xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision c1d45424)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 
64 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65 int (*__debugger)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
72 
73 EXPORT_SYMBOL(__debugger);
74 EXPORT_SYMBOL(__debugger_ipi);
75 EXPORT_SYMBOL(__debugger_bpt);
76 EXPORT_SYMBOL(__debugger_sstep);
77 EXPORT_SYMBOL(__debugger_iabr_match);
78 EXPORT_SYMBOL(__debugger_break_match);
79 EXPORT_SYMBOL(__debugger_fault_handler);
80 #endif
81 
82 /* Transactional Memory trap debug */
83 #ifdef TM_DEBUG_SW
84 #define TM_DEBUG(x...) printk(KERN_INFO x)
85 #else
86 #define TM_DEBUG(x...) do { } while(0)
87 #endif
88 
89 /*
90  * Trap & Exception support
91  */
92 
93 #ifdef CONFIG_PMAC_BACKLIGHT
94 static void pmac_backlight_unblank(void)
95 {
96 	mutex_lock(&pmac_backlight_mutex);
97 	if (pmac_backlight) {
98 		struct backlight_properties *props;
99 
100 		props = &pmac_backlight->props;
101 		props->brightness = props->max_brightness;
102 		props->power = FB_BLANK_UNBLANK;
103 		backlight_update_status(pmac_backlight);
104 	}
105 	mutex_unlock(&pmac_backlight_mutex);
106 }
107 #else
108 static inline void pmac_backlight_unblank(void) { }
109 #endif
110 
111 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112 static int die_owner = -1;
113 static unsigned int die_nest_count;
114 static int die_counter;
115 
116 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
117 {
118 	int cpu;
119 	unsigned long flags;
120 
121 	if (debugger(regs))
122 		return 1;
123 
124 	oops_enter();
125 
126 	/* racy, but better than risking deadlock. */
127 	raw_local_irq_save(flags);
128 	cpu = smp_processor_id();
129 	if (!arch_spin_trylock(&die_lock)) {
130 		if (cpu == die_owner)
131 			/* nested oops. should stop eventually */;
132 		else
133 			arch_spin_lock(&die_lock);
134 	}
135 	die_nest_count++;
136 	die_owner = cpu;
137 	console_verbose();
138 	bust_spinlocks(1);
139 	if (machine_is(powermac))
140 		pmac_backlight_unblank();
141 	return flags;
142 }
143 
144 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 			       int signr)
146 {
147 	bust_spinlocks(0);
148 	die_owner = -1;
149 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
150 	die_nest_count--;
151 	oops_exit();
152 	printk("\n");
153 	if (!die_nest_count)
154 		/* Nest count reaches zero, release the lock. */
155 		arch_spin_unlock(&die_lock);
156 	raw_local_irq_restore(flags);
157 
158 	crash_fadump(regs, "die oops");
159 
160 	/*
161 	 * A system reset (0x100) is a request to dump, so we always send
162 	 * it through the crashdump code.
163 	 */
164 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 		crash_kexec(regs);
166 
167 		/*
168 		 * We aren't the primary crash CPU. We need to send it
169 		 * to a holding pattern to avoid it ending up in the panic
170 		 * code.
171 		 */
172 		crash_kexec_secondary(regs);
173 	}
174 
175 	if (!signr)
176 		return;
177 
178 	/*
179 	 * While our oops output is serialised by a spinlock, output
180 	 * from panic() called below can race and corrupt it. If we
181 	 * know we are going to panic, delay for 1 second so we have a
182 	 * chance to get clean backtraces from all CPUs that are oopsing.
183 	 */
184 	if (in_interrupt() || panic_on_oops || !current->pid ||
185 	    is_global_init(current)) {
186 		mdelay(MSEC_PER_SEC);
187 	}
188 
189 	if (in_interrupt())
190 		panic("Fatal exception in interrupt");
191 	if (panic_on_oops)
192 		panic("Fatal exception");
193 	do_exit(signr);
194 }
195 
196 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
197 {
198 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199 #ifdef CONFIG_PREEMPT
200 	printk("PREEMPT ");
201 #endif
202 #ifdef CONFIG_SMP
203 	printk("SMP NR_CPUS=%d ", NR_CPUS);
204 #endif
205 #ifdef CONFIG_DEBUG_PAGEALLOC
206 	printk("DEBUG_PAGEALLOC ");
207 #endif
208 #ifdef CONFIG_NUMA
209 	printk("NUMA ");
210 #endif
211 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
212 
213 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 		return 1;
215 
216 	print_modules();
217 	show_regs(regs);
218 
219 	return 0;
220 }
221 
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 	unsigned long flags = oops_begin(regs);
225 
226 	if (__die(str, regs, err))
227 		err = 0;
228 	oops_end(flags, regs, err);
229 }
230 
231 void user_single_step_siginfo(struct task_struct *tsk,
232 				struct pt_regs *regs, siginfo_t *info)
233 {
234 	memset(info, 0, sizeof(*info));
235 	info->si_signo = SIGTRAP;
236 	info->si_code = TRAP_TRACE;
237 	info->si_addr = (void __user *)regs->nip;
238 }
239 
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 	siginfo_t info;
243 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 			"at %08lx nip %08lx lr %08lx code %x\n";
245 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %016lx nip %016lx lr %016lx code %x\n";
247 
248 	if (!user_mode(regs)) {
249 		die("Exception in kernel mode", regs, signr);
250 		return;
251 	}
252 
253 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 				   current->comm, current->pid, signr,
256 				   addr, regs->nip, regs->link, code);
257 	}
258 
259 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 		local_irq_enable();
261 
262 	current->thread.trap_nr = code;
263 	memset(&info, 0, sizeof(info));
264 	info.si_signo = signr;
265 	info.si_code = code;
266 	info.si_addr = (void __user *) addr;
267 	force_sig_info(signr, &info, current);
268 }
269 
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 	/* See if any machine dependent calls */
274 	if (ppc_md.system_reset_exception) {
275 		if (ppc_md.system_reset_exception(regs))
276 			return;
277 	}
278 
279 	die("System Reset", regs, SIGABRT);
280 
281 	/* Must die if the interrupt is not recoverable */
282 	if (!(regs->msr & MSR_RI))
283 		panic("Unrecoverable System Reset");
284 
285 	/* What should we do here? We could issue a shutdown or hard reset. */
286 }
287 #endif
288 
289 /*
290  * I/O accesses can cause machine checks on powermacs.
291  * Check if the NIP corresponds to the address of a sync
292  * instruction for which there is an entry in the exception
293  * table.
294  * Note that the 601 only takes a machine check on TEA
295  * (transfer error ack) signal assertion, and does not
296  * set any of the top 16 bits of SRR1.
297  *  -- paulus.
298  */
299 static inline int check_io_access(struct pt_regs *regs)
300 {
301 #ifdef CONFIG_PPC32
302 	unsigned long msr = regs->msr;
303 	const struct exception_table_entry *entry;
304 	unsigned int *nip = (unsigned int *)regs->nip;
305 
306 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
308 		/*
309 		 * Check that it's a sync instruction, or somewhere
310 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 		 * As the address is in the exception table
312 		 * we should be able to read the instr there.
