xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision bc000245)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 #endif
289 
290 /*
291  * I/O accesses can cause machine checks on powermacs.
292  * Check if the NIP corresponds to the address of a sync
293  * instruction for which there is an entry in the exception
294  * table.
295  * Note that the 601 only takes a machine check on TEA
296  * (transfer error ack) signal assertion, and does not
297  * set any of the top 16 bits of SRR1.
298  *  -- paulus.
299  */
300 static inline int check_io_access(struct pt_regs *regs)
301 {
302 #ifdef CONFIG_PPC32
303 	unsigned long msr = regs->msr;
304 	const struct exception_table_entry *entry;
305 	unsigned int *nip = (unsigned int *)regs->nip;
306 
307 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
308 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
309 		/*
310 		 * Check that it's a sync instruction, or somewhere
311 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
312 		 * As the address is in the exception table
313 		 * we should be able to read the instr there.
314 		 * For the debug message, we look at the preceding
315 		 * load or store.
316 		 */
317 		if (*nip == 0x60000000)		/* nop */
318 			nip -= 2;
319 		else if (*nip == 0x4c00012c)	/* isync */
320 			--nip;
321 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
322 			/* sync or twi */
323 			unsigned int rb;
324 
325 			--nip;
326 			rb = (*nip >> 11) & 0x1f;
327 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
328 			       (*nip & 0x100)? "OUT to": "IN from",
329 			       regs->gpr[rb] - _IO_BASE, nip);
330 			regs->msr |= MSR_RI;
331 			regs->nip = entry->fixup;
332 			return 1;
333 		}
334 	}
335 #endif /* CONFIG_PPC32 */
336 	return 0;
337 }
338 
339 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
340 /* On 4xx, the reason for the machine check or program exception
341    is in the ESR. */
342 #define get_reason(regs)	((regs)->dsisr)
343 #ifndef CONFIG_FSL_BOOKE
344 #define get_mc_reason(regs)	((regs)->dsisr)
345 #else
346 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
347 #endif
348 #define REASON_FP		ESR_FP
349 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
350 #define REASON_PRIVILEGED	ESR_PPR
351 #define REASON_TRAP		ESR_PTR
352 
353 /* single-step stuff */
354 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
355 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
356 
357 #else
358 /* On non-4xx, the reason for the machine check or program
359    exception is in the MSR. */
360 #define get_reason(regs)	((regs)->msr)
361 #define get_mc_reason(regs)	((regs)->msr)
362 #define REASON_TM		0x200000
363 #define REASON_FP		0x100000
364 #define REASON_ILLEGAL		0x80000
365 #define REASON_PRIVILEGED	0x40000
366 #define REASON_TRAP		0x20000
367 
368 #define single_stepping(regs)	((regs)->msr & MSR_SE)
369 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
370 #endif
371 
372 #if defined(CONFIG_4xx)
373 int machine_check_4xx(struct pt_regs *regs)
374 {
375 	unsigned long reason = get_mc_reason(regs);
376 
377 	if (reason & ESR_IMCP) {
378 		printk("Instruction");
379 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
380 	} else
381 		printk("Data");
382 	printk(" machine check in kernel mode.\n");
383 
384 	return 0;
385 }
386 
387 int machine_check_440A(struct pt_regs *regs)
388 {
389 	unsigned long reason = get_mc_reason(regs);
390 
391 	printk("Machine check in kernel mode.\n");
392 	if (reason & ESR_IMCP){
