illegally attempted.
1152 		 * -  writing a TM SPR when transactional.
1153 		 */
1154 		if (!user_mode(regs) &&
1155 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1156 			regs->nip += 4;
1157 			goto bail;
1158 		}
1159 		/* If usermode caused this, it's done something illegal and
1160 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1161 		 * operand to distinguish from the instruction just being bad
1162 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1163 		 * illegal /placement/ of a valid instruction.
1164 		 */
1165 		if (user_mode(regs)) {
1166 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1167 			goto bail;
1168 		} else {
1169 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1170 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1171 			die("Unrecoverable exception", regs, SIGABRT);
1172 		}
1173 	}
1174 #endif
1175 
1176 	/*
1177 	 * If we took the program check in the kernel skip down to sending a
1178 	 * SIGILL. The subsequent cases all relate to emulating instructions
1179 	 * which we should only do for userspace. We also do not want to enable
1180 	 * interrupts for kernel faults because that might lead to further
1181 	 * faults, and loose the context of the original exception.
1182 	 */
1183 	if (!user_mode(regs))
1184 		goto sigill;
1185 
1186 	/* We restore the interrupt state now */
1187 	if (!arch_irq_disabled_regs(regs))
1188 		local_irq_enable();
1189 
1190 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1191 	 * but there seems to be a hardware bug on the 405GP (RevD)
1192 	 * that means ESR is sometimes set incorrectly - either to
1193 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1194 	 * hardware people - not sure if it can happen on any illegal
1195 	 * instruction or only on FP instructions, whether there is a
1196 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1197 	 */
1198 	if (!emulate_math(regs))
1199 		goto bail;
1200 
1201 	/* Try to emulate it if we should. */
1202 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1203 		switch (emulate_instruction(regs)) {
1204 		case 0:
1205 			regs->nip += 4;
1206 			emulate_single_step(regs);
1207 			goto bail;
1208 		case -EFAULT:
1209 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1210 			goto bail;
1211 		}
1212 	}
1213 
1214 sigill:
1215 	if (reason & REASON_PRIVILEGED)
1216 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1217 	else
1218 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1219 
1220 bail:
1221 	exception_exit(prev_state);
1222 }
1223 
1224 /*
1225  * This occurs when running in hypervisor mode on POWER6 or later
1226  * and an illegal instruction is encountered.
1227  */
1228 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1229 {
1230 	regs->msr |= REASON_ILLEGAL;
1231 	program_check_exception(regs);
1232 }
1233 
1234 void alignment_exception(struct pt_regs *regs)
1235 {
1236 	enum ctx_state prev_state = exception_enter();
1237 	int sig, code, fixed = 0;
1238 
1239 	/* We restore the interrupt state now */
1240 	if (!arch_irq_disabled_regs(regs))
1241 		local_irq_enable();
1242 
1243 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1244 		goto bail;
1245 
1246 	/* we don't implement logging of alignment exceptions */
1247 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1248 		fixed = fix_alignment(regs);
1249 
1250 	if (fixed == 1) {
1251 		regs->nip += 4;	/* skip over emulated instruction */
1252 		emulate_single_step(regs);
1253 		goto bail;
1254 	}
1255 
1256 	/* Operand address was bad */
1257 	if (fixed == -EFAULT) {
1258 		sig = SIGSEGV;
1259 		code = SEGV_ACCERR;
1260 	} else {
1261 		sig = SIGBUS;
1262 		code = BUS_ADRALN;
1263 	}
1264 	if (user_mode(regs))
1265 		_exception(sig, regs, code, regs->dar);
1266 	else
1267 		bad_page_fault(regs, regs->dar, sig);
1268 
1269 bail:
1270 	exception_exit(prev_state);
1271 }
1272 
1273 void StackOverflow(struct pt_regs *regs)
1274 {
1275 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1276 	       current, regs->gpr[1]);
1277 	debugger(regs);
1278 	show_regs(regs);
1279 	panic("kernel stack overflow");
1280 }
1281 
1282 void nonrecoverable_exception(struct pt_regs *regs)
1283 {