313 		 * For the debug message, we look at the preceding
314 		 * load or store.
315 		 */
316 		if (*nip == 0x60000000)		/* nop */
317 			nip -= 2;
318 		else if (*nip == 0x4c00012c)	/* isync */
319 			--nip;
320 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 			/* sync or twi */
322 			unsigned int rb;
323 
324 			--nip;
325 			rb = (*nip >> 11) & 0x1f;
326 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 			       (*nip & 0x100)? "OUT to": "IN from",
328 			       regs->gpr[rb] - _IO_BASE, nip);
329 			regs->msr |= MSR_RI;
330 			regs->nip = entry->fixup;
331 			return 1;
332 		}
333 	}
334 #endif /* CONFIG_PPC32 */
335 	return 0;
336 }
337 
338 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
339 /* On 4xx, the reason for the machine check or program exception
340    is in the ESR. */
341 #define get_reason(regs)	((regs)->dsisr)
342 #ifndef CONFIG_FSL_BOOKE
343 #define get_mc_reason(regs)	((regs)->dsisr)
344 #else
345 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
346 #endif
347 #define REASON_FP		ESR_FP
348 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
349 #define REASON_PRIVILEGED	ESR_PPR
350 #define REASON_TRAP		ESR_PTR
351 
352 /* single-step stuff */
353 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
354 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
355 
356 #else
357 /* On non-4xx, the reason for the machine check or program
358    exception is in the MSR. */
359 #define get_reason(regs)	((regs)->msr)
360 #define get_mc_reason(regs)	((regs)->msr)
361 #define REASON_TM		0x200000
362 #define REASON_FP		0x100000
363 #define REASON_ILLEGAL		0x80000
364 #define REASON_PRIVILEGED	0x40000
365 #define REASON_TRAP		0x20000
366 
367 #define single_stepping(regs)	((regs)->msr & MSR_SE)
368 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
369 #endif
370 
371 #if defined(CONFIG_4xx)
372 int machine_check_4xx(struct pt_regs *regs)
373 {
374 	unsigned long reason = get_mc_reason(regs);
375 
376 	if (reason & ESR_IMCP) {
377 		printk("Instruction");
378 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 	} else
380 		printk("Data");
381 	printk(" machine check in kernel mode.\n");
382 
383 	return 0;
384 }
385 
386 int machine_check_440A(struct pt_regs *regs)
387 {
388 	unsigned long reason = get_mc_reason(regs);
389 
390 	printk("Machine check in kernel mode.\n");
391 	if (reason & ESR_IMCP){
392 		printk("Instruction Synchronous Machine Check exception\n");
393 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
394 	}
395 	else {
396 		u32 mcsr = mfspr(SPRN_MCSR);
397 		if (mcsr & MCSR_IB)
398 			printk("Instruction Read PLB Error\n");
399 		if (mcsr & MCSR_DRB)
400 			printk("Data Read PLB Error\n");
401 		if (mcsr & MCSR_DWB)
402 			printk("Data Write PLB Error\n");
403 		if (mcsr & MCSR_TLBP)
404 			printk("TLB Parity Error\n");
405 		if (mcsr & MCSR_ICP){
406 			flush_instruction_cache();
407 			printk("I-Cache Parity Error\n");
408 		}
409 		if (mcsr & MCSR_DCSP)
410 			printk("D-Cache Search Parity Error\n");
411 		if (mcsr & MCSR_DCFP)
412 			printk("D-Cache Flush Parity Error\n");
413 		if (mcsr & MCSR_IMPE)
414 			printk("Machine Check exception is imprecise\n");
415 
416 		/* Clear MCSR */
417 		mtspr(SPRN_MCSR, mcsr);
418 	}
419 	return 0;
420 }
421 
422 int machine_check_47x(struct pt_regs *regs)
423 {
424 	unsigned long reason = get_mc_reason(regs);
425 	u32 mcsr;
426 
427 	printk(KERN_ERR "Machine check in kernel mode.\n");
428 	if (reason & ESR_IMCP) {
429 		printk(KERN_ERR
430 		       "Instruction Synchronous Machine Check exception\n");
431 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 		return 0;
433 	}
434 	mcsr = mfspr(SPRN_MCSR);
435 	if (mcsr & MCSR_IB)
436 		printk(KERN_ERR "Instruction Read PLB Error\n");
437 	if (mcsr & MCSR_DRB)
438 		printk(KERN_ERR "Data Read PLB Error\n");
439 	if (mcsr & MCSR_DWB)
440 		printk(KERN_ERR "Data Write PLB Error\n");
441 	if (mcsr & MCSR_TLBP)
442 		printk(KERN_ERR "TLB Parity Error\n");
443 	if (mcsr & MCSR_ICP) {
444 		flush_instruction_cache();
445 		printk(KERN_ERR "I-Cache Parity Error\n");
446 	}
447 	if (mcsr & MCSR_DCSP)
448 		printk(KERN_ERR "D-Cache Search Parity Error\n");
449 	if (mcsr & PPC47x_MCSR_GPR)
450 		printk(KERN_ERR "GPR Parity Error\n");
451 	if (mcsr & PPC47x_MCSR_FPR)
452 		printk(KERN_ERR "FPR Parity Error\n");
453 	if (mcsr & PPC47x_MCSR_IPR)
454 		printk(KERN_ERR "Machine Check exception is imprecise\n");
455 
456 	/* Clear MCSR */
457 	mtspr(SPRN_MCSR, mcsr);
458 
459 	return 0;
460 }
461 #elif defined(CONFIG_E500)
462 int machine_check_e500mc(struct pt_regs *regs)
463 {
464 	unsigned long mcsr = mfspr(SPRN_MCSR);
465 	unsigned long reason = mcsr;
466 	int recoverable = 1;
467 
468 	if (reason & MCSR_LD) {
469 		recoverable = fsl_rio_mcheck_exception(regs);
470 		if (recoverable == 1)
471 			goto silent_out;
472 	}
473 
474 	printk("Machine check in kernel mode.\n");
475 	printk("Caused by (from MCSR=%lx): ", reason);
476 
477 	if (reason & MCSR_MCP)
478 		printk("Machine Check Signal\n");
479 
480 	if (reason & MCSR_ICPERR) {
481 		printk("Instruction Cache Parity Error\n");
482 
483 		/*
484 		 * This is recoverable by invalidating the i-cache.
485 		 */
486 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
488 			;
489 
490 		/*
491 		 * This will generally be accompanied by an instruction
492 		 * fetch error report -- only treat MCSR_IF as fatal
493 		 * if it wasn't due to an L1 parity error.
494 		 */
495 		reason &= ~MCSR_IF;
496 	}
497 
498 	if (reason & MCSR_DCPERR_MC) {
499 		printk("Data Cache Parity Error\n");
500 
501 		/*
502 		 * In write shadow mode we auto-recover from the error, but it
503 		 * may still get logged and cause a machine check.  We should
504 		 * only treat the non-write shadow case as non-recoverable.