393 		printk("Instruction Synchronous Machine Check exception\n");
394 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 	}
396 	else {
397 		u32 mcsr = mfspr(SPRN_MCSR);
398 		if (mcsr & MCSR_IB)
399 			printk("Instruction Read PLB Error\n");
400 		if (mcsr & MCSR_DRB)
401 			printk("Data Read PLB Error\n");
402 		if (mcsr & MCSR_DWB)
403 			printk("Data Write PLB Error\n");
404 		if (mcsr & MCSR_TLBP)
405 			printk("TLB Parity Error\n");
406 		if (mcsr & MCSR_ICP){
407 			flush_instruction_cache();
408 			printk("I-Cache Parity Error\n");
409 		}
410 		if (mcsr & MCSR_DCSP)
411 			printk("D-Cache Search Parity Error\n");
412 		if (mcsr & MCSR_DCFP)
413 			printk("D-Cache Flush Parity Error\n");
414 		if (mcsr & MCSR_IMPE)
415 			printk("Machine Check exception is imprecise\n");
416 
417 		/* Clear MCSR */
418 		mtspr(SPRN_MCSR, mcsr);
419 	}
420 	return 0;
421 }
422 
423 int machine_check_47x(struct pt_regs *regs)
424 {
425 	unsigned long reason = get_mc_reason(regs);
426 	u32 mcsr;
427 
428 	printk(KERN_ERR "Machine check in kernel mode.\n");
429 	if (reason & ESR_IMCP) {
430 		printk(KERN_ERR
431 		       "Instruction Synchronous Machine Check exception\n");
432 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
433 		return 0;
434 	}
435 	mcsr = mfspr(SPRN_MCSR);
436 	if (mcsr & MCSR_IB)
437 		printk(KERN_ERR "Instruction Read PLB Error\n");
438 	if (mcsr & MCSR_DRB)
439 		printk(KERN_ERR "Data Read PLB Error\n");
440 	if (mcsr & MCSR_DWB)
441 		printk(KERN_ERR "Data Write PLB Error\n");
442 	if (mcsr & MCSR_TLBP)
443 		printk(KERN_ERR "TLB Parity Error\n");
444 	if (mcsr & MCSR_ICP) {
445 		flush_instruction_cache();
446 		printk(KERN_ERR "I-Cache Parity Error\n");
447 	}
448 	if (mcsr & MCSR_DCSP)
449 		printk(KERN_ERR "D-Cache Search Parity Error\n");
450 	if (mcsr & PPC47x_MCSR_GPR)
451 		printk(KERN_ERR "GPR Parity Error\n");
452 	if (mcsr & PPC47x_MCSR_FPR)
453 		printk(KERN_ERR "FPR Parity Error\n");
454 	if (mcsr & PPC47x_MCSR_IPR)
455 		printk(KERN_ERR "Machine Check exception is imprecise\n");
456 
457 	/* Clear MCSR */
458 	mtspr(SPRN_MCSR, mcsr);
459 
460 	return 0;
461 }
462 #elif defined(CONFIG_E500)
463 int machine_check_e500mc(struct pt_regs *regs)
464 {
465 	unsigned long mcsr = mfspr(SPRN_MCSR);
466 	unsigned long reason = mcsr;
467 	int recoverable = 1;
468 
469 	if (reason & MCSR_LD) {
470 		recoverable = fsl_rio_mcheck_exception(regs);
471 		if (recoverable == 1)
472 			goto silent_out;
473 	}
474 
475 	printk("Machine check in kernel mode.\n");
476 	printk("Caused by (from MCSR=%lx): ", reason);
477 
478 	if (reason & MCSR_MCP)
479 		printk("Machine Check Signal\n");
480 
481 	if (reason & MCSR_ICPERR) {
482 		printk("Instruction Cache Parity Error\n");
483 
484 		/*
485 		 * This is recoverable by invalidating the i-cache.
486 		 */
487 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
488 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
489 			;
490 
491 		/*
492 		 * This will generally be accompanied by an instruction
493 		 * fetch error report -- only treat MCSR_IF as fatal
494 		 * if it wasn't due to an L1 parity error.
495 		 */
496 		reason &= ~MCSR_IF;
497 	}
498 
499 	if (reason & MCSR_DCPERR_MC) {
500 		printk("Data Cache Parity Error\n");
501 
502 		/*
503 		 * In write shadow mode we auto-recover from the error, but it
504 		 * may still get logged and cause a machine check.  We should
505 		 * only treat the non-write shadow case as non-recoverable.
