xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision cdfce539)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 #endif
289 
290 /*
291  * I/O accesses can cause machine checks on powermacs.
292  * Check if the NIP corresponds to the address of a sync
293  * instruction for which there is an entry in the exception
294  * table.
295  * Note that the 601 only takes a machine check on TEA
296  * (transfer error ack) signal assertion, and does not
297  * set any of the top 16 bits of SRR1.
298  *  -- paulus.
299  */
300 static inline int check_io_access(struct pt_regs *regs)
301 {
302 #ifdef CONFIG_PPC32
303 	unsigned long msr = regs->msr;
304 	const struct exception_table_entry *entry;
305 	unsigned int *nip = (unsigned int *)regs->nip;
306 
307 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
308 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
309 		/*
310 		 * Check that it's a sync instruction, or somewhere
311 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
312 		 * As the address is in the exception table
313 		 * we should be able to read the instr there.
314 		 * For the debug message, we look at the preceding
315 		 * load or store.
316 		 */
317 		if (*nip == 0x60000000)		/* nop */
318 			nip -= 2;
319 		else if (*nip == 0x4c00012c)	/* isync */
320 			--nip;
321 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
322 			/* sync or twi */
323 			unsigned int rb;
324 
325 			--nip;
326 			rb = (*nip >> 11) & 0x1f;
327 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
328 			       (*nip & 0x100)? "OUT to": "IN from",
329 			       regs->gpr[rb] - _IO_BASE, nip);
330 			regs->msr |= MSR_RI;
331 			regs->nip = entry->fixup;
332 			return 1;
333 		}
334 	}
335 #endif /* CONFIG_PPC32 */
336 	return 0;
337 }
338 
339 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
340 /* On 4xx, the reason for the machine check or program exception
341    is in the ESR. */
342 #define get_reason(regs)	((regs)->dsisr)
343 #ifndef CONFIG_FSL_BOOKE
344 #define get_mc_reason(regs)	((regs)->dsisr)
345 #else
346 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
347 #endif
348 #define REASON_FP		ESR_FP
349 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
350 #define REASON_PRIVILEGED	ESR_PPR
351 #define REASON_TRAP		ESR_PTR
352 
353 /* single-step stuff */
354 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
355 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
356 
357 #else
358 /* On non-4xx, the reason for the machine check or program
359    exception is in the MSR. */
360 #define get_reason(regs)	((regs)->msr)
361 #define get_mc_reason(regs)	((regs)->msr)
362 #define REASON_TM		0x200000
363 #define REASON_FP		0x100000
364 #define REASON_ILLEGAL		0x80000
365 #define REASON_PRIVILEGED	0x40000
366 #define REASON_TRAP		0x20000
367 
368 #define single_stepping(regs)	((regs)->msr & MSR_SE)
369 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
370 #endif
371 
372 #if defined(CONFIG_4xx)
373 int machine_check_4xx(struct pt_regs *regs)
374 {
375 	unsigned long reason = get_mc_reason(regs);
376 
377 	if (reason & ESR_IMCP) {
378 		printk("Instruction");
379 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
380 	} else
381 		printk("Data");
382 	printk(" machine check in kernel mode.\n");
383 
384 	return 0;
385 }
386 
387 int machine_check_440A(struct pt_regs *regs)
388 {
389 	unsigned long reason = get_mc_reason(regs);
390 
391 	printk("Machine check in kernel mode.\n");
392 	if (reason & ESR_IMCP){
393 		printk("Instruction Synchronous Machine Check exception\n");
394 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 	}
396 	else {
397 		u32 mcsr = mfspr(SPRN_MCSR);
398 		if (mcsr & MCSR_IB)
399 			printk("Instruction Read PLB Error\n");
400 		if (mcsr & MCSR_DRB)
401 			printk("Data Read PLB Error\n");
402 		if (mcsr & MCSR_DWB)
403 			printk("Data Write PLB Error\n");
404 		if (mcsr & MCSR_TLBP)
405 			printk("TLB Parity Error\n");
406 		if (mcsr & MCSR_ICP){
407 			flush_instruction_cache();
408 			printk("I-Cache Parity Error\n");
409 		}
410 		if (mcsr & MCSR_DCSP)
411 			printk("D-Cache Search Parity Error\n");
412 		if (mcsr & MCSR_DCFP)
413 			printk("D-Cache Flush Parity Error\n");
414 		if (mcsr & MCSR_IMPE)
415 			printk("Machine Check exception is imprecise\n");
416 
417 		/* Clear MCSR */
418 		mtspr(SPRN_MCSR, mcsr);
419 	}
420 	return 0;
421 }
422 
423 int machine_check_47x(struct pt_regs *regs)
424 {
425 	unsigned long reason = get_mc_reason(regs);
426 	u32 mcsr;
427 
428 	printk(KERN_ERR "Machine check in kernel mode.\n");
429 	if (reason & ESR_IMCP) {
430 		printk(KERN_ERR
431 		       "Instruction Synchronous Machine Check exception\n");
432 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
433 		return 0;
434 	}
435 	mcsr = mfspr(SPRN_MCSR);
436 	if (mcsr & MCSR_IB)
437 		printk(KERN_ERR "Instruction Read PLB Error\n");
438 	if (mcsr & MCSR_DRB)
439 		printk(KERN_ERR "Data Read PLB Error\n");
440 	if (mcsr & MCSR_DWB)
441 		printk(KERN_ERR "Data Write PLB Error\n");
442 	if (mcsr & MCSR_TLBP)
443 		printk(KERN_ERR "TLB Parity Error\n");
444 	if (mcsr & MCSR_ICP) {
445 		flush_instruction_cache();
446 		printk(KERN_ERR "I-Cache Parity Error\n");
447 	}
448 	if (mcsr & MCSR_DCSP)
449 		printk(KERN_ERR "D-Cache Search Parity Error\n");
450 	if (mcsr & PPC47x_MCSR_GPR)
451 		printk(KERN_ERR "GPR Parity Error\n");
452 	if (mcsr & PPC47x_MCSR_FPR)
453 		printk(KERN_ERR "FPR Parity Error\n");
454 	if (mcsr & PPC47x_MCSR_IPR)
455 		printk(KERN_ERR "Machine Check exception is imprecise\n");
456 
457 	/* Clear MCSR */
458 	mtspr(SPRN_MCSR, mcsr);
459 
460 	return 0;
461 }
462 #elif defined(CONFIG_E500)
463 int machine_check_e500mc(struct pt_regs *regs)
464 {
465 	unsigned long mcsr = mfspr(SPRN_MCSR);
466 	unsigned long reason = mcsr;
467 	int recoverable = 1;
468 
469 	if (reason & MCSR_LD) {
470 		recoverable = fsl_rio_mcheck_exception(regs);
471 		if (recoverable == 1)
472 			goto silent_out;
473 	}
474 
475 	printk("Machine check in kernel mode.\n");
476 	printk("Caused by (from MCSR=%lx): ", reason);
477 
478 	if (reason & MCSR_MCP)
479 		printk("Machine Check Signal\n");
480 
481 	if (reason & MCSR_ICPERR) {
482 		printk("Instruction Cache Parity Error\n");
483 
484 		/*
485 		 * This is recoverable by invalidating the i-cache.