1284 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1285 	       regs->nip, regs->msr);
1286 	debugger(regs);
1287 	die("nonrecoverable exception", regs, SIGKILL);
1288 }
1289 
1290 void trace_syscall(struct pt_regs *regs)
1291 {
1292 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1293 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1294 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1295 }
1296 
1297 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1298 {
1299 	enum ctx_state prev_state = exception_enter();
1300 
1301 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1302 			  "%lx at %lx\n", regs->trap, regs->nip);
1303 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1304 
1305 	exception_exit(prev_state);
1306 }
1307 
1308 void altivec_unavailable_exception(struct pt_regs *regs)
1309 {
1310 	enum ctx_state prev_state = exception_enter();
1311 
1312 	if (user_mode(regs)) {
1313 		/* A user program has executed an altivec instruction,
1314 		   but this kernel doesn't support altivec. */
1315 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1316 		goto bail;
1317 	}
1318 
1319 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1320 			"%lx at %lx\n", regs->trap, regs->nip);
1321 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1322 
1323 bail:
1324 	exception_exit(prev_state);
1325 }
1326 
1327 void vsx_unavailable_exception(struct pt_regs *regs)
1328 {
1329 	if (user_mode(regs)) {
1330 		/* A user program has executed an vsx instruction,
1331 		   but this kernel doesn't support vsx. */
1332 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1333 		return;
1334 	}
1335 
1336 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1337 			"%lx at %lx\n", regs->trap, regs->nip);
1338 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1339 }
1340 
1341 #ifdef CONFIG_PPC64
1342 void facility_unavailable_exception(struct pt_regs *regs)
1343 {
1344 	static char *facility_strings[] = {
1345 		[FSCR_FP_LG] = "FPU",
1346 		[FSCR_VECVSX_LG] = "VMX/VSX",
1347 		[FSCR_DSCR_LG] = "DSCR",
1348 		[FSCR_PM_LG] = "PMU SPRs",
1349 		[FSCR_BHRB_LG] = "BHRB",
1350 		[FSCR_TM_LG] = "TM",
1351 		[FSCR_EBB_LG] = "EBB",
1352 		[FSCR_TAR_LG] = "TAR",
1353 	};
1354 	char *facility = "unknown";
1355 	u64 value;
1356 	u8 status;
1357 	bool hv;
1358 
1359 	hv = (regs->trap == 0xf80);
1360 	if (hv)
1361 		value = mfspr(SPRN_HFSCR);
1362 	else
1363 		value = mfspr(SPRN_FSCR);
1364 
1365 	status = value >> 56;
1366 	if (status == FSCR_DSCR_LG) {
1367 		/* User is acessing the DSCR.  Set the inherit bit and allow
1368 		 * the user to set it directly in future by setting via the
1369 		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1370 		 */
1371 		current->thread.dscr_inherit = 1;
1372 		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1373 		return;
1374 	}
1375 
1376 	if ((status < ARRAY_SIZE(facility_strings)) &&
1377 	    facility_strings[status])
1378 		facility = facility_strings[status];
1379 
1380 	/* We restore the interrupt state now */
1381 	if (!arch_irq_disabled_regs(regs))
1382 		local_irq_enable();
1383 
1384 	pr_err_ratelimited(
1385 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1386 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1387 
1388 	if (user_mode(regs)) {
1389 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1390 		return;
1391 	}
1392 
1393 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1394 }
1395 #endif
1396 
1397 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1398 
1399 void fp_unavailable_tm(struct pt_regs *regs)
1400 {
1401 	/* Note:  This does not handle any kind of FP laziness. */
1402 
1403 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1404 		 regs->nip, regs->msr);
1405 
1406         /* We can only have got here if the task started using FP after
1407          * beginning the transaction.  So, the transactional regs are just a
1408          * copy of the checkpointed ones.  But, we still need to recheckpoint
1409          * as we're enabling FP for the process; it will return, abort the
1410          * transaction, and probably retry but now with FP enabled.  So the
1411          * checkpointed FP registers need to be loaded.