506 		 */
507 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
508 			recoverable = 0;
509 	}
510 
511 	if (reason & MCSR_L2MMU_MHIT) {
512 		printk("Hit on multiple TLB entries\n");
513 		recoverable = 0;
514 	}
515 
516 	if (reason & MCSR_NMI)
517 		printk("Non-maskable interrupt\n");
518 
519 	if (reason & MCSR_IF) {
520 		printk("Instruction Fetch Error Report\n");
521 		recoverable = 0;
522 	}
523 
524 	if (reason & MCSR_LD) {
525 		printk("Load Error Report\n");
526 		recoverable = 0;
527 	}
528 
529 	if (reason & MCSR_ST) {
530 		printk("Store Error Report\n");
531 		recoverable = 0;
532 	}
533 
534 	if (reason & MCSR_LDG) {
535 		printk("Guarded Load Error Report\n");
536 		recoverable = 0;
537 	}
538 
539 	if (reason & MCSR_TLBSYNC)
540 		printk("Simultaneous tlbsync operations\n");
541 
542 	if (reason & MCSR_BSL2_ERR) {
543 		printk("Level 2 Cache Error\n");
544 		recoverable = 0;
545 	}
546 
547 	if (reason & MCSR_MAV) {
548 		u64 addr;
549 
550 		addr = mfspr(SPRN_MCAR);
551 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
552 
553 		printk("Machine Check %s Address: %#llx\n",
554 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
555 	}
556 
557 silent_out:
558 	mtspr(SPRN_MCSR, mcsr);
559 	return mfspr(SPRN_MCSR) == 0 && recoverable;
560 }
561 
562 int machine_check_e500(struct pt_regs *regs)
563 {
564 	unsigned long reason = get_mc_reason(regs);
565 
566 	if (reason & MCSR_BUS_RBERR) {
567 		if (fsl_rio_mcheck_exception(regs))
568 			return 1;
569 		if (fsl_pci_mcheck_exception(regs))
570 			return 1;
571 	}
572 
573 	printk("Machine check in kernel mode.\n");
574 	printk("Caused by (from MCSR=%lx): ", reason);
575 
576 	if (reason & MCSR_MCP)
577 		printk("Machine Check Signal\n");
578 	if (reason & MCSR_ICPERR)
579 		printk("Instruction Cache Parity Error\n");
580 	if (reason & MCSR_DCP_PERR)
581 		printk("Data Cache Push Parity Error\n");
582 	if (reason & MCSR_DCPERR)
583 		printk("Data Cache Parity Error\n");
584 	if (reason & MCSR_BUS_IAERR)
585 		printk("Bus - Instruction Address Error\n");
586 	if (reason & MCSR_BUS_RAERR)
587 		printk("Bus - Read Address Error\n");
588 	if (reason & MCSR_BUS_WAERR)
589 		printk("Bus - Write Address Error\n");
590 	if (reason & MCSR_BUS_IBERR)
591 		printk("Bus - Instruction Data Error\n");
592 	if (reason & MCSR_BUS_RBERR)
593 		printk("Bus - Read Data Bus Error\n");
594 	if (reason & MCSR_BUS_WBERR)
595 		printk("Bus - Read Data Bus Error\n");
596 	if (reason & MCSR_BUS_IPERR)
597 		printk("Bus - Instruction Parity Error\n");
598 	if (reason & MCSR_BUS_RPERR)
599 		printk("Bus - Read Parity Error\n");
600 
601 	return 0;
602 }
603 
604 int machine_check_generic(struct pt_regs *regs)
605 {
606 	return 0;
607 }
608 #elif defined(CONFIG_E200)
609 int machine_check_e200(struct pt_regs *regs)
610 {
611 	unsigned long reason = get_mc_reason(regs);
612 
613 	printk("Machine check in kernel mode.\n");
614 	printk("Caused by (from MCSR=%lx): ", reason);
615 
616 	if (reason & MCSR_MCP)
617 		printk("Machine Check Signal\n");
618 	if (reason & MCSR_CP_PERR)
619 		printk("Cache Push Parity Error\n");
620 	if (reason & MCSR_CPERR)
621 		printk("Cache Parity Error\n");
622 	if (reason & MCSR_EXCP_ERR)
623 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
624 	if (reason & MCSR_BUS_IRERR)
625 		printk("Bus - Read Bus Error on instruction fetch\n");
626 	if (reason & MCSR_BUS_DRERR)
627 		printk("Bus - Read Bus Error on data load\n");
628 	if (reason & MCSR_BUS_WRERR)
629 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
630 
631 	return 0;
632 }
633 #else
634 int machine_check_generic(struct pt_regs *regs)
635 {
636 	unsigned long reason = get_mc_reason(regs);
637 
638 	printk("Machine check in kernel mode.\n");
639 	printk("Caused by (from SRR1=%lx): ", reason);
640 	switch (reason & 0x601F0000) {