486 		 */
487 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
488 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
489 			;
490 
491 		/*
492 		 * This will generally be accompanied by an instruction
493 		 * fetch error report -- only treat MCSR_IF as fatal
494 		 * if it wasn't due to an L1 parity error.
495 		 */
496 		reason &= ~MCSR_IF;
497 	}
498 
499 	if (reason & MCSR_DCPERR_MC) {
500 		printk("Data Cache Parity Error\n");
501 
502 		/*
503 		 * In write shadow mode we auto-recover from the error, but it
504 		 * may still get logged and cause a machine check.  We should
505 		 * only treat the non-write shadow case as non-recoverable.
506 		 */
507 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
508 			recoverable = 0;
509 	}
510 
511 	if (reason & MCSR_L2MMU_MHIT) {
512 		printk("Hit on multiple TLB entries\n");
513 		recoverable = 0;
514 	}
515 
516 	if (reason & MCSR_NMI)
517 		printk("Non-maskable interrupt\n");
518 
519 	if (reason & MCSR_IF) {
520 		printk("Instruction Fetch Error Report\n");
521 		recoverable = 0;
522 	}
523 
524 	if (reason & MCSR_LD) {
525 		printk("Load Error Report\n");
526 		recoverable = 0;
527 	}
528 
529 	if (reason & MCSR_ST) {
530 		printk("Store Error Report\n");
531 		recoverable = 0;
532 	}
533 
534 	if (reason & MCSR_LDG) {
535 		printk("Guarded Load Error Report\n");
536 		recoverable = 0;
537 	}
538 
539 	if (reason & MCSR_TLBSYNC)
540 		printk("Simultaneous tlbsync operations\n");
541 
542 	if (reason & MCSR_BSL2_ERR) {
543 		printk("Level 2 Cache Error\n");
544 		recoverable = 0;
545 	}
546 
547 	if (reason & MCSR_MAV) {
548 		u64 addr;
549 
550 		addr = mfspr(SPRN_MCAR);
551 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
552 
553 		printk("Machine Check %s Address: %#llx\n",
554 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
555 	}
556 
557 silent_out:
558 	mtspr(SPRN_MCSR, mcsr);
559 	return mfspr(SPRN_MCSR) == 0 && recoverable;
560 }
561 
562 int machine_check_e500(struct pt_regs *regs)
563 {
564 	unsigned long reason = get_mc_reason(regs);
565 
566 	if (reason & MCSR_BUS_RBERR) {
567 		if (fsl_rio_mcheck_exception(regs))
568 			return 1;
569 	}
570 
571 	printk("Machine check in kernel mode.\n");
572 	printk("Caused by (from MCSR=%lx): ", reason);
573 
574 	if (reason & MCSR_MCP)
575 		printk("Machine Check Signal\n");
576 	if (reason & MCSR_ICPERR)
577 		printk("Instruction Cache Parity Error\n");
578 	if (reason & MCSR_DCP_PERR)
579 		printk("Data Cache Push Parity Error\n");
580 	if (reason & MCSR_DCPERR)
581 		printk("Data Cache Parity Error\n");
582 	if (reason & MCSR_BUS_IAERR)
583 		printk("Bus - Instruction Address Error\n");
584 	if (reason & MCSR_BUS_RAERR)
585 		printk("Bus - Read Address Error\n");
586 	if (reason & MCSR_BUS_WAERR)
587 		printk("Bus - Write Address Error\n");
588 	if (reason & MCSR_BUS_IBERR)
589 		printk("Bus - Instruction Data Error\n");
590 	if (reason & MCSR_BUS_RBERR)
591 		printk("Bus - Read Data Bus Error\n");
592 	if (reason & MCSR_BUS_WBERR)
593 		printk("Bus - Read Data Bus Error\n");
594 	if (reason & MCSR_BUS_IPERR)
595 		printk("Bus - Instruction Parity Error\n");
596 	if (reason & MCSR_BUS_RPERR)
597 		printk("Bus - Read Parity Error\n");
598 
599 	return 0;
600 }
601 
602 int machine_check_generic(struct pt_regs *regs)
603 {
604 	return 0;
605 }
606 #elif defined(CONFIG_E200)
607 int machine_check_e200(struct pt_regs *regs)
608 {
609 	unsigned long reason = get_mc_reason(regs);
610 
611 	printk("Machine check in kernel mode.\n");
612 	printk("Caused by (from MCSR=%lx): ", reason);
613 
614 	if (reason & MCSR_MCP)
615 		printk("Machine Check Signal\n");
616 	if (reason & MCSR_CP_PERR)
617 		printk("Cache Push Parity Error\n");
618 	if (reason & MCSR_CPERR)
619 		printk("Cache Parity Error\n");
620 	if (reason & MCSR_EXCP_ERR)
621 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
622 	if (reason & MCSR_BUS_IRERR)
623 		printk("Bus - Read Bus Error on instruction fetch\n");
624 	if (reason & MCSR_BUS_DRERR)
625 		printk("Bus - Read Bus Error on data load\n");
626 	if (reason & MCSR_BUS_WRERR)
627 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
628 
629 	return 0;
630 }
631 #else
632 int machine_check_generic(struct pt_regs *regs)
633 {
634 	unsigned long reason = get_mc_reason(regs);
635 
636 	printk("Machine check in kernel mode.\n");
637 	printk("Caused by (from SRR1=%lx): ", reason);
638 	switch (reason & 0x601F0000) {
639 	case 0x80000:
640 		printk("Machine check signal\n");
641 		break;
642 	case 0:		/* for 601 */
643 	case 0x40000:
644 	case 0x140000:	/* 7450 MSS error and TEA */
645 		printk("Transfer error ack signal\n");
646 		break;
647 	case 0x20000:
648 		printk("Data parity error signal\n");
649 		break;
650 	case 0x10000:
651 		printk("Address parity error signal\n");
652 		break;
653 	case 0x20000000:
654 		printk("L1 Data Cache error\n");
655 		break;
656 	case 0x40000000:
657 		printk("L1 Instruction Cache error\n");
658 		break;
659 	case 0x00100000:
660 		printk("L2 data cache parity error\n");
661 		break;
662 	default:
663 		printk("Unknown values in msr\n");
664 	}
665 	return 0;
666 }
667 #endif /* everything else */
668 
669 void machine_check_exception(struct pt_regs *regs)
670 {
671 	enum ctx_state prev_state = exception_enter();
672 	int recover = 0;
673 
674 	__get_cpu_var(irq_stat).mce_exceptions++;
675 
676 	/* See if any machine dependent calls. In theory, we would want
677 	 * to call the CPU first, and call the ppc_md. one if the CPU
678 	 * one returns a positive number. However there is existing code
679 	 * that assumes the board gets a first chance, so let's keep it
680 	 * that way for now and fix things later. --BenH.