505 		 */
506 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 			recoverable = 0;
508 	}
509 
510 	if (reason & MCSR_L2MMU_MHIT) {
511 		printk("Hit on multiple TLB entries\n");
512 		recoverable = 0;
513 	}
514 
515 	if (reason & MCSR_NMI)
516 		printk("Non-maskable interrupt\n");
517 
518 	if (reason & MCSR_IF) {
519 		printk("Instruction Fetch Error Report\n");
520 		recoverable = 0;
521 	}
522 
523 	if (reason & MCSR_LD) {
524 		printk("Load Error Report\n");
525 		recoverable = 0;
526 	}
527 
528 	if (reason & MCSR_ST) {
529 		printk("Store Error Report\n");
530 		recoverable = 0;
531 	}
532 
533 	if (reason & MCSR_LDG) {
534 		printk("Guarded Load Error Report\n");
535 		recoverable = 0;
536 	}
537 
538 	if (reason & MCSR_TLBSYNC)
539 		printk("Simultaneous tlbsync operations\n");
540 
541 	if (reason & MCSR_BSL2_ERR) {
542 		printk("Level 2 Cache Error\n");
543 		recoverable = 0;
544 	}
545 
546 	if (reason & MCSR_MAV) {
547 		u64 addr;
548 
549 		addr = mfspr(SPRN_MCAR);
550 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
551 
552 		printk("Machine Check %s Address: %#llx\n",
553 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
554 	}
555 
556 silent_out:
557 	mtspr(SPRN_MCSR, mcsr);
558 	return mfspr(SPRN_MCSR) == 0 && recoverable;
559 }
560 
561 int machine_check_e500(struct pt_regs *regs)
562 {
563 	unsigned long reason = get_mc_reason(regs);
564 
565 	if (reason & MCSR_BUS_RBERR) {
566 		if (fsl_rio_mcheck_exception(regs))
567 			return 1;
568 	}
569 
570 	printk("Machine check in kernel mode.\n");
571 	printk("Caused by (from MCSR=%lx): ", reason);
572 
573 	if (reason & MCSR_MCP)
574 		printk("Machine Check Signal\n");
575 	if (reason & MCSR_ICPERR)
576 		printk("Instruction Cache Parity Error\n");
577 	if (reason & MCSR_DCP_PERR)
578 		printk("Data Cache Push Parity Error\n");
579 	if (reason & MCSR_DCPERR)
580 		printk("Data Cache Parity Error\n");
581 	if (reason & MCSR_BUS_IAERR)
582 		printk("Bus - Instruction Address Error\n");
583 	if (reason & MCSR_BUS_RAERR)
584 		printk("Bus - Read Address Error\n");
585 	if (reason & MCSR_BUS_WAERR)
586 		printk("Bus - Write Address Error\n");
587 	if (reason & MCSR_BUS_IBERR)
588 		printk("Bus - Instruction Data Error\n");
589 	if (reason & MCSR_BUS_RBERR)
590 		printk("Bus - Read Data Bus Error\n");
591 	if (reason & MCSR_BUS_WBERR)
592 		printk("Bus - Read Data Bus Error\n");
593 	if (reason & MCSR_BUS_IPERR)
594 		printk("Bus - Instruction Parity Error\n");
595 	if (reason & MCSR_BUS_RPERR)
596 		printk("Bus - Read Parity Error\n");
597 
598 	return 0;
599 }
600 
601 int machine_check_generic(struct pt_regs *regs)
602 {
603 	return 0;
604 }
605 #elif defined(CONFIG_E200)
606 int machine_check_e200(struct pt_regs *regs)
607 {
608 	unsigned long reason = get_mc_reason(regs);
609 
610 	printk("Machine check in kernel mode.\n");
611 	printk("Caused by (from MCSR=%lx): ", reason);
612 
613 	if (reason & MCSR_MCP)
614 		printk("Machine Check Signal\n");
615 	if (reason & MCSR_CP_PERR)
616 		printk("Cache Push Parity Error\n");
617 	if (reason & MCSR_CPERR)
618 		printk("Cache Parity Error\n");
619 	if (reason & MCSR_EXCP_ERR)
620 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 	if (reason & MCSR_BUS_IRERR)
622 		printk("Bus - Read Bus Error on instruction fetch\n");
623 	if (reason & MCSR_BUS_DRERR)
624 		printk("Bus - Read Bus Error on data load\n");
625 	if (reason & MCSR_BUS_WRERR)
626 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
627 
628 	return 0;
629 }
630 #else
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 	unsigned long reason = get_mc_reason(regs);
634 
635 	printk("Machine check in kernel mode.\n");
636 	printk("Caused by (from SRR1=%lx): ", reason);
637 	switch (reason & 0x601F0000) {
638 	case 0x80000:
639 		printk("Machine check signal\n");
640 		break;
641 	case 0:		/* for 601 */
642 	case 0x40000:
643 	case 0x140000:	/* 7450 MSS error and TEA */
644 		printk("Transfer error ack signal\n");
645 		break;
646 	case 0x20000:
647 		printk("Data parity error signal\n");
648 		break;
649 	case 0x10000:
650 		printk("Address parity error signal\n");
651 		break;
652 	case 0x20000000:
653 		printk("L1 Data Cache error\n");
654 		break;
655 	case 0x40000000:
656 		printk("L1 Instruction Cache error\n");
657 		break;
658 	case 0x00100000:
659 		printk("L2 data cache parity error\n");
660 		break;
661 	default:
662 		printk("Unknown values in msr\n");
663 	}
664 	return 0;
665 }
666 #endif /* everything else */
667 
668 void machine_check_exception(struct pt_regs *regs)
669 {
670 	enum ctx_state prev_state = exception_enter();
671 	int recover = 0;
672 
673 	__get_cpu_var(irq_stat).mce_exceptions++;
674 
675 	/* See if any machine dependent calls. In theory, we would want
676 	 * to call the CPU first, and call the ppc_md. one if the CPU
677 	 * one returns a positive number. However there is existing code
678 	 * that assumes the board gets a first chance, so let's keep it
679 	 * that way for now and fix things later. --BenH.
680 	 */
681 	if (ppc_md.machine_check_exception)
682 		recover = ppc_md.machine_check_exception(regs);
683 	else if (cur_cpu_spec->machine_check)
684 		recover = cur_cpu_spec->machine_check(regs);
685 
686 	if (recover > 0)
687 		goto bail;
688 
689 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
690 	/* the qspan pci read routines can cause machine checks -- Cort
691 	 *
692 	 * yuck !!! that totally needs to go away ! There are better ways
693 	 * to deal with that than having a wart in the mcheck handler.