641 	case 0x80000:
642 		printk("Machine check signal\n");
643 		break;
644 	case 0:		/* for 601 */
645 	case 0x40000:
646 	case 0x140000:	/* 7450 MSS error and TEA */
647 		printk("Transfer error ack signal\n");
648 		break;
649 	case 0x20000:
650 		printk("Data parity error signal\n");
651 		break;
652 	case 0x10000:
653 		printk("Address parity error signal\n");
654 		break;
655 	case 0x20000000:
656 		printk("L1 Data Cache error\n");
657 		break;
658 	case 0x40000000:
659 		printk("L1 Instruction Cache error\n");
660 		break;
661 	case 0x00100000:
662 		printk("L2 data cache parity error\n");
663 		break;
664 	default:
665 		printk("Unknown values in msr\n");
666 	}
667 	return 0;
668 }
669 #endif /* everything else */
670 
671 void machine_check_exception(struct pt_regs *regs)
672 {
673 	enum ctx_state prev_state = exception_enter();
674 	int recover = 0;
675 
676 	__get_cpu_var(irq_stat).mce_exceptions++;
677 
678 	/* See if any machine dependent calls. In theory, we would want
679 	 * to call the CPU first, and call the ppc_md. one if the CPU
680 	 * one returns a positive number. However there is existing code
681 	 * that assumes the board gets a first chance, so let's keep it
682 	 * that way for now and fix things later. --BenH.
683 	 */
684 	if (ppc_md.machine_check_exception)
685 		recover = ppc_md.machine_check_exception(regs);
686 	else if (cur_cpu_spec->machine_check)
687 		recover = cur_cpu_spec->machine_check(regs);
688 
689 	if (recover > 0)
690 		goto bail;
691 
692 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
693 	/* the qspan pci read routines can cause machine checks -- Cort
694 	 *
695 	 * yuck !!! that totally needs to go away ! There are better ways
696 	 * to deal with that than having a wart in the mcheck handler.
697 	 * -- BenH
698 	 */
699 	bad_page_fault(regs, regs->dar, SIGBUS);
700 	goto bail;
701 #endif
702 
703 	if (debugger_fault_handler(regs))
704 		goto bail;
705 
706 	if (check_io_access(regs))
707 		goto bail;
708 
709 	die("Machine check", regs, SIGBUS);
710 
711 	/* Must die if the interrupt is not recoverable */
712 	if (!(regs->msr & MSR_RI))
713 		panic("Unrecoverable Machine check");
714 
715 bail:
716 	exception_exit(prev_state);
717 }
718 
719 void SMIException(struct pt_regs *regs)
720 {
721 	die("System Management Interrupt", regs, SIGABRT);
722 }
723 
724 void unknown_exception(struct pt_regs *regs)
725 {
726 	enum ctx_state prev_state = exception_enter();
727 
728 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
729 	       regs->nip, regs->msr, regs->trap);
730 
731 	_exception(SIGTRAP, regs, 0, 0);
732 
733 	exception_exit(prev_state);
734 }
735 
736 void instruction_breakpoint_exception(struct pt_regs *regs)
737 {
738 	enum ctx_state prev_state = exception_enter();
739 
740 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
741 					5, SIGTRAP) == NOTIFY_STOP)
742 		goto bail;
743 	if (debugger_iabr_match(regs))
744 		goto bail;
745 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
746 
747 bail:
748 	exception_exit(prev_state);
749 }
750 
751 void RunModeException(struct pt_regs *regs)
752 {
753 	_exception(SIGTRAP, regs, 0, 0);
754 }
755 
756 void __kprobes single_step_exception(struct pt_regs *regs)
757 {
758 	enum ctx_state prev_state = exception_enter();
759 
760 	clear_single_step(regs);
761 
762 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
763 					5, SIGTRAP) == NOTIFY_STOP)
764 		goto bail;
765 	if (debugger_sstep(regs))
766 		goto bail;
767 
768 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
769 
770 bail:
771 	exception_exit(prev_state);
772 }
773 
774 /*
775  * After we have successfully emulated an instruction, we have to
776  * check if the instruction was being single-stepped, and if so,
777  * pretend we got a single-step exception.  This was pointed out