681 	 */
682 	if (ppc_md.machine_check_exception)
683 		recover = ppc_md.machine_check_exception(regs);
684 	else if (cur_cpu_spec->machine_check)
685 		recover = cur_cpu_spec->machine_check(regs);
686 
687 	if (recover > 0)
688 		goto bail;
689 
690 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
691 	/* the qspan pci read routines can cause machine checks -- Cort
692 	 *
693 	 * yuck !!! that totally needs to go away ! There are better ways
694 	 * to deal with that than having a wart in the mcheck handler.
695 	 * -- BenH
696 	 */
697 	bad_page_fault(regs, regs->dar, SIGBUS);
698 	goto bail;
699 #endif
700 
701 	if (debugger_fault_handler(regs))
702 		goto bail;
703 
704 	if (check_io_access(regs))
705 		goto bail;
706 
707 	die("Machine check", regs, SIGBUS);
708 
709 	/* Must die if the interrupt is not recoverable */
710 	if (!(regs->msr & MSR_RI))
711 		panic("Unrecoverable Machine check");
712 
713 bail:
714 	exception_exit(prev_state);
715 }
716 
717 void SMIException(struct pt_regs *regs)
718 {
719 	die("System Management Interrupt", regs, SIGABRT);
720 }
721 
722 void unknown_exception(struct pt_regs *regs)
723 {
724 	enum ctx_state prev_state = exception_enter();
725 
726 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
727 	       regs->nip, regs->msr, regs->trap);
728 
729 	_exception(SIGTRAP, regs, 0, 0);
730 
731 	exception_exit(prev_state);
732 }
733 
734 void instruction_breakpoint_exception(struct pt_regs *regs)
735 {
736 	enum ctx_state prev_state = exception_enter();
737 
738 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
739 					5, SIGTRAP) == NOTIFY_STOP)
740 		goto bail;
741 	if (debugger_iabr_match(regs))
742 		goto bail;
743 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
744 
745 bail:
746 	exception_exit(prev_state);
747 }
748 
749 void RunModeException(struct pt_regs *regs)
750 {
751 	_exception(SIGTRAP, regs, 0, 0);
752 }
753 
754 void __kprobes single_step_exception(struct pt_regs *regs)
755 {
756 	enum ctx_state prev_state = exception_enter();
757 
758 	clear_single_step(regs);
759 
760 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
761 					5, SIGTRAP) == NOTIFY_STOP)
762 		goto bail;
763 	if (debugger_sstep(regs))
764 		goto bail;
765 
766 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
767 
768 bail:
769 	exception_exit(prev_state);
770 }
771 
772 /*
773  * After we have successfully emulated an instruction, we have to
774  * check if the instruction was being single-stepped, and if so,
775  * pretend we got a single-step exception.  This was pointed out
776  * by Kumar Gala.  -- paulus
777  */
778 static void emulate_single_step(struct pt_regs *regs)
779 {
780 	if (single_stepping(regs))
781 		single_step_exception(regs);
782 }
783 
784 static inline int __parse_fpscr(unsigned long fpscr)
785 {
786 	int ret = 0;
787 
788 	/* Invalid operation */
789 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
790 		ret = FPE_FLTINV;
791 
792 	/* Overflow */
793 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
794 		ret = FPE_FLTOVF;
795 
796 	/* Underflow */
797 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
798 		ret = FPE_FLTUND;
799 
800 	/* Divide by zero */
801 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
802 		ret = FPE_FLTDIV;
803 
804 	/* Inexact result */
805 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
806 		ret = FPE_FLTRES;
807 
808 	return ret;
809 }
810 
811 static void parse_fpe(struct pt_regs *regs)
812 {
813 	int code = 0;
814 
815 	flush_fp_to_thread(current);
816 
817 	code = __parse_fpscr(current->thread.fpscr.val);
818 
819 	_exception(SIGFPE, regs, code, regs->nip);
820 }
821 
822 /*
823  * Illegal instruction emulation support.  Originally written to
824  * provide the PVR to user applications using the mfspr rd, PVR.
825  * Return non-zero if we can't emulate, or -EFAULT if the associated
826  * memory access caused an access fault.  Return zero on success.
827  *
828  * There are a couple of ways to do this, either "decode" the instruction
829  * or directly match lots of bits.  In this case, matching lots of
830  * bits is faster and easier.