694 	 * -- BenH
695 	 */
696 	bad_page_fault(regs, regs->dar, SIGBUS);
697 	goto bail;
698 #endif
699 
700 	if (debugger_fault_handler(regs))
701 		goto bail;
702 
703 	if (check_io_access(regs))
704 		goto bail;
705 
706 	die("Machine check", regs, SIGBUS);
707 
708 	/* Must die if the interrupt is not recoverable */
709 	if (!(regs->msr & MSR_RI))
710 		panic("Unrecoverable Machine check");
711 
712 bail:
713 	exception_exit(prev_state);
714 }
715 
716 void SMIException(struct pt_regs *regs)
717 {
718 	die("System Management Interrupt", regs, SIGABRT);
719 }
720 
721 void unknown_exception(struct pt_regs *regs)
722 {
723 	enum ctx_state prev_state = exception_enter();
724 
725 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
726 	       regs->nip, regs->msr, regs->trap);
727 
728 	_exception(SIGTRAP, regs, 0, 0);
729 
730 	exception_exit(prev_state);
731 }
732 
733 void instruction_breakpoint_exception(struct pt_regs *regs)
734 {
735 	enum ctx_state prev_state = exception_enter();
736 
737 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
738 					5, SIGTRAP) == NOTIFY_STOP)
739 		goto bail;
740 	if (debugger_iabr_match(regs))
741 		goto bail;
742 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
743 
744 bail:
745 	exception_exit(prev_state);
746 }
747 
748 void RunModeException(struct pt_regs *regs)
749 {
750 	_exception(SIGTRAP, regs, 0, 0);
751 }
752 
753 void __kprobes single_step_exception(struct pt_regs *regs)
754 {
755 	enum ctx_state prev_state = exception_enter();
756 
757 	clear_single_step(regs);
758 
759 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
760 					5, SIGTRAP) == NOTIFY_STOP)
761 		goto bail;
762 	if (debugger_sstep(regs))
763 		goto bail;
764 
765 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
766 
767 bail:
768 	exception_exit(prev_state);
769 }
770 
771 /*
772  * After we have successfully emulated an instruction, we have to
773  * check if the instruction was being single-stepped, and if so,
774  * pretend we got a single-step exception.  This was pointed out
775  * by Kumar Gala.  -- paulus
776  */
777 static void emulate_single_step(struct pt_regs *regs)
778 {
779 	if (single_stepping(regs))
780 		single_step_exception(regs);
781 }
782 
783 static inline int __parse_fpscr(unsigned long fpscr)
784 {
785 	int ret = 0;
786 
787 	/* Invalid operation */
788 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
789 		ret = FPE_FLTINV;
790 
791 	/* Overflow */
792 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
793 		ret = FPE_FLTOVF;
794 
795 	/* Underflow */
796 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
797 		ret = FPE_FLTUND;
798 
799 	/* Divide by zero */
800 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
801 		ret = FPE_FLTDIV;
802 
803 	/* Inexact result */
804 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
805 		ret = FPE_FLTRES;
806 
807 	return ret;
808 }
809 
810 static void parse_fpe(struct pt_regs *regs)
811 {
812 	int code = 0;
813 
814 	flush_fp_to_thread(current);
815 
816 	code = __parse_fpscr(current->thread.fpscr.val);
817 
818 	_exception(SIGFPE, regs, code, regs->nip);
819 }
820 
821 /*
822  * Illegal instruction emulation support.  Originally written to
823  * provide the PVR to user applications using the mfspr rd, PVR.
824  * Return non-zero if we can't emulate, or -EFAULT if the associated
825  * memory access caused an access fault.  Return zero on success.
826  *
827  * There are a couple of ways to do this, either "decode" the instruction
828  * or directly match lots of bits.  In this case, matching lots of
829  * bits is faster and easier.
830  *
831  */
832 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
833 {
834 	u8 rT = (instword >> 21) & 0x1f;
835 	u8 rA = (instword >> 16) & 0x1f;
836 	u8 NB_RB = (instword >> 11) & 0x1f;
837 	u32 num_bytes;
838 	unsigned long EA;
839 	int pos = 0;
840 
841 	/* Early out if we are an invalid form of lswx */
842 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
843 		if ((rT == rA) || (rT == NB_RB))
844 			return -EINVAL;
845 
846 	EA = (rA == 0) ? 0 : regs->gpr[rA];
847 
848 	switch (instword & PPC_INST_STRING_MASK) {
849 		case PPC_INST_LSWX:
850 		case PPC_INST_STSWX:
851 			EA += NB_RB;
852 			num_bytes = regs->xer & 0x7f;
853 			break;
854 		case PPC_INST_LSWI:
855 		case PPC_INST_STSWI:
856 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
857 			break;
858 		default:
859 			return -EINVAL;
860 	}
861 
862 	while (num_bytes != 0)
863 	{
864 		u8 val;
865 		u32 shift = 8 * (3 - (pos & 0x3));
866 
867 		/* if process is 32-bit, clear upper 32 bits of EA */
868 		if ((regs->msr & MSR_64BIT) == 0)
869 			EA &= 0xFFFFFFFF;
870 
871 		switch ((instword & PPC_INST_STRING_MASK)) {
872 			case PPC_INST_LSWX:
873 			case PPC_INST_LSWI:
874 				if (get_user(val, (u8 __user *)EA))
875 					return -EFAULT;
876 				/* first time updating this reg,
877 				 * zero it out */
878 				if (pos == 0)
879 					regs->gpr[rT] = 0;
880 				regs->gpr[rT] |= val << shift;
881 				break;
882 			case PPC_INST_STSWI:
883 			case PPC_INST_STSWX:
884 				val = regs->gpr[rT] >> shift;
885 				if (put_user(val, (u8 __user *)EA))
886 					return -EFAULT;
887 				break;
888 		}
889 		/* move EA to next address */
890 		EA += 1;
891 		num_bytes--;
892 
893 		/* manage our position within the register */
894 		if (++pos == 4) {
895 			pos = 0;
896 			if (++rT == 32)
897 				rT = 0;
898 		}
899 	}
900 
901 	return 0;
902 }
903 
904 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
905 {
906 	u32 ra,rs;
907 	unsigned long tmp;
908 
909 	ra = (instword >> 16) & 0x1f;
910 	rs = (instword >> 21) & 0x1f;
911 
912 	tmp = regs->gpr[rs];
913 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
914 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
915 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
916 	regs->gpr[ra] = tmp;
917 
918 	return 0;
919 }
920 
921 static int emulate_isel(struct pt_regs *regs, u32 instword)
922 {
923 	u8 rT = (instword >> 21) & 0x1f;
924 	u8 rA = (instword >> 16) & 0x1f;
925 	u8 rB = (instword >> 11) & 0x1f;
926 	u8 BC = (instword >> 6) & 0x1f;
927 	u8 bit;
928 	unsigned long tmp;
929 
930 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
931 	bit = (regs->ccr >> (31 - BC)) & 0x1;
932 
933 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
934 
935 	return 0;
936 }
937 
938 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
939 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
940 {
941         /* If we're emulating a load/store in an active transaction, we cannot
942          * emulate it as the kernel operates in transaction suspended context.
943          * We need to abort the transaction.  This creates a persistent TM
944          * abort so tell the user what caused it with a new code.