778  * by Kumar Gala.  -- paulus
779  */
780 static void emulate_single_step(struct pt_regs *regs)
781 {
782 	if (single_stepping(regs))
783 		single_step_exception(regs);
784 }
785 
786 static inline int __parse_fpscr(unsigned long fpscr)
787 {
788 	int ret = 0;
789 
790 	/* Invalid operation */
791 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
792 		ret = FPE_FLTINV;
793 
794 	/* Overflow */
795 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
796 		ret = FPE_FLTOVF;
797 
798 	/* Underflow */
799 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
800 		ret = FPE_FLTUND;
801 
802 	/* Divide by zero */
803 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
804 		ret = FPE_FLTDIV;
805 
806 	/* Inexact result */
807 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
808 		ret = FPE_FLTRES;
809 
810 	return ret;
811 }
812 
813 static void parse_fpe(struct pt_regs *regs)
814 {
815 	int code = 0;
816 
817 	flush_fp_to_thread(current);
818 
819 	code = __parse_fpscr(current->thread.fp_state.fpscr);
820 
821 	_exception(SIGFPE, regs, code, regs->nip);
822 }
823 
824 /*
825  * Illegal instruction emulation support.  Originally written to
826  * provide the PVR to user applications using the mfspr rd, PVR.
827  * Return non-zero if we can't emulate, or -EFAULT if the associated
828  * memory access caused an access fault.  Return zero on success.
829  *
830  * There are a couple of ways to do this, either "decode" the instruction
831  * or directly match lots of bits.  In this case, matching lots of
832  * bits is faster and easier.
833  *
834  */
835 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
836 {
837 	u8 rT = (instword >> 21) & 0x1f;
838 	u8 rA = (instword >> 16) & 0x1f;
839 	u8 NB_RB = (instword >> 11) & 0x1f;
840 	u32 num_bytes;
841 	unsigned long EA;
842 	int pos = 0;
843 
844 	/* Early out if we are an invalid form of lswx */
845 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
846 		if ((rT == rA) || (rT == NB_RB))
847 			return -EINVAL;
848 
849 	EA = (rA == 0) ? 0 : regs->gpr[rA];
850 
851 	switch (instword & PPC_INST_STRING_MASK) {
852 		case PPC_INST_LSWX:
853 		case PPC_INST_STSWX:
854 			EA += NB_RB;
855 			num_bytes = regs->xer & 0x7f;
856 			break;
857 		case PPC_INST_LSWI:
858 		case PPC_INST_STSWI:
859 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
860 			break;
861 		default:
862 			return -EINVAL;
863 	}
864 
865 	while (num_bytes != 0)
866 	{
867 		u8 val;
868 		u32 shift = 8 * (3 - (pos & 0x3));
869 
870 		/* if process is 32-bit, clear upper 32 bits of EA */
871 		if ((regs->msr & MSR_64BIT) == 0)
872 			EA &= 0xFFFFFFFF;
873 
874 		switch ((instword & PPC_INST_STRING_MASK)) {
875 			case PPC_INST_LSWX:
876 			case PPC_INST_LSWI:
877 				if (get_user(val, (u8 __user *)EA))
878 					return -EFAULT;
879 				/* first time updating this reg,
880 				 * zero it out */
881 				if (pos == 0)
882 					regs->gpr[rT] = 0;
883 				regs->gpr[rT] |= val << shift;
884 				break;
885 			case PPC_INST_STSWI:
886 			case PPC_INST_STSWX:
887 				val = regs->gpr[rT] >> shift;
888 				if (put_user(val, (u8 __user *)EA))
889 					return -EFAULT;
890 				break;
891 		}
892 		/* move EA to next address */
893 		EA += 1;
894 		num_bytes--;
895 
896 		/* manage our position within the register */
897 		if (++pos == 4) {
898 			pos = 0;
899 			if (++rT == 32)
900 				rT = 0;
901 		}
902 	}
903 
904 	return 0;
905 }
906 
907 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
908 {
909 	u32 ra,rs;
910 	unsigned long tmp;
911 
912 	ra = (instword >> 16) & 0x1f;
913 	rs = (instword >> 21) & 0x1f;
914 
915 	tmp = regs->gpr[rs];
916 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
917 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
918 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
919 	regs->gpr[ra] = tmp;
920 
921 	return 0;
922 }
923 