831  *
832  */
833 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
834 {
835 	u8 rT = (instword >> 21) & 0x1f;
836 	u8 rA = (instword >> 16) & 0x1f;
837 	u8 NB_RB = (instword >> 11) & 0x1f;
838 	u32 num_bytes;
839 	unsigned long EA;
840 	int pos = 0;
841 
842 	/* Early out if we are an invalid form of lswx */
843 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
844 		if ((rT == rA) || (rT == NB_RB))
845 			return -EINVAL;
846 
847 	EA = (rA == 0) ? 0 : regs->gpr[rA];
848 
849 	switch (instword & PPC_INST_STRING_MASK) {
850 		case PPC_INST_LSWX:
851 		case PPC_INST_STSWX:
852 			EA += NB_RB;
853 			num_bytes = regs->xer & 0x7f;
854 			break;
855 		case PPC_INST_LSWI:
856 		case PPC_INST_STSWI:
857 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
858 			break;
859 		default:
860 			return -EINVAL;
861 	}
862 
863 	while (num_bytes != 0)
864 	{
865 		u8 val;
866 		u32 shift = 8 * (3 - (pos & 0x3));
867 
868 		switch ((instword & PPC_INST_STRING_MASK)) {
869 			case PPC_INST_LSWX:
870 			case PPC_INST_LSWI:
871 				if (get_user(val, (u8 __user *)EA))
872 					return -EFAULT;
873 				/* first time updating this reg,
874 				 * zero it out */
875 				if (pos == 0)
876 					regs->gpr[rT] = 0;
877 				regs->gpr[rT] |= val << shift;
878 				break;
879 			case PPC_INST_STSWI:
880 			case PPC_INST_STSWX:
881 				val = regs->gpr[rT] >> shift;
882 				if (put_user(val, (u8 __user *)EA))
883 					return -EFAULT;
884 				break;
885 		}
886 		/* move EA to next address */
887 		EA += 1;
888 		num_bytes--;
889 
890 		/* manage our position within the register */
891 		if (++pos == 4) {
892 			pos = 0;
893 			if (++rT == 32)
894 				rT = 0;
895 		}
896 	}
897 
898 	return 0;
899 }
900 
901 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
902 {
903 	u32 ra,rs;
904 	unsigned long tmp;
905 
906 	ra = (instword >> 16) & 0x1f;
907 	rs = (instword >> 21) & 0x1f;
908 
909 	tmp = regs->gpr[rs];
910 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
911 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
912 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
913 	regs->gpr[ra] = tmp;
914 
915 	return 0;
916 }
917 
918 static int emulate_isel(struct pt_regs *regs, u32 instword)
919 {
920 	u8 rT = (instword >> 21) & 0x1f;
921 	u8 rA = (instword >> 16) & 0x1f;
922 	u8 rB = (instword >> 11) & 0x1f;
923 	u8 BC = (instword >> 6) & 0x1f;
924 	u8 bit;
925 	unsigned long tmp;
926 
927 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
928 	bit = (regs->ccr >> (31 - BC)) & 0x1;
929 
930 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
931 
932 	return 0;
933 }
934 
935 static int emulate_instruction(struct pt_regs *regs)
936 {
937 	u32 instword;
938 	u32 rd;
939 
940 	if (!user_mode(regs) || (regs->msr & MSR_LE))
941 		return -EINVAL;
942 	CHECK_FULL_REGS(regs);
943 
944 	if (get_user(instword, (u32 __user *)(regs->nip)))
945 		return -EFAULT;
946 
947 	/* Emulate the mfspr rD, PVR. */
948 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
949 		PPC_WARN_EMULATED(mfpvr, regs);
950 		rd = (instword >> 21) & 0x1f;
951 		regs->gpr[rd] = mfspr(SPRN_PVR);
952 		return 0;
953 	}
954 
955 	/* Emulating the dcba insn is just a no-op.  */
956 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
957 		PPC_WARN_EMULATED(dcba, regs);
958 		return 0;
959 	}
960 
961 	/* Emulate the mcrxr insn.  */
962 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
963 		int shift = (instword >> 21) & 0x1c;
964 		unsigned long msk = 0xf0000000UL >> shift;
965 
966 		PPC_WARN_EMULATED(mcrxr, regs);
967 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
968 		regs->xer &= ~0xf0000000UL;
969 		return 0;
970 	}
971 
972 	/* Emulate load/store string insn. */
973 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
974 		PPC_WARN_EMULATED(string, regs);
975 		return emulate_string_inst(regs, instword);
976 	}
977 
978 	/* Emulate the popcntb (Population Count Bytes) instruction. */
979 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
980 		PPC_WARN_EMULATED(popcntb, regs);
981 		return emulate_popcntb_inst(regs, instword);
982 	}
983 
984 	/* Emulate isel (Integer Select) instruction */
985 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
986 		PPC_WARN_EMULATED(isel, regs);
987 		return emulate_isel(regs, instword);
988 	}
989 
990 #ifdef CONFIG_PPC64
991 	/* Emulate the mfspr rD, DSCR. */
992 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
993 		PPC_INST_MFSPR_DSCR_USER) ||
994 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
995 		PPC_INST_MFSPR_DSCR)) &&
996 			cpu_has_feature(CPU_FTR_DSCR)) {
997 		PPC_WARN_EMULATED(mfdscr, regs);
998 		rd = (instword >> 21) & 0x1f;
999 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1000 		return 0;
1001 	}
1002 	/* Emulate the mtspr DSCR, rD. */
1003 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1004 		PPC_INST_MTSPR_DSCR_USER) ||
1005 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1006 		PPC_INST_MTSPR_DSCR)) &&
1007 			cpu_has_feature(CPU_FTR_DSCR)) {
1008 		PPC_WARN_EMULATED(mtdscr, regs);
1009 		rd = (instword >> 21) & 0x1f;
1010 		current->thread.dscr = regs->gpr[rd];
1011 		current->thread.dscr_inherit = 1;
1012 		mtspr(SPRN_DSCR, current->thread.dscr);
1013 		return 0;
1014 	}
1015 #endif
1016 
1017 	return -EINVAL;
1018 }
1019 
1020 int is_valid_bugaddr(unsigned long addr)
1021 {
1022 	return is_kernel_addr(addr);
1023 }
1024 
1025 void __kprobes program_check_exception(struct pt_regs *regs)
1026 {
1027 	enum ctx_state prev_state = exception_enter();
1028 	unsigned int reason = get_reason(regs);
1029 	extern int do_mathemu(struct pt_regs *regs);
1030 
1031 	/* We can now get here via a FP Unavailable exception if the core
1032 	 * has no FPU, in that case the reason flags will be 0 */
1033 
1034 	if (reason & REASON_FP) {
1035 		/* IEEE FP exception */
1036 		parse_fpe(regs);
1037 		goto bail;
1038 	}
1039 	if (reason & REASON_TRAP) {
1040 		/* Debugger is first in line to stop recursive faults in
1041 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1042 		if (debugger_bpt(regs))
1043 			goto bail;
1044 
1045 		/* trap exception */
1046 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1047 				== NOTIFY_STOP)
1048 			goto bail;
1049 
1050 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1051 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1052 			regs->nip += 4;
1053 			goto bail;
1054 		}
1055 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1056 		goto bail;
1057 	}
1058 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1059 	if (reason & REASON_TM) {
1060 		/* This is a TM "Bad Thing Exception" program check.