945 	 */
946 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
947 		tm_enable();
948 		tm_abort(cause);
949 		return true;
950 	}
951 	return false;
952 }
953 #else
954 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
955 {
956 	return false;
957 }
958 #endif
959 
960 static int emulate_instruction(struct pt_regs *regs)
961 {
962 	u32 instword;
963 	u32 rd;
964 
965 	if (!user_mode(regs) || (regs->msr & MSR_LE))
966 		return -EINVAL;
967 	CHECK_FULL_REGS(regs);
968 
969 	if (get_user(instword, (u32 __user *)(regs->nip)))
970 		return -EFAULT;
971 
972 	/* Emulate the mfspr rD, PVR. */
973 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
974 		PPC_WARN_EMULATED(mfpvr, regs);
975 		rd = (instword >> 21) & 0x1f;
976 		regs->gpr[rd] = mfspr(SPRN_PVR);
977 		return 0;
978 	}
979 
980 	/* Emulating the dcba insn is just a no-op.  */
981 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
982 		PPC_WARN_EMULATED(dcba, regs);
983 		return 0;
984 	}
985 
986 	/* Emulate the mcrxr insn.  */
987 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
988 		int shift = (instword >> 21) & 0x1c;
989 		unsigned long msk = 0xf0000000UL >> shift;
990 
991 		PPC_WARN_EMULATED(mcrxr, regs);
992 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
993 		regs->xer &= ~0xf0000000UL;
994 		return 0;
995 	}
996 
997 	/* Emulate load/store string insn. */
998 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
999 		if (tm_abort_check(regs,
1000 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1001 			return -EINVAL;
1002 		PPC_WARN_EMULATED(string, regs);
1003 		return emulate_string_inst(regs, instword);
1004 	}
1005 
1006 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1007 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1008 		PPC_WARN_EMULATED(popcntb, regs);
1009 		return emulate_popcntb_inst(regs, instword);
1010 	}
1011 
1012 	/* Emulate isel (Integer Select) instruction */
1013 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1014 		PPC_WARN_EMULATED(isel, regs);
1015 		return emulate_isel(regs, instword);
1016 	}
1017 
1018 #ifdef CONFIG_PPC64
1019 	/* Emulate the mfspr rD, DSCR. */
1020 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1021 		PPC_INST_MFSPR_DSCR_USER) ||
1022 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1023 		PPC_INST_MFSPR_DSCR)) &&
1024 			cpu_has_feature(CPU_FTR_DSCR)) {
1025 		PPC_WARN_EMULATED(mfdscr, regs);
1026 		rd = (instword >> 21) & 0x1f;
1027 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1028 		return 0;
1029 	}
1030 	/* Emulate the mtspr DSCR, rD. */
1031 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1032 		PPC_INST_MTSPR_DSCR_USER) ||
1033 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1034 		PPC_INST_MTSPR_DSCR)) &&
1035 			cpu_has_feature(CPU_FTR_DSCR)) {
1036 		PPC_WARN_EMULATED(mtdscr, regs);
1037 		rd = (instword >> 21) & 0x1f;
1038 		current->thread.dscr = regs->gpr[rd];
1039 		current->thread.dscr_inherit = 1;
1040 		mtspr(SPRN_DSCR, current->thread.dscr);
1041 		return 0;
1042 	}
1043 #endif
1044 
1045 	return -EINVAL;
1046 }
1047 
1048 int is_valid_bugaddr(unsigned long addr)
1049 {
1050 	return is_kernel_addr(addr);
1051 }
1052 
1053 void __kprobes program_check_exception(struct pt_regs *regs)
1054 {
1055 	enum ctx_state prev_state = exception_enter();
1056 	unsigned int reason = get_reason(regs);
1057 	extern int do_mathemu(struct pt_regs *regs);
1058 
1059 	/* We can now get here via a FP Unavailable exception if the core
1060 	 * has no FPU, in that case the reason flags will be 0 */
1061 
1062 	if (reason & REASON_FP) {
1063 		/* IEEE FP exception */
1064 		parse_fpe(regs);
1065 		goto bail;
1066 	}
1067 	if (reason & REASON_TRAP) {
1068 		/* Debugger is first in line to stop recursive faults in
1069 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1070 		if (debugger_bpt(regs))
1071 			goto bail;
1072 
1073 		/* trap exception */
1074 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1075 				== NOTIFY_STOP)
1076 			goto bail;
1077 
1078 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1079 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1080 			regs->nip += 4;
1081 			goto bail;
1082 		}
1083 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1084 		goto bail;
1085 	}
1086 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1087 	if (reason & REASON_TM) {
1088 		/* This is a TM "Bad Thing Exception" program check.
1089 		 * This occurs when:
1090 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1091 		 *    transition in TM states.
1092 		 * -  A trechkpt is attempted when transactional.
1093 		 * -  A treclaim is attempted when non transactional.
1094 		 * -  A tend is illegally attempted.
1095 		 * -  writing a TM SPR when transactional.
1096 		 */
1097 		if (!user_mode(regs) &&
1098 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1099 			regs->nip += 4;
1100 			goto bail;
1101 		}
1102 		/* If usermode caused this, it's done something illegal and
1103 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1104 		 * operand to distinguish from the instruction just being bad
1105 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1106 		 * illegal /placement/ of a valid instruction.
1107 		 */
1108 		if (user_mode(regs)) {
1109 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1110 			goto bail;
1111 		} else {
1112 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1113 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1114 			die("Unrecoverable exception", regs, SIGABRT);
1115 		}
1116 	}
1117 #endif
1118 
1119 	/* We restore the interrupt state now */
1120 	if (!arch_irq_disabled_regs(regs))
1121 		local_irq_enable();
1122 
1123 #ifdef CONFIG_MATH_EMULATION
1124 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1125 	 * but there seems to be a hardware bug on the 405GP (RevD)
1126 	 * that means ESR is sometimes set incorrectly - either to
1127 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1128 	 * hardware people - not sure if it can happen on any illegal
1129 	 * instruction or only on FP instructions, whether there is a
1130 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1131 	 */
1132 
1133 	/*
1134 	 * If we support a HW FPU, we need to ensure the FP state
1135 	 * if flushed into the thread_struct before attempting
1136 	 * emulation
1137 	 */
1138 #ifdef CONFIG_PPC_FPU
1139 	flush_fp_to_thread(current);
1140 #endif
1141 	switch (do_mathemu(regs)) {
1142 	case 0:
1143 		emulate_single_step(regs);
1144 		goto bail;
1145 	case 1: {
1146 			int code = 0;
1147 			code = __parse_fpscr(current->thread.fpscr.val);
1148 			_exception(SIGFPE, regs, code, regs->nip);
1149 			goto bail;
1150 		}
1151 	case -EFAULT:
1152 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1153 		goto bail;
1154 	}
1155 	/* fall through on any other errors */
1156 #endif /* CONFIG_MATH_EMULATION */
1157 
1158 	/* Try to emulate it if we should. */
1159 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1160 		switch (emulate_instruction(regs)) {
1161 		case 0:
1162 			regs->nip += 4;
1163 			emulate_single_step(regs);
1164 			goto bail;
1165 		case -EFAULT:
1166 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1167 			goto bail;
1168 		}
1169 	}
1170 
1171 	if (reason & REASON_PRIVILEGED)
1172 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1173 	else
1174 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1175 
1176 bail:
1177 	exception_exit(prev_state);
1178 }
1179 
1180 /*
1181  * This occurs when running in hypervisor mode on POWER6 or later
1182  * and an illegal instruction is encountered.