1412 	 */
1413 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1414 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1415 
1416 	/* Enable FP for the task: */
1417 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1418 
1419 	/* This loads and recheckpoints the FP registers from
1420 	 * thread.fpr[].  They will remain in registers after the
1421 	 * checkpoint so we don't need to reload them after.
1422 	 * If VMX is in use, the VRs now hold checkpointed values,
1423 	 * so we don't want to load the VRs from the thread_struct.
1424 	 */
1425 	tm_recheckpoint(&current->thread, MSR_FP);
1426 
1427 	/* If VMX is in use, get the transactional values back */
1428 	if (regs->msr & MSR_VEC) {
1429 		do_load_up_transact_altivec(&current->thread);
1430 		/* At this point all the VSX state is loaded, so enable it */
1431 		regs->msr |= MSR_VSX;
1432 	}
1433 }
1434 
1435 void altivec_unavailable_tm(struct pt_regs *regs)
1436 {
1437 	/* See the comments in fp_unavailable_tm().  This function operates
1438 	 * the same way.
1439 	 */
1440 
1441 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1442 		 "MSR=%lx\n",
1443 		 regs->nip, regs->msr);
1444 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1445 	regs->msr |= MSR_VEC;
1446 	tm_recheckpoint(&current->thread, MSR_VEC);
1447 	current->thread.used_vr = 1;
1448 
1449 	if (regs->msr & MSR_FP) {
1450 		do_load_up_transact_fpu(&current->thread);
1451 		regs->msr |= MSR_VSX;
1452 	}
1453 }
1454 
1455 void vsx_unavailable_tm(struct pt_regs *regs)
1456 {
1457 	unsigned long orig_msr = regs->msr;
1458 
1459 	/* See the comments in fp_unavailable_tm().  This works similarly,
1460 	 * though we're loading both FP and VEC registers in here.
1461 	 *
1462 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1463 	 * regs.  Either way, set MSR_VSX.
1464 	 */
1465 
1466 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1467 		 "MSR=%lx\n",
1468 		 regs->nip, regs->msr);
1469 
1470 	current->thread.used_vsr = 1;
1471 
1472 	/* If FP and VMX are already loaded, we have all the state we need */
1473 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1474 		regs->msr |= MSR_VSX;
1475 		return;
1476 	}
1477 
1478 	/* This reclaims FP and/or VR regs if they're already enabled */
1479 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1480 
1481 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1482 		MSR_VSX;
1483 
1484 	/* This loads & recheckpoints FP and VRs; but we have
1485 	 * to be sure not to overwrite previously-valid state.
1486 	 */
1487 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1488 
1489 	if (orig_msr & MSR_FP)
1490 		do_load_up_transact_fpu(&current->thread);
1491 	if (orig_msr & MSR_VEC)
1492 		do_load_up_transact_altivec(&current->thread);
1493 }
1494 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1495 
1496 void performance_monitor_exception(struct pt_regs *regs)
1497 {
1498 	__get_cpu_var(irq_stat).pmu_irqs++;
1499 
1500 	perf_irq(regs);
1501 }
1502 
1503 #ifdef CONFIG_8xx
1504 void SoftwareEmulation(struct pt_regs *regs)
1505 {
1506 	CHECK_FULL_REGS(regs);
1507 
1508 	if (!user_mode(regs)) {
1509 		debugger(regs);
1510 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1511 			regs, SIGFPE);
1512 	}
1513 
1514 	if (!emulate_math(regs))
1515 		return;
1516 
1517 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1518 }
1519 #endif /* CONFIG_8xx */
1520 
1521 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1522 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1523 {
1524 	int changed = 0;
1525 	/*
1526 	 * Determine the cause of the debug event, clear the
1527 	 * event flags and send a trap to the handler. Torez
1528 	 */
1529 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1530 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1531 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1532 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1533 #endif
1534 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1535 			     5);
1536 		changed |= 0x01;
1537 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1538 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1539 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1540 			     6);
1541 		changed |= 0x01;
1542 	}  else if (debug_status & DBSR_IAC1) {
1543 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1544 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1545 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1546 			     1);
1547 		changed |= 0x01;
1548 	}  else if (debug_status & DBSR_IAC2) {
1549 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1550 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1551 			     2);
1552 		changed |= 0x01;
1553 	}  else if (debug_status & DBSR_IAC3) {
1554 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1555 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1556 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1557 			     3);
1558 		changed |= 0x01;
1559 	}  else if (debug_status & DBSR_IAC4) {
1560 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1561 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1562 			     4);
1563 		changed |= 0x01;
1564 	}
1565 	/*
1566 	 * At the point this routine was called, the MSR(DE) was turned off.