924 static int emulate_isel(struct pt_regs *regs, u32 instword)
925 {
926 	u8 rT = (instword >> 21) & 0x1f;
927 	u8 rA = (instword >> 16) & 0x1f;
928 	u8 rB = (instword >> 11) & 0x1f;
929 	u8 BC = (instword >> 6) & 0x1f;
930 	u8 bit;
931 	unsigned long tmp;
932 
933 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
934 	bit = (regs->ccr >> (31 - BC)) & 0x1;
935 
936 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
937 
938 	return 0;
939 }
940 
941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
942 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
943 {
944         /* If we're emulating a load/store in an active transaction, we cannot
945          * emulate it as the kernel operates in transaction suspended context.
946          * We need to abort the transaction.  This creates a persistent TM
947          * abort so tell the user what caused it with a new code.
948 	 */
949 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
950 		tm_enable();
951 		tm_abort(cause);
952 		return true;
953 	}
954 	return false;
955 }
956 #else
957 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
958 {
959 	return false;
960 }
961 #endif
962 
963 static int emulate_instruction(struct pt_regs *regs)
964 {
965 	u32 instword;
966 	u32 rd;
967 
968 	if (!user_mode(regs))
969 		return -EINVAL;
970 	CHECK_FULL_REGS(regs);
971 
972 	if (get_user(instword, (u32 __user *)(regs->nip)))
973 		return -EFAULT;
974 
975 	/* Emulate the mfspr rD, PVR. */
976 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
977 		PPC_WARN_EMULATED(mfpvr, regs);
978 		rd = (instword >> 21) & 0x1f;
979 		regs->gpr[rd] = mfspr(SPRN_PVR);
980 		return 0;
981 	}
982 
983 	/* Emulating the dcba insn is just a no-op.  */
984 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
985 		PPC_WARN_EMULATED(dcba, regs);
986 		return 0;
987 	}
988 
989 	/* Emulate the mcrxr insn.  */
990 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
991 		int shift = (instword >> 21) & 0x1c;
992 		unsigned long msk = 0xf0000000UL >> shift;
993 
994 		PPC_WARN_EMULATED(mcrxr, regs);
995 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
996 		regs->xer &= ~0xf0000000UL;
997 		return 0;
998 	}
999 
1000 	/* Emulate load/store string insn. */
1001 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1002 		if (tm_abort_check(regs,
1003 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1004 			return -EINVAL;
1005 		PPC_WARN_EMULATED(string, regs);
1006 		return emulate_string_inst(regs, instword);
1007 	}
1008 
1009 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1010 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1011 		PPC_WARN_EMULATED(popcntb, regs);
1012 		return emulate_popcntb_inst(regs, instword);
1013 	}
1014 
1015 	/* Emulate isel (Integer Select) instruction */
1016 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1017 		PPC_WARN_EMULATED(isel, regs);
1018 		return emulate_isel(regs, instword);
1019 	}
1020 
1021 	/* Emulate sync instruction variants */
1022 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1023 		PPC_WARN_EMULATED(sync, regs);
1024 		asm volatile("sync");
1025 		return 0;
1026 	}
1027 
1028 #ifdef CONFIG_PPC64
1029 	/* Emulate the mfspr rD, DSCR. */
1030 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1031 		PPC_INST_MFSPR_DSCR_USER) ||
1032 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1033 		PPC_INST_MFSPR_DSCR)) &&
1034 			cpu_has_feature(CPU_FTR_DSCR)) {
1035 		PPC_WARN_EMULATED(mfdscr, regs);
1036 		rd = (instword >> 21) & 0x1f;
1037 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1038 		return 0;
1039 	}
1040 	/* Emulate the mtspr DSCR, rD. */
1041 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1042 		PPC_INST_MTSPR_DSCR_USER) ||
1043 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1044 		PPC_INST_MTSPR_DSCR)) &&