1061 		 * This occurs when:
1062 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1063 		 *    transition in TM states.
1064 		 * -  A trechkpt is attempted when transactional.
1065 		 * -  A treclaim is attempted when non transactional.
1066 		 * -  A tend is illegally attempted.
1067 		 * -  writing a TM SPR when transactional.
1068 		 */
1069 		if (!user_mode(regs) &&
1070 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1071 			regs->nip += 4;
1072 			goto bail;
1073 		}
1074 		/* If usermode caused this, it's done something illegal and
1075 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1076 		 * operand to distinguish from the instruction just being bad
1077 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1078 		 * illegal /placement/ of a valid instruction.
1079 		 */
1080 		if (user_mode(regs)) {
1081 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1082 			goto bail;
1083 		} else {
1084 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1085 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1086 			die("Unrecoverable exception", regs, SIGABRT);
1087 		}
1088 	}
1089 #endif
1090 
1091 	/* We restore the interrupt state now */
1092 	if (!arch_irq_disabled_regs(regs))
1093 		local_irq_enable();
1094 
1095 #ifdef CONFIG_MATH_EMULATION
1096 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1097 	 * but there seems to be a hardware bug on the 405GP (RevD)
1098 	 * that means ESR is sometimes set incorrectly - either to
1099 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1100 	 * hardware people - not sure if it can happen on any illegal
1101 	 * instruction or only on FP instructions, whether there is a
1102 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1103 	switch (do_mathemu(regs)) {
1104 	case 0:
1105 		emulate_single_step(regs);
1106 		goto bail;
1107 	case 1: {
1108 			int code = 0;
1109 			code = __parse_fpscr(current->thread.fpscr.val);
1110 			_exception(SIGFPE, regs, code, regs->nip);
1111 			goto bail;
1112 		}
1113 	case -EFAULT:
1114 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1115 		goto bail;
1116 	}
1117 	/* fall through on any other errors */
1118 #endif /* CONFIG_MATH_EMULATION */
1119 
1120 	/* Try to emulate it if we should. */
1121 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1122 		switch (emulate_instruction(regs)) {
1123 		case 0:
1124 			regs->nip += 4;
1125 			emulate_single_step(regs);
1126 			goto bail;
1127 		case -EFAULT:
1128 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1129 			goto bail;
1130 		}
1131 	}
1132 
1133 	if (reason & REASON_PRIVILEGED)
1134 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1135 	else
1136 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1137 
1138 bail:
1139 	exception_exit(prev_state);
1140 }
1141 
1142 void alignment_exception(struct pt_regs *regs)
1143 {
1144 	enum ctx_state prev_state = exception_enter();
1145 	int sig, code, fixed = 0;
1146 
1147 	/* We restore the interrupt state now */
1148 	if (!arch_irq_disabled_regs(regs))
1149 		local_irq_enable();
1150 
1151 	/* we don't implement logging of alignment exceptions */
1152 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1153 		fixed = fix_alignment(regs);
1154 
1155 	if (fixed == 1) {
1156 		regs->nip += 4;	/* skip over emulated instruction */
1157 		emulate_single_step(regs);
1158 		goto bail;
1159 	}
1160 
1161 	/* Operand address was bad */
1162 	if (fixed == -EFAULT) {
1163 		sig = SIGSEGV;
1164 		code = SEGV_ACCERR;
1165 	} else {
1166 		sig = SIGBUS;
1167 		code = BUS_ADRALN;
1168 	}
1169 	if (user_mode(regs))
1170 		_exception(sig, regs, code, regs->dar);
1171 	else
1172 		bad_page_fault(regs, regs->dar, sig);
1173 
1174 bail:
1175 	exception_exit(prev_state);
1176 }
1177 
1178 void StackOverflow(struct pt_regs *regs)
1179 {
1180 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1181 	       current, regs->gpr[1]);
1182 	debugger(regs);
1183 	show_regs(regs);
1184 	panic("kernel stack overflow");
1185 }
1186 
1187 void nonrecoverable_exception(struct pt_regs *regs)
1188 {
1189 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1190 	       regs->nip, regs->msr);
1191 	debugger(regs);
1192 	die("nonrecoverable exception", regs, SIGKILL);
1193 }
1194 
1195 void trace_syscall(struct pt_regs *regs)
1196 {
1197 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1198 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1199 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1200 }
1201 
1202 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1203 {
1204 	enum ctx_state prev_state = exception_enter();
1205 
1206 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1207 			  "%lx at %lx\n", regs->trap, regs->nip);
1208 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1209 
1210 	exception_exit(prev_state);
1211 }
1212 
1213 void altivec_unavailable_exception(struct pt_regs *regs)
1214 {
1215 	enum ctx_state prev_state = exception_enter();
1216 
1217 	if (user_mode(regs)) {
1218 		/* A user program has executed an altivec instruction,
1219 		   but this kernel doesn't support altivec. */
1220 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1221 		goto bail;
1222 	}
1223 
1224 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1225 			"%lx at %lx\n", regs->trap, regs->nip);
1226 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1227 
1228 bail:
1229 	exception_exit(prev_state);
1230 }
1231 
1232 void vsx_unavailable_exception(struct pt_regs *regs)
1233 {
1234 	if (user_mode(regs)) {
1235 		/* A user program has executed an vsx instruction,
1236 		   but this kernel doesn't support vsx. */
1237 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1238 		return;
1239 	}
1240 
1241 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1242 			"%lx at %lx\n", regs->trap, regs->nip);
1243 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1244 }
1245 
1246 void tm_unavailable_exception(struct pt_regs *regs)
1247 {
1248 	/* We restore the interrupt state now */
1249 	if (!arch_irq_disabled_regs(regs))
1250 		local_irq_enable();
1251 
1252 	/* Currently we never expect a TMU exception.  Catch
1253 	 * this and kill the process!