1567 	 * Check all other debug flags and see if that bit needs to be turned
1568 	 * back on or not.
1569 	 */
1570 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1571 			       current->thread.debug.dbcr1))
1572 		regs->msr |= MSR_DE;
1573 	else
1574 		/* Make sure the IDM flag is off */
1575 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1576 
1577 	if (changed & 0x01)
1578 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1579 }
1580 
1581 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1582 {
1583 	current->thread.debug.dbsr = debug_status;
1584 
1585 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1586 	 * on server, it stops on the target of the branch. In order to simulate
1587 	 * the server behaviour, we thus restart right away with a single step
1588 	 * instead of stopping here when hitting a BT
1589 	 */
1590 	if (debug_status & DBSR_BT) {
1591 		regs->msr &= ~MSR_DE;
1592 
1593 		/* Disable BT */
1594 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1595 		/* Clear the BT event */
1596 		mtspr(SPRN_DBSR, DBSR_BT);
1597 
1598 		/* Do the single step trick only when coming from userspace */
1599 		if (user_mode(regs)) {
1600 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1601 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1602 			regs->msr |= MSR_DE;
1603 			return;
1604 		}
1605 
1606 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1607 			       5, SIGTRAP) == NOTIFY_STOP) {
1608 			return;
1609 		}
1610 		if (debugger_sstep(regs))
1611 			return;
1612 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1613 		regs->msr &= ~MSR_DE;
1614 
1615 		/* Disable instruction completion */
1616 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1617 		/* Clear the instruction completion event */
1618 		mtspr(SPRN_DBSR, DBSR_IC);
1619 
1620 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1621 			       5, SIGTRAP) == NOTIFY_STOP) {
1622 			return;
1623 		}
1624 
1625 		if (debugger_sstep(regs))
1626 			return;
1627 
1628 		if (user_mode(regs)) {
1629 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1630 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1631 					       current->thread.debug.dbcr1))
1632 				regs->msr |= MSR_DE;
1633 			else
1634 				/* Make sure the IDM bit is off */
1635 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1636 		}
1637 
1638 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1639 	} else
1640 		handle_debug(regs, debug_status);
1641 }
1642 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1643 
1644 #if !defined(CONFIG_TAU_INT)
1645 void TAUException(struct pt_regs *regs)
1646 {
1647 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1648 	       regs->nip, regs->msr, regs->trap, print_tainted());
1649 }
1650 #endif /* CONFIG_INT_TAU */
1651 
1652 #ifdef CONFIG_ALTIVEC
1653 void altivec_assist_exception(struct pt_regs *regs)
1654 {
1655 	int err;
1656 
1657 	if (!user_mode(regs)) {
1658 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1659 		       " at %lx\n", regs->nip);
1660 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1661 	}
1662 
1663 	flush_altivec_to_thread(current);
1664 
1665 	PPC_WARN_EMULATED(altivec, regs);
1666 	err = emulate_altivec(regs);
1667 	if (err == 0) {
1668 		regs->nip += 4;		/* skip emulated instruction */
1669 		emulate_single_step(regs);
1670 		return;
1671 	}
1672 
1673 	if (err == -EFAULT) {
1674 		/* got an error reading the instruction */
1675 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1676 	} else {
1677 		/* didn't recognize the instruction */
1678 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1679 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1680 				   "in %s at %lx\n", current->comm, regs->nip);