1045 			cpu_has_feature(CPU_FTR_DSCR)) {
1046 		PPC_WARN_EMULATED(mtdscr, regs);
1047 		rd = (instword >> 21) & 0x1f;
1048 		current->thread.dscr = regs->gpr[rd];
1049 		current->thread.dscr_inherit = 1;
1050 		mtspr(SPRN_DSCR, current->thread.dscr);
1051 		return 0;
1052 	}
1053 #endif
1054 
1055 	return -EINVAL;
1056 }
1057 
1058 int is_valid_bugaddr(unsigned long addr)
1059 {
1060 	return is_kernel_addr(addr);
1061 }
1062 
1063 #ifdef CONFIG_MATH_EMULATION
1064 static int emulate_math(struct pt_regs *regs)
1065 {
1066 	int ret;
1067 	extern int do_mathemu(struct pt_regs *regs);
1068 
1069 	ret = do_mathemu(regs);
1070 	if (ret >= 0)
1071 		PPC_WARN_EMULATED(math, regs);
1072 
1073 	switch (ret) {
1074 	case 0:
1075 		emulate_single_step(regs);
1076 		return 0;
1077 	case 1: {
1078 			int code = 0;
1079 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1080 			_exception(SIGFPE, regs, code, regs->nip);
1081 			return 0;
1082 		}
1083 	case -EFAULT:
1084 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1085 		return 0;
1086 	}
1087 
1088 	return -1;
1089 }
1090 #else
1091 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1092 #endif
1093 
1094 void __kprobes program_check_exception(struct pt_regs *regs)
1095 {
1096 	enum ctx_state prev_state = exception_enter();
1097 	unsigned int reason = get_reason(regs);
1098 
1099 	/* We can now get here via a FP Unavailable exception if the core
1100 	 * has no FPU, in that case the reason flags will be 0 */
1101 
1102 	if (reason & REASON_FP) {
1103 		/* IEEE FP exception */
1104 		parse_fpe(regs);
1105 		goto bail;
1106 	}
1107 	if (reason & REASON_TRAP) {
1108 		/* Debugger is first in line to stop recursive faults in
1109 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1110 		if (debugger_bpt(regs))
1111 			goto bail;
1112 
1113 		/* trap exception */
1114 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1115 				== NOTIFY_STOP)
1116 			goto bail;
1117 
1118 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1119 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1120 			regs->nip += 4;
1121 			goto bail;
1122 		}
1123 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1124 		goto bail;
1125 	}
1126 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1127 	if (reason & REASON_TM) {
1128 		/* This is a TM "Bad Thing Exception" program check.
1129 		 * This occurs when:
1130 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1131 		 *    transition in TM states.
1132 		 * -  A trechkpt is attempted when transactional.
1133 		 * -  A treclaim is attempted when non transactional.
1134 		 * -  A tend is illegally attempted.
1135 		 * -  writing a TM SPR when transactional.
1136 		 */
1137 		if (!user_mode(regs) &&
1138 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1139 			regs->nip += 4;
1140 			goto bail;
1141 		}
1142 		/* If usermode caused this, it's done something illegal and
1143 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1144 		 * operand to distinguish from the instruction just being bad
1145 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1146 		 * illegal /placement/ of a valid instruction.
1147 		 */
1148 		if (user_mode(regs)) {
1149 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1150 			goto bail;
1151 		} else {
1152 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1153 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1154 			die("Unrecoverable exception", regs, SIGABRT);
1155 		}
1156 	}
1157 #endif
1158 
1159 	/*
1160 	 * If we took the program check in the kernel skip down to sending a
1161 	 * SIGILL. The subsequent cases all relate to emulating instructions
1162 	 * which we should only do for userspace. We also do not want to enable
1163 	 * interrupts for kernel faults because that might lead to further
1164 	 * faults, and loose the context of the original exception.