1254 	 */
1255 	printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1256 	       "(msr %lx)\n",
1257 	       regs->nip, regs->msr);
1258 
1259 	if (user_mode(regs)) {
1260 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1261 		return;
1262 	}
1263 
1264 	die("Unexpected TM unavailable exception", regs, SIGABRT);
1265 }
1266 
1267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1268 
1269 extern void do_load_up_fpu(struct pt_regs *regs);
1270 
1271 void fp_unavailable_tm(struct pt_regs *regs)
1272 {
1273 	/* Note:  This does not handle any kind of FP laziness. */
1274 
1275 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1276 		 regs->nip, regs->msr);
1277 	tm_enable();
1278 
1279         /* We can only have got here if the task started using FP after
1280          * beginning the transaction.  So, the transactional regs are just a
1281          * copy of the checkpointed ones.  But, we still need to recheckpoint
1282          * as we're enabling FP for the process; it will return, abort the
1283          * transaction, and probably retry but now with FP enabled.  So the
1284          * checkpointed FP registers need to be loaded.
1285 	 */
1286 	tm_reclaim(&current->thread, current->thread.regs->msr,
1287 		   TM_CAUSE_FAC_UNAV);
1288 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1289 
1290 	/* Enable FP for the task: */
1291 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1292 
1293 	/* This loads and recheckpoints the FP registers from
1294 	 * thread.fpr[].  They will remain in registers after the
1295 	 * checkpoint so we don't need to reload them after.
1296 	 */
1297 	tm_recheckpoint(&current->thread, regs->msr);
1298 }
1299 
1300 #ifdef CONFIG_ALTIVEC
1301 extern void do_load_up_altivec(struct pt_regs *regs);
1302 
1303 void altivec_unavailable_tm(struct pt_regs *regs)
1304 {
1305 	/* See the comments in fp_unavailable_tm().  This function operates
1306 	 * the same way.
1307 	 */
1308 
1309 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1310 		 "MSR=%lx\n",
1311 		 regs->nip, regs->msr);
1312 	tm_enable();
1313 	tm_reclaim(&current->thread, current->thread.regs->msr,
1314 		   TM_CAUSE_FAC_UNAV);
1315 	regs->msr |= MSR_VEC;
1316 	tm_recheckpoint(&current->thread, regs->msr);
1317 	current->thread.used_vr = 1;
1318 }
1319 #endif
1320 
1321 #ifdef CONFIG_VSX
1322 void vsx_unavailable_tm(struct pt_regs *regs)
1323 {
1324 	/* See the comments in fp_unavailable_tm().  This works similarly,
1325 	 * though we're loading both FP and VEC registers in here.
1326 	 *
1327 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1328 	 * regs.  Either way, set MSR_VSX.
1329 	 */
1330 
1331 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1332 		 "MSR=%lx\n",
1333 		 regs->nip, regs->msr);
1334 
1335 	tm_enable();
1336 	/* This reclaims FP and/or VR regs if they're already enabled */
1337 	tm_reclaim(&current->thread, current->thread.regs->msr,
1338 		   TM_CAUSE_FAC_UNAV);
1339 
1340 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1341 		MSR_VSX;
1342 	/* This loads & recheckpoints FP and VRs. */
1343 	tm_recheckpoint(&current->thread, regs->msr);
1344 	current->thread.used_vsr = 1;
1345 }
1346 #endif
1347 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1348 
1349 void performance_monitor_exception(struct pt_regs *regs)
1350 {
1351 	__get_cpu_var(irq_stat).pmu_irqs++;
1352 
1353 	perf_irq(regs);
1354 }
1355 
1356 #ifdef CONFIG_8xx
1357 void SoftwareEmulation(struct pt_regs *regs)
1358 {
1359 	extern int do_mathemu(struct pt_regs *);
1360 	extern int Soft_emulate_8xx(struct pt_regs *);
1361 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1362 	int errcode;
1363 #endif
1364 
1365 	CHECK_FULL_REGS(regs);
1366 
1367 	if (!user_mode(regs)) {
1368 		debugger(regs);
1369 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1370 	}
1371 
1372 #ifdef CONFIG_MATH_EMULATION
1373 	errcode = do_mathemu(regs);
1374 	if (errcode >= 0)
1375 		PPC_WARN_EMULATED(math, regs);
1376 
1377 	switch (errcode) {
1378 	case 0:
1379 		emulate_single_step(regs);
1380 		return;
1381 	case 1: {
1382 			int code = 0;
1383 			code = __parse_fpscr(current->thread.fpscr.val);
1384 			_exception(SIGFPE, regs, code, regs->nip);
1385 			return;
1386 		}
1387 	case -EFAULT:
1388 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1389 		return;
1390 	default:
1391 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1392 		return;
1393 	}
1394 
1395 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1396 	errcode = Soft_emulate_8xx(regs);
1397 	if (errcode >= 0)
1398 		PPC_WARN_EMULATED(8xx, regs);
1399 
1400 	switch (errcode) {
1401 	case 0:
1402 		emulate_single_step(regs);
1403 		return;
1404 	case 1:
1405 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1406 		return;
1407 	case -EFAULT:
1408 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1409 		return;
1410 	}
1411 #else
1412 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1413 #endif
1414 }
1415 #endif /* CONFIG_8xx */
1416 
1417 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1418 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1419 {
1420 	int changed = 0;
1421 	/*
1422 	 * Determine the cause of the debug event, clear the
1423 	 * event flags and send a trap to the handler. Torez
1424 	 */
1425 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1426 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1427 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1428 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1429 #endif
1430 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1431 			     5);
1432 		changed |= 0x01;
1433 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1434 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1435 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1436 			     6);
1437 		changed |= 0x01;
1438 	}  else if (debug_status & DBSR_IAC1) {
1439 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1440 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1441 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1442 			     1);
1443 		changed |= 0x01;
1444 	}  else if (debug_status & DBSR_IAC2) {
1445 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1446 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1447 			     2);
1448 		changed |= 0x01;
1449 	}  else if (debug_status & DBSR_IAC3) {
1450 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1451 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1452 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1453 			     3);
1454 		changed |= 0x01;
1455 	}  else if (debug_status & DBSR_IAC4) {
1456 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1457 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1458 			     4);
1459 		changed |= 0x01;
1460 	}
1461 	/*
1462 	 * At the point this routine was called, the MSR(DE) was turned off.