1681 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1682 	}
1683 }
1684 #endif /* CONFIG_ALTIVEC */
1685 
1686 #ifdef CONFIG_VSX
1687 void vsx_assist_exception(struct pt_regs *regs)
1688 {
1689 	if (!user_mode(regs)) {
1690 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1691 		       " at %lx\n", regs->nip);
1692 		die("Kernel VSX assist exception", regs, SIGILL);
1693 	}
1694 
1695 	flush_vsx_to_thread(current);
1696 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1697 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1698 }
1699 #endif /* CONFIG_VSX */
1700 
1701 #ifdef CONFIG_FSL_BOOKE
1702 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1703 			   unsigned long error_code)
1704 {
1705 	/* We treat cache locking instructions from the user
1706 	 * as priv ops, in the future we could try to do
1707 	 * something smarter
1708 	 */
1709 	if (error_code & (ESR_DLK|ESR_ILK))
1710 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1711 	return;
1712 }
1713 #endif /* CONFIG_FSL_BOOKE */
1714 
1715 #ifdef CONFIG_SPE
1716 void SPEFloatingPointException(struct pt_regs *regs)
1717 {
1718 	extern int do_spe_mathemu(struct pt_regs *regs);
1719 	unsigned long spefscr;
1720 	int fpexc_mode;
1721 	int code = 0;
1722 	int err;
1723 
1724 	flush_spe_to_thread(current);
1725 
1726 	spefscr = current->thread.spefscr;
1727 	fpexc_mode = current->thread.fpexc_mode;
1728 
1729 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1730 		code = FPE_FLTOVF;
1731 	}
1732 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1733 		code = FPE_FLTUND;
1734 	}
1735 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1736 		code = FPE_FLTDIV;
1737 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1738 		code = FPE_FLTINV;
1739 	}
1740 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1741 		code = FPE_FLTRES;
1742 
1743 	err = do_spe_mathemu(regs);
1744 	if (err == 0) {
1745 		regs->nip += 4;		/* skip emulated instruction */
1746 		emulate_single_step(regs);
1747 		return;
1748 	}
1749 
1750 	if (err == -EFAULT) {
1751 		/* got an error reading the instruction */
1752 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1753 	} else if (err == -EINVAL) {
1754 		/* didn't recognize the instruction */
1755 		printk(KERN_ERR "unrecognized spe instruction "
1756 		       "in %s at %lx\n", current->comm, regs->nip);
1757 	} else {
1758 		_exception(SIGFPE, regs, code, regs->nip);
1759 	}
1760 
1761 	return;
1762 }
1763 
1764 void SPEFloatingPointRoundException(struct pt_regs *regs)
1765 {
1766 	extern int speround_handler(struct pt_regs *regs);
1767 	int err;
1768 
1769 	preempt_disable();
1770 	if (regs->msr & MSR_SPE)
1771 		giveup_spe(current);
1772 	preempt_enable();
1773 
1774 	regs->nip -= 4;
1775 	err = speround_handler(regs);
1776 	if (err == 0) {
1777 		regs->nip += 4;		/* skip emulated instruction */
1778 		emulate_single_step(regs);
1779 		return;
1780 	}
1781 
1782 	if (err == -EFAULT) {
1783 		/* got an error reading the instruction */
1784 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1785 	} else if (err == -EINVAL) {
1786 		/* didn't recognize the instruction */
1787 		printk(KERN_ERR "unrecognized spe instruction "
1788 		       "in %s at %lx\n", current->comm, regs->nip);
1789 	} else {
1790 		_exception(SIGFPE, regs, 0, regs->nip);
1791 		return;
1792 	}
1793 }
1794 #endif
1795 
1796 /*
1797  * We enter here if we get an unrecoverable exception, that is, one
1798  * that happened at a point where the RI (recoverable interrupt) bit
1799  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1800  * we therefore lost state by taking this exception.