1165 	 */
1166 	if (!user_mode(regs))
1167 		goto sigill;
1168 
1169 	/* We restore the interrupt state now */
1170 	if (!arch_irq_disabled_regs(regs))
1171 		local_irq_enable();
1172 
1173 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1174 	 * but there seems to be a hardware bug on the 405GP (RevD)
1175 	 * that means ESR is sometimes set incorrectly - either to
1176 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1177 	 * hardware people - not sure if it can happen on any illegal
1178 	 * instruction or only on FP instructions, whether there is a
1179 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1180 	 */
1181 	if (!emulate_math(regs))
1182 		goto bail;
1183 
1184 	/* Try to emulate it if we should. */
1185 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1186 		switch (emulate_instruction(regs)) {
1187 		case 0:
1188 			regs->nip += 4;
1189 			emulate_single_step(regs);
1190 			goto bail;
1191 		case -EFAULT:
1192 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1193 			goto bail;
1194 		}
1195 	}
1196 
1197 sigill:
1198 	if (reason & REASON_PRIVILEGED)
1199 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1200 	else
1201 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1202 
1203 bail:
1204 	exception_exit(prev_state);
1205 }
1206 
1207 /*
1208  * This occurs when running in hypervisor mode on POWER6 or later
1209  * and an illegal instruction is encountered.
1210  */
1211 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1212 {
1213 	regs->msr |= REASON_ILLEGAL;
1214 	program_check_exception(regs);
1215 }
1216 
1217 void alignment_exception(struct pt_regs *regs)
1218 {
1219 	enum ctx_state prev_state = exception_enter();
1220 	int sig, code, fixed = 0;
1221 
1222 	/* We restore the interrupt state now */
1223 	if (!arch_irq_disabled_regs(regs))
1224 		local_irq_enable();
1225 
1226 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1227 		goto bail;
1228 
1229 	/* we don't implement logging of alignment exceptions */
1230 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1231 		fixed = fix_alignment(regs);
1232 
1233 	if (fixed == 1) {
1234 		regs->nip += 4;	/* skip over emulated instruction */
1235 		emulate_single_step(regs);
1236 		goto bail;
1237 	}
1238 
1239 	/* Operand address was bad */
1240 	if (fixed == -EFAULT) {
1241 		sig = SIGSEGV;
1242 		code = SEGV_ACCERR;
1243 	} else {
1244 		sig = SIGBUS;
1245 		code = BUS_ADRALN;
1246 	}
1247 	if (user_mode(regs))
1248 		_exception(sig, regs, code, regs->dar);
1249 	else
1250 		bad_page_fault(regs, regs->dar, sig);
1251 
1252 bail:
1253 	exception_exit(prev_state);
1254 }
1255 
1256 void StackOverflow(struct pt_regs *regs)
1257 {
1258 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1259 	       current, regs->gpr[1]);
1260 	debugger(regs);
1261 	show_regs(regs);
1262 	panic("kernel stack overflow");
1263 }
1264 
1265 void nonrecoverable_exception(struct pt_regs *regs)
1266 {
1267 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1268 	       regs->nip, regs->msr);
1269 	debugger(regs);
1270 	die("nonrecoverable exception", regs, SIGKILL);
1271 }
1272 
1273 void trace_syscall(struct pt_regs *regs)
1274 {
1275 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1276 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1277 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1278 }
1279 
1280 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1281 {
1282 	enum ctx_state prev_state = exception_enter();
1283 
1284 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1285 			  "%lx at %lx\n", regs->trap, regs->nip);
1286 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1287 
1288 	exception_exit(prev_state);
1289 }
1290 
1291 void altivec_unavailable_exception(struct pt_regs *regs)
1292 {
1293 	enum ctx_state prev_state = exception_enter();
1294 
1295 	if (user_mode(regs)) {
1296 		/* A user program has executed an altivec instruction,
1297 		   but this kernel doesn't support altivec. */
1298 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1299 		goto bail;
1300 	}
1301 
1302 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1303 			"%lx at %lx\n", regs->trap, regs->nip);
1304 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1305 
1306 bail:
1307 	exception_exit(prev_state