1463 	 * Check all other debug flags and see if that bit needs to be turned
1464 	 * back on or not.
1465 	 */
1466 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1467 		regs->msr |= MSR_DE;
1468 	else
1469 		/* Make sure the IDM flag is off */
1470 		current->thread.dbcr0 &= ~DBCR0_IDM;
1471 
1472 	if (changed & 0x01)
1473 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1474 }
1475 
1476 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1477 {
1478 	current->thread.dbsr = debug_status;
1479 
1480 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1481 	 * on server, it stops on the target of the branch. In order to simulate
1482 	 * the server behaviour, we thus restart right away with a single step
1483 	 * instead of stopping here when hitting a BT
1484 	 */
1485 	if (debug_status & DBSR_BT) {
1486 		regs->msr &= ~MSR_DE;
1487 
1488 		/* Disable BT */
1489 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1490 		/* Clear the BT event */
1491 		mtspr(SPRN_DBSR, DBSR_BT);
1492 
1493 		/* Do the single step trick only when coming from userspace */
1494 		if (user_mode(regs)) {
1495 			current->thread.dbcr0 &= ~DBCR0_BT;
1496 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1497 			regs->msr |= MSR_DE;
1498 			return;
1499 		}
1500 
1501 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1502 			       5, SIGTRAP) == NOTIFY_STOP) {
1503 			return;
1504 		}
1505 		if (debugger_sstep(regs))
1506 			return;
1507 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1508 		regs->msr &= ~MSR_DE;
1509 
1510 		/* Disable instruction completion */
1511 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1512 		/* Clear the instruction completion event */
1513 		mtspr(SPRN_DBSR, DBSR_IC);
1514 
1515 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1516 			       5, SIGTRAP) == NOTIFY_STOP) {
1517 			return;
1518 		}
1519 
1520 		if (debugger_sstep(regs))
1521 			return;
1522 
1523 		if (user_mode(regs)) {
1524 			current->thread.dbcr0 &= ~DBCR0_IC;
1525 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1526 					       current->thread.dbcr1))
1527 				regs->msr |= MSR_DE;
1528 			else
1529 				/* Make sure the IDM bit is off */
1530 				current->thread.dbcr0 &= ~DBCR0_IDM;
1531 		}
1532 
1533 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1534 	} else
1535 		handle_debug(regs, debug_status);
1536 }
1537 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1538 
1539 #if !defined(CONFIG_TAU_INT)
1540 void TAUException(struct pt_regs *regs)
1541 {
1542 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1543 	       regs->nip, regs->msr, regs->trap, print_tainted());
1544 }
1545 #endif /* CONFIG_INT_TAU */
1546 
1547 #ifdef CONFIG_ALTIVEC
1548 void altivec_assist_exception(struct pt_regs *regs)
1549 {
1550 	int err;
1551 
1552 	if (!user_mode(regs)) {
1553 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1554 		       " at %lx\n", regs->nip);
1555 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1556 	}
1557 
1558 	flush_altivec_to_thread(current);
1559 
1560 	PPC_WARN_EMULATED(altivec, regs);
1561 	err = emulate_altivec(regs);
1562 	if (err == 0) {
1563 		regs->nip += 4;		/* skip emulated instruction */
1564 		emulate_single_step(regs);
1565 		return;
1566 	}
1567 
1568 	if (err == -EFAULT) {
1569 		/* got an error reading the instruction */
1570 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1571 	} else {
1572 		/* didn't recognize the instruction */
1573 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1574 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1575 				   "in %s at %lx\n", current->comm, regs->nip);
1576 		current->thread.vscr.u[3] |= 0x10000;
1577 	}
1578 }
1579 #endif /* CONFIG_ALTIVEC */
1580 
1581 #ifdef CONFIG_VSX
1582 void vsx_assist_exception(struct pt_regs *regs)
1583 {
1584 	if (!user_mode(regs)) {
1585 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1586 		       " at %lx\n", regs->nip);
1587 		die("Kernel VSX assist exception", regs, SIGILL);
1588 	}
1589 
1590 	flush_vsx_to_thread(current);
1591 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1592 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1593 }
1594 #endif /* CONFIG_VSX */
1595 
1596 #ifdef CONFIG_FSL_BOOKE
1597 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1598 			   unsigned long error_code)
1599 {
1600 	/* We treat cache locking instructions from the user
1601 	 * as priv ops, in the future we could try to do
1602 	 * something smarter
1603 	 */
1604 	if (error_code & (ESR_DLK|ESR_ILK))
1605 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1606 	return;
1607 }
1608 #endif /* CONFIG_FSL_BOOKE */
1609 
1610 #ifdef CONFIG_SPE
1611 void SPEFloatingPointException(struct pt_regs *regs)
1612 {
1613 	extern int do_spe_mathemu(struct pt_regs *regs);
1614 	unsigned long spefscr;
1615 	int fpexc_mode;
1616 	int code = 0;
1617 	int err;
1618 
1619 	flush_spe_to_thread(current);
1620 
1621 	spefscr = current->thread.spefscr;
1622 	fpexc_mode = current->thread.fpexc_mode;
1623 
1624 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1625 		code = FPE_FLTOVF;
1626 	}
1627 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1628 		code = FPE_FLTUND;
1629 	}
1630 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1631 		code = FPE_FLTDIV;