1801  */
1802 void unrecoverable_exception(struct pt_regs *regs)
1803 {
1804 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1805 	       regs->trap, regs->nip);
1806 	die("Unrecoverable exception", regs, SIGABRT);
1807 }
1808 
1809 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1810 /*
1811  * Default handler for a Watchdog exception,
1812  * spins until a reboot occurs
1813  */
1814 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1815 {
1816 	/* Generic WatchdogHandler, implement your own */
1817 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1818 	return;
1819 }
1820 
1821 void WatchdogException(struct pt_regs *regs)
1822 {
1823 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1824 	WatchdogHandler(regs);
1825 }
1826 #endif
1827 
1828 /*
1829  * We enter here if we discover during exception entry that we are
1830  * running in supervisor mode with a userspace value in the stack pointer.
1831  */
1832 void kernel_bad_stack(struct pt_regs *regs)
1833 {
1834 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1835 	       regs->gpr[1], regs->nip);
1836 	die("Bad kernel stack pointer", regs, SIGABRT);
1837 }
1838 
1839 void __init trap_init(void)
1840 {
1841 }
1842 
1843 
1844 #ifdef CONFIG_PPC_EMULATED_STATS
1845 
1846 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1847 
1848 struct ppc_emulated ppc_emulated = {
1849 #ifdef CONFIG_ALTIVEC
1850 	WARN_EMULATED_SETUP(altivec),
1851 #endif
1852 	WARN_EMULATED_SETUP(dcba),
1853 	WARN_EMULATED_SETUP(dcbz),
1854 	WARN_EMULATED_SETUP(fp_pair),
1855 	WARN_EMULATED_SETUP(isel),
1856 	WARN_EMULATED_SETUP(mcrxr),
1857 	WARN_EMULATED_SETUP(mfpvr),
1858 	WARN_EMULATED_SETUP(multiple),
1859 	WARN_EMULATED_SETUP(popcntb),
1860 	WARN_EMULATED_SETUP(spe),
1861 	WARN_EMULATED_SETUP(string),
1862 	WARN_EMULATED_SETUP(sync),
1863 	WARN_EMULATED_SETUP(unaligned),
1864 #ifdef CONFIG_MATH_EMULATION
1865 	WARN_EMULATED_SETUP(math),
1866 #endif
1867 #ifdef CONFIG_VSX
1868 	WARN_EMULATED_SETUP(vsx),
1869 #endif
1870 #ifdef CONFIG_PPC64
1871 	WARN_EMULATED_SETUP(mfdscr),
1872 	WARN_EMULATED_SETUP(mtdscr),
1873 	WARN_EMULATED_SETUP(lq_stq),
1874 #endif
1875 };
1876 
1877 u32 ppc_warn_emulated;
1878 
1879 void ppc_warn_emulated_print(const char *type)
1880 {
1881 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1882 			    type);
1883 }
1884 
1885 static int __init ppc_warn_emulated_init(void)
1886 {
1887 	struct dentry *dir, *d;
1888 	unsigned int i;
1889 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1890 
1891 	if (!powerpc_debugfs_root)
1892 		return -ENODEV;
1893 
1894 	dir = debugfs_create_dir("emulated_instructions",
1895 				 powerpc_debugfs_root);
1896 	if (!dir)
1897 		return -ENOMEM;
1898 
1899 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1900 			       &ppc_warn_emulated);
1901 	if (!d)
1902 		goto fail;
1903 
1904 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1905 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1906 				       (u32 *)&entries[i].val.counter);
1907 		if (!d)
1908 			goto fail;
1909 	}
1910 
1911 	return 0;
1912 
1913 fail:
1914 	debugfs_remove_recursive(dir);
1915 	return -ENOMEM;
1916 }
1917 
1918 device_initcall(ppc_warn_emulated_init);
1919 
1920 #endif /* CONFIG_PPC_EMULATED_STATS */
1921