1183  */
1184 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1185 {
1186 	regs->msr |= REASON_ILLEGAL;
1187 	program_check_exception(regs);
1188 }
1189 
1190 void alignment_exception(struct pt_regs *regs)
1191 {
1192 	enum ctx_state prev_state = exception_enter();
1193 	int sig, code, fixed = 0;
1194 
1195 	/* We restore the interrupt state now */
1196 	if (!arch_irq_disabled_regs(regs))
1197 		local_irq_enable();
1198 
1199 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1200 		goto bail;
1201 
1202 	/* we don't implement logging of alignment exceptions */
1203 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1204 		fixed = fix_alignment(regs);
1205 
1206 	if (fixed == 1) {
1207 		regs->nip += 4;	/* skip over emulated instruction */
1208 		emulate_single_step(regs);
1209 		goto bail;
1210 	}
1211 
1212 	/* Operand address was bad */
1213 	if (fixed == -EFAULT) {
1214 		sig = SIGSEGV;
1215 		code = SEGV_ACCERR;
1216 	} else {
1217 		sig = SIGBUS;
1218 		code = BUS_ADRALN;
1219 	}
1220 	if (user_mode(regs))
1221 		_exception(sig, regs, code, regs->dar);
1222 	else
1223 		bad_page_fault(regs, regs->dar, sig);
1224 
1225 bail:
1226 	exception_exit(prev_state);
1227 }
1228 
1229 void StackOverflow(struct pt_regs *regs)
1230 {
1231 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1232 	       current, regs->gpr[1]);
1233 	debugger(regs);
1234 	show_regs(regs);
1235 	panic("kernel stack overflow");
1236 }
1237 
1238 void nonrecoverable_exception(struct pt_regs *regs)
1239 {
1240 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1241 	       regs->nip, regs->msr);
1242 	debugger(regs);
1243 	die("nonrecoverable exception", regs, SIGKILL);
1244 }
1245 
1246 void trace_syscall(struct pt_regs *regs)
1247 {
1248 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1249 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1250 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1251 }
1252 
1253 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1254 {
1255 	enum ctx_state prev_state = exception_enter();
1256 
1257 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1258 			  "%lx at %lx\n", regs->trap, regs->nip);
1259 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1260 
1261 	exception_exit(prev_state);
1262 }
1263 
1264 void altivec_unavailable_exception(struct pt_regs *regs)
1265 {
1266 	enum ctx_state prev_state = exception_enter();
1267 
1268 	if (user_mode(regs)) {
1269 		/* A user program has executed an altivec instruction,
1270 		   but this kernel doesn't support altivec. */
1271 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1272 		goto bail;
1273 	}
1274 
1275 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1276 			"%lx at %lx\n", regs->trap, regs->nip);
1277 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1278 
1279 bail:
1280 	exception_exit(prev_state);
1281 }
1282 
1283 void vsx_unavailable_exception(struct pt_regs *regs)
1284 {
1285 	if (user_mode(regs)) {
1286 		/* A user program has executed an vsx instruction,
1287 		   but this kernel doesn't support vsx. */
1288 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1289 		return;
1290 	}
1291 
1292 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1293 			"%lx at %lx\n", regs->trap, regs->nip);
1294 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1295 }
1296 
1297 #ifdef CONFIG_PPC64
1298 void facility_unavailable_exception(struct pt_regs *regs)
1299 {
1300 	static char *facility_strings[] = {
1301 		[FSCR_FP_LG] = "FPU",
1302 		[FSCR_VECVSX_LG] = "VMX/VSX",
1303 		[FSCR_DSCR_LG] = "DSCR",
1304 		[FSCR_PM_LG] = "PMU SPRs",
1305 		[FSCR_BHRB_LG] = "BHRB",
1306 		[FSCR_TM_LG] = "TM",
1307 		[FSCR_EBB_LG] = "EBB",
1308 		[FSCR_TAR_LG] = "TAR",
1309 	};
1310 	char *facility = "unknown";
1311 	u64 value;
1312 	u8 status;
1313 	bool hv;
1314 
1315 	hv = (regs->trap == 0xf80);
1316 	if (hv)
1317 		value = mfspr(SPRN_HFSCR);
1318 	else
1319 		value = mfspr(SPRN_FSCR);
1320 
1321 	status = value >> 56;
1322 	if (status == FSCR_DSCR_LG) {
1323 		/* User is acessing the DSCR.  Set the inherit bit and allow
1324 		 * the user to set it directly in future by setting via the
1325 		 * H/FSCR DSCR bit.
1326 		 */
1327 		current->thread.dscr_inherit = 1;
1328 		if (hv)
1329 			mtspr(SPRN_HFSCR, value | HFSCR_DSCR);
1330 		else
1331 			mtspr(SPRN_FSCR,  value | FSCR_DSCR);
1332 		return;
1333 	}
1334 
1335 	if ((status < ARRAY_SIZE(facility_strings)) &&
1336 	    facility_strings[status])
1337 		facility = facility_strings[status];
1338 
1339 	/* We restore the interrupt state now */
1340 	if (!arch_irq_disabled_regs(regs))
1341 		local_irq_enable();
1342 
1343 	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1344 	       hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1345 
1346 	if (user_mode(regs)) {
1347 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1348 		return;
1349 	}
1350 
1351 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1352 }
1353 #endif
1354 
1355 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1356 
1357 extern void do_load_up_fpu(struct pt_regs *regs);
1358 
1359 void fp_unavailable_tm(struct pt_regs *regs)
1360 {
1361 	/* Note:  This does not handle any kind of FP laziness. */
1362 
1363 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1364 		 regs->nip, regs->msr);
1365 	tm_enable();
1366 
1367         /* We can only have got here if the task started using FP after
1368          * beginning the transaction.  So, the transactional regs are just a
1369          * copy of the checkpointed ones.  But, we still need to recheckpoint
1370          * as we're enabling FP for the process; it will return, abort the
1371          * transaction, and probably retry but now with FP enabled.  So the
1372          * checkpointed FP registers need to be loaded.
1373 	 */
1374 	tm_reclaim(&current->thread, current->thread.regs->msr,
1375 		   TM_CAUSE_FAC_UNAV);
1376 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1377 
1378 	/* Enable FP for the task: */
1379 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1380 
1381 	/* This loads and recheckpoints the FP registers from
1382 	 * thread.fpr[].  They will remain in registers after the
1383 	 * checkpoint so we don't need to reload them after.
1384 	 */
1385 	tm_recheckpoint(&current->thread, regs->msr);
1386 }
1387 
1388 #ifdef CONFIG_ALTIVEC
1389 extern void do_load_up_altivec(struct pt_regs *regs);
1390 
1391 void altivec_unavailable_tm(struct pt_regs *regs)
1392 {
1393 	/* See the comments in fp_unavailable_tm().  This function operates
1394 	 * the same way.
1395 	 */
1396 
1397 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1398 		 "MSR=%lx\n",
1399 		 regs->nip, regs->msr);
1400 	tm_enable();
1401 	tm_reclaim(&current->thread, current->thread.regs->msr,
1402 		   TM_CAUSE_FAC_UNAV);
1403 	regs->msr |= MSR_VEC;
1404 	tm_recheckpoint(&current->thread, regs->msr);
1405 	current->thread.used_vr = 1;
1406 }
1407 #endif
1408 
1409 #ifdef CONFIG_VSX
1410 void vsx_unavailable_tm(struct pt_regs *regs)
1411 {
1412 	/* See the comments in fp_unavailable_tm().  This works similarly,
1413 	 * though we're loading both FP and VEC registers in here.