1632 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1633 		code = FPE_FLTINV;
1634 	}
1635 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1636 		code = FPE_FLTRES;
1637 
1638 	err = do_spe_mathemu(regs);
1639 	if (err == 0) {
1640 		regs->nip += 4;		/* skip emulated instruction */
1641 		emulate_single_step(regs);
1642 		return;
1643 	}
1644 
1645 	if (err == -EFAULT) {
1646 		/* got an error reading the instruction */
1647 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1648 	} else if (err == -EINVAL) {
1649 		/* didn't recognize the instruction */
1650 		printk(KERN_ERR "unrecognized spe instruction "
1651 		       "in %s at %lx\n", current->comm, regs->nip);
1652 	} else {
1653 		_exception(SIGFPE, regs, code, regs->nip);
1654 	}
1655 
1656 	return;
1657 }
1658 
1659 void SPEFloatingPointRoundException(struct pt_regs *regs)
1660 {
1661 	extern int speround_handler(struct pt_regs *regs);
1662 	int err;
1663 
1664 	preempt_disable();
1665 	if (regs->msr & MSR_SPE)
1666 		giveup_spe(current);
1667 	preempt_enable();
1668 
1669 	regs->nip -= 4;
1670 	err = speround_handler(regs);
1671 	if (err == 0) {
1672 		regs->nip += 4;		/* skip emulated instruction */
1673 		emulate_single_step(regs);
1674 		return;
1675 	}
1676 
1677 	if (err == -EFAULT) {
1678 		/* got an error reading the instruction */
1679 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1680 	} else if (err == -EINVAL) {
1681 		/* didn't recognize the instruction */
1682 		printk(KERN_ERR "unrecognized spe instruction "
1683 		       "in %s at %lx\n", current->comm, regs->nip);
1684 	} else {
1685 		_exception(SIGFPE, regs, 0, regs->nip);
1686 		return;
1687 	}
1688 }
1689 #endif
1690 
1691 /*
1692  * We enter here if we get an unrecoverable exception, that is, one
1693  * that happened at a point where the RI (recoverable interrupt) bit
1694  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1695  * we therefore lost state by taking this exception.
1696  */
1697 void unrecoverable_exception(struct pt_regs *regs)
1698 {
1699 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1700 	       regs->trap, regs->nip);
1701 	die("Unrecoverable exception", regs, SIGABRT);
1702 }
1703 
1704 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1705 /*
1706  * Default handler for a Watchdog exception,
1707  * spins until a reboot occurs
1708  */
1709 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1710 {
1711 	/* Generic WatchdogHandler, implement your own */
1712 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1713 	return;
1714 }
1715 
1716 void WatchdogException(struct pt_regs *regs)
1717 {
1718 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1719 	WatchdogHandler(regs);
1720 }
1721 #endif
1722 
1723 /*
1724  * We enter here if we discover during exception entry that we are
1725  * running in supervisor mode with a userspace value in the stack pointer.
1726  */
1727 void kernel_bad_stack(struct pt_regs *regs)
1728 {
1729 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1730 	       regs->gpr[1], regs->nip);
1731 	die("Bad kernel stack pointer", regs, SIGABRT);
1732 }
1733 
1734 void __init trap_init(void)
1735 {
1736 }
1737 
1738 
1739 #ifdef CONFIG_PPC_EMULATED_STATS
1740 
1741 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1742 
1743 struct ppc_emulated ppc_emulated = {
1744 #ifdef CONFIG_ALTIVEC
1745 	WARN_EMULATED_SETUP(altivec),
1746 #endif
1747 	WARN_EMULATED_SETUP(dcba),
1748 	WARN_EMULATED_SETUP(dcbz),
1749 	WARN_EMULATED_SETUP(fp_pair),
1750 	WARN_EMULATED_SETUP(isel),
1751 	WARN_EMULATED_SETUP(mcrxr),
1752 	WARN_EMULATED_SETUP(mfpvr),
1753 	WARN_EMULATED_SETUP(multiple),
1754 	WARN_EMULATED_SETUP(popcntb),
1755 	WARN_EMULATED_SETUP(spe),
1756 	WARN_EMULATED_SETUP(string),
1757 	WARN_EMULATED_SETUP(unaligned),
1758 #ifdef CONFIG_MATH_EMULATION
1759 	WARN_EMULATED_SETUP(math),
1760 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1761 	WARN_EMULATED_SETUP(8xx),
1762 #endif
1763 #ifdef CONFIG_VSX
1764 	WARN_EMULATED_SETUP(vsx),
1765 #endif
1766 #ifdef CONFIG_PPC64
1767 	WARN_EMULATED_SETUP(mfdscr),
1768 	WARN_EMULATED_SETUP(mtdscr),
1769 #endif
1770 };
1771 
1772 u32 ppc_warn_emulated;
1773 
1774 void ppc_warn_emulated_print(const char *type)
1775 {
1776 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1777 			    type);
1778 }
1779 
1780 static int __init ppc_warn_emulated_init(void)
1781 {
1782 	struct dentry *dir, *d;
1783 	unsigned int i;
1784 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1785 
1786 	if (!powerpc_debugfs_root)
1787 		return -ENODEV;
1788 
1789 	dir = debugfs_create_dir("emulated_instructions",
1790 				 powerpc_debugfs_root);
1791 	if (!dir)
1792 		return -ENOMEM;
1793 
1794 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1795 			       &ppc_warn_emulated);
1796 	if (!d)
1797 		goto fail;
1798 
1799 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1800 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1801 				       (u32 *)&entries[i].val.counter);
1802 		if (!d)
1803 			goto fail;
1804 	}
1805 
1806 	return 0;
1807 
1808 fail:
1809 	debugfs_remove_recursive(dir);
1810 	return -ENOMEM;
1811 }
1812 
1813 device_initcall(ppc_warn_emulated_init);
1814 
1815 #endif /* CONFIG_PPC_EMULATED_STATS */
1816