1414 	 *
1415 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1416 	 * regs.  Either way, set MSR_VSX.
1417 	 */
1418 
1419 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1420 		 "MSR=%lx\n",
1421 		 regs->nip, regs->msr);
1422 
1423 	tm_enable();
1424 	/* This reclaims FP and/or VR regs if they're already enabled */
1425 	tm_reclaim(&current->thread, current->thread.regs->msr,
1426 		   TM_CAUSE_FAC_UNAV);
1427 
1428 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1429 		MSR_VSX;
1430 	/* This loads & recheckpoints FP and VRs. */
1431 	tm_recheckpoint(&current->thread, regs->msr);
1432 	current->thread.used_vsr = 1;
1433 }
1434 #endif
1435 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1436 
1437 void performance_monitor_exception(struct pt_regs *regs)
1438 {
1439 	__get_cpu_var(irq_stat).pmu_irqs++;
1440 
1441 	perf_irq(regs);
1442 }
1443 
1444 #ifdef CONFIG_8xx
1445 void SoftwareEmulation(struct pt_regs *regs)
1446 {
1447 	extern int do_mathemu(struct pt_regs *);
1448 #if defined(CONFIG_MATH_EMULATION)
1449 	int errcode;
1450 #endif
1451 
1452 	CHECK_FULL_REGS(regs);
1453 
1454 	if (!user_mode(regs)) {
1455 		debugger(regs);
1456 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1457 	}
1458 
1459 #ifdef CONFIG_MATH_EMULATION
1460 	errcode = do_mathemu(regs);
1461 	if (errcode >= 0)
1462 		PPC_WARN_EMULATED(math, regs);
1463 
1464 	switch (errcode) {
1465 	case 0:
1466 		emulate_single_step(regs);
1467 		return;
1468 	case 1: {
1469 			int code = 0;
1470 			code = __parse_fpscr(current->thread.fpscr.val);
1471 			_exception(SIGFPE, regs, code, regs->nip);
1472 			return;
1473 		}
1474 	case -EFAULT:
1475 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1476 		return;
1477 	default:
1478 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1479 		return;
1480 	}
1481 #else
1482 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1483 #endif
1484 }
1485 #endif /* CONFIG_8xx */
1486 
1487 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1488 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1489 {
1490 	int changed = 0;
1491 	/*
1492 	 * Determine the cause of the debug event, clear the
1493 	 * event flags and send a trap to the handler. Torez
1494 	 */
1495 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1496 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1497 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1498 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1499 #endif
1500 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1501 			     5);
1502 		changed |= 0x01;
1503 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1504 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1505 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1506 			     6);
1507 		changed |= 0x01;
1508 	}  else if (debug_status & DBSR_IAC1) {
1509 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1510 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1511 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1512 			     1);
1513 		changed |= 0x01;
1514 	}  else if (debug_status & DBSR_IAC2) {
1515 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1516 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1517 			     2);
1518 		changed |= 0x01;
1519 	}  else if (debug_status & DBSR_IAC3) {
1520 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1521 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1522 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1523 			     3);
1524 		changed |= 0x01;
1525 	}  else if (debug_status & DBSR_IAC4) {
1526 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1527 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1528 			     4);
1529 		changed |= 0x01;
1530 	}
1531 	/*
1532 	 * At the point this routine was called, the MSR(DE) was turned off.
1533 	 * Check all other debug flags and see if that bit needs to be turned
1534 	 * back on or not.
1535 	 */
1536 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1537 		regs->msr |= MSR_DE;
1538 	else
1539 		/* Make sure the IDM flag is off */
1540 		current->thread.dbcr0 &= ~DBCR0_IDM;
1541 
1542 	if (changed & 0x01)
1543 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1544 }
1545 
1546 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1547 {
1548 	current->thread.dbsr = debug_status;
1549 
1550 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1551 	 * on server, it stops on the target of the branch. In order to simulate
1552 	 * the server behaviour, we thus restart right away with a single step
1553 	 * instead of stopping here when hitting a BT
1554 	 */
1555 	if (debug_status & DBSR_BT) {
1556 		regs->msr &= ~MSR_DE;
1557 
1558 		/* Disable BT */
1559 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1560 		/* Clear the BT event */
1561 		mtspr(SPRN_DBSR, DBSR_BT);
1562 
1563 		/* Do the single step trick only when coming from userspace */
1564 		if (user_mode(regs)) {
1565 			current->thread.dbcr0 &= ~DBCR0_BT;
1566 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1567 			regs->msr |= MSR_DE;
1568 			return;
1569 		}
1570 
1571 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1572 			       5, SIGTRAP) == NOTIFY_STOP) {
1573 			return;
1574 		}
1575 		if (debugger_sstep(regs))
1576 			return;
1577 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1578 		regs->msr &= ~MSR_DE;
1579 
1580 		/* Disable instruction completion */
1581 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1582 		/* Clear the instruction completion event */
1583 		mtspr(SPRN_DBSR, DBSR_IC);
1584 
1585 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1586 			       5, SIGTRAP) == NOTIFY_STOP) {
1587 			return;
1588 		}
1589 
1590 		if (debugger_sstep(regs))
1591 			return;
1592 
1593 		if (user_mode(regs)) {
1594 			current->thread.dbcr0 &= ~DBCR0_IC;
1595 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1596 					       current->thread.dbcr1))
1597 				regs->msr |= MSR_DE;
1598 			else
1599 				/* Make sure the IDM bit is off */
1600 				current->thread.dbcr0 &= ~DBCR0_IDM;
1601 		}
1602 
1603 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1604 	} else
1605 		handle_debug(regs, debug_status);
1606 }
1607 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1608 
1609 #if !defined(CONFIG_TAU_INT)
1610 void TAUException(struct pt_regs *regs)
1611 {
1612 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1613 	       regs->nip, regs->msr, regs->trap, print_tainted());
1614 }
1615 #endif /* CONFIG_INT_TAU */
1616 
1617 #ifdef CONFIG_ALTIVEC
1618 void altivec_assist_exception(struct pt_regs *regs)
1619 {
1620 	int err;
1621 
1622 	if (!user_mode(regs)) {
1623 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1624 		       " at %lx\n", regs->nip);
1625 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1626 	}
1627 
1628 	flush_altivec_to_thread(current);
1629 
1630 	PPC_WARN_EMULATED(altivec, regs);
1631 	err = emulate_altivec(regs);
1632 	if (err == 0) {
1633 		regs->nip += 4;		/* skip emulated instruction */
1634 		emulate_single_step(regs);
1635 		return;
1636 	}
1637 
1638 	if (err == -EFAULT) {
1639 		/* got an error reading the instruction */
1640 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1641 	} else {
1642 		/* didn't recognize the instruction */
1643 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1644 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1645 				   "in %s at %lx\n", current->comm, regs->nip);
1646 		current->thread.vscr.u[3] |= 0x10000;
1647 	}
1648 }
1649 #endif /* CONFIG_ALTIVEC */
1650 
1651 #ifdef CONFIG_VSX
1652 void vsx_assist_exception(struct pt_regs *regs)
1653 {
1654 	if (!user_mode(regs)) {
1655 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1656 		       " at %lx\n", regs->nip);
1657 		die("Kernel VSX assist exception", regs, SIGILL);
1658 	}
1659 
1660 	flush_vsx_to_thread(current);
1661 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1662 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1663 }
1664 #endif /* CONFIG_VSX */
1665 
1666 #ifdef CONFIG_FSL_BOOKE
1667 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1668 			   unsigned long error_code)
1669 {
1670 	/* We treat cache locking instructions from the user
1671 	 * as priv ops, in the future we could try to do
1672 	 * something smarter
1673 	 */
1674 	if (error_code & (ESR_DLK|ESR_ILK))
1675 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1676 	return;
1677 }
1678 #endif /* CONFIG_FSL_BOOKE */
1679 
1680 #ifdef CONFIG_SPE
1681 void SPEFloatingPointException(struct pt_regs *regs)
1682 {
1683 	extern int do_spe_mathemu(struct pt_regs *regs);
1684 	unsigned long spefscr;
1685 	int fpexc_mode;
1686 	int code = 0;
1687 	int err;
1688 
1689 	flush_spe_to_thread(current);
1690 
1691 	spefscr = current->thread.spefscr;
1692 	fpexc_mode = current->thread.fpexc_mode;
1693 
1694 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1695 		code = FPE_FLTOVF;
1696 	}
1697 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1698 		code = FPE_FLTUND;
1699 	}
1700 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1701 		code = FPE_FLTDIV;
1702 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1703 		code = FPE_FLTINV;
1704 	}
1705 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1706 		code = FPE_FLTRES;
1707 
1708 	err = do_spe_mathemu(regs);
1709 	if (err == 0) {
1710 		regs->nip += 4;		/* skip emulated instruction */
1711 		emulate_single_step(regs);
1712 		return;
1713 	}
1714 
1715 	if (err == -EFAULT) {
1716 		/* got an error reading the instruction */
1717 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1718 	} else if (err == -EINVAL) {
1719 		/* didn't recognize the instruction */
1720 		printk(KERN_ERR "unrecognized spe instruction "
1721 		       "in %s at %lx\n", current->comm, regs->nip);
1722 	} else {
1723 		_exception(SIGFPE, regs, code, regs->nip);
1724 	}
1725 
1726 	return;
1727 }
1728 
1729 void SPEFloatingPointRoundException(struct pt_regs *regs)
1730 {
1731 	extern int speround_handler(struct pt_regs *regs);
1732 	int err;
1733 
1734 	preempt_disable();
1735 	if (regs->msr & MSR_SPE)
1736 		giveup_spe(current);
1737 	preempt_enable();
1738 
1739 	regs->nip -= 4;
1740 	err = speround_handler(regs);
1741 	if (err == 0) {
1742 		regs->nip += 4;		/* skip emulated instruction */
1743 		emulate_single_step(regs);
1744 		return;
1745 	}
1746 
1747 	if (err == -EFAULT) {
1748 		/* got an error reading the instruction */
1749 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1750 	} else if (err == -EINVAL) {
1751 		/* didn't recognize the instruction */
1752 		printk(KERN_ERR "unrecognized spe instruction "
1753 		       "in %s at %lx\n", current->comm, regs->nip);
1754 	} else {
1755 		_exception(SIGFPE, regs, 0, regs->nip);
1756 		return;
1757 	}
1758 }
1759 #endif
1760 
1761 /*
1762  * We enter here if we get an unrecoverable exception, that is, one
1763  * that happened at a point where the RI (recoverable interrupt) bit
1764  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1765  * we therefore lost state by taking this exception.
1766  */
1767 void unrecoverable_exception(struct pt_regs *regs)
1768 {
1769 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1770 	       regs->trap, regs->nip);
1771 	die("Unrecoverable exception", regs, SIGABRT);
1772 }
1773 
1774 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1775 /*
1776  * Default handler for a Watchdog exception,
1777  * spins until a reboot occurs
1778  */
1779 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1780 {
1781 	/* Generic WatchdogHandler, implement your own */
1782 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1783 	return;
1784 }
1785 
1786 void WatchdogException(struct pt_regs *regs)
1787 {
1788 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1789 	WatchdogHandler(regs);
1790 }
1791 #endif
1792 
1793 /*
1794  * We enter here if we discover during exception entry that we are
1795  * running in supervisor mode with a userspace value in the stack pointer.
1796  */
1797 void kernel_bad_stack(struct pt_regs *regs)
1798 {
1799 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1800 	       regs->gpr[1], regs->nip);
1801 	die("Bad kernel stack pointer", regs, SIGABRT);
1802 }
1803 
1804 void __init trap_init(void)
1805 {
1806 }
1807 
1808 
1809 #ifdef CONFIG_PPC_EMULATED_STATS
1810 
1811 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1812 
1813 struct ppc_emulated ppc_emulated = {
1814 #ifdef CONFIG_ALTIVEC
1815 	WARN_EMULATED_SETUP(altivec),
1816 #endif
1817 	WARN_EMULATED_SETUP(dcba),
1818 	WARN_EMULATED_SETUP(dcbz),
1819 	WARN_EMULATED_SETUP(fp_pair),
1820 	WARN_EMULATED_SETUP(isel),
1821 	WARN_EMULATED_SETUP(mcrxr),
1822 	WARN_EMULATED_SETUP(mfpvr),
1823 	WARN_EMULATED_SETUP(multiple),
1824 	WARN_EMULATED_SETUP(popcntb),
1825 	WARN_EMULATED_SETUP(spe),
1826 	WARN_EMULATED_SETUP(string),
1827 	WARN_EMULATED_SETUP(unaligned),
1828 #ifdef CONFIG_MATH_EMULATION
1829 	WARN_EMULATED_SETUP(math),
1830 #endif
1831 #ifdef CONFIG_VSX
1832 	WARN_EMULATED_SETUP(vsx),
1833 #endif
1834 #ifdef CONFIG_PPC64
1835 	WARN_EMULATED_SETUP(mfdscr),
1836 	WARN_EMULATED_SETUP(mtdscr),
1837 #endif
1838 };
1839 
1840 u32 ppc_warn_emulated;
1841 
1842 void ppc_warn_emulated_print(const char *type)
1843 {
1844 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1845 			    type);
1846 }
1847 
1848 static int __init ppc_warn_emulated_init(void)
1849 {
1850 	struct dentry *dir, *d;
1851 	unsigned int i;
1852 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1853 
1854 	if (!powerpc_debugfs_root)
1855 		return -ENODEV;
1856 
1857 	dir = debugfs_create_dir("emulated_instructions",
1858 				 powerpc_debugfs_root);
1859 	if (!dir)
1860 		return -ENOMEM;
1861 
1862 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1863 			       &ppc_warn_emulated);
1864 	if (!d)
1865 		goto fail;
1866 
1867 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1868 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1869 				       (u32 *)&entries[i].val.counter);
1870 		if (!d)
1871 			goto fail;
1872 	}
1873 
1874 	return 0;
1875 
1876 fail:
1877 	debugfs_remove_recursive(dir);
1878 	return -ENOMEM;
1879 }
1880 
1881 device_initcall(ppc_warn_emulated_init);
1882 
1883 #endif /* CONFIG_PPC_EMULATED_STATS */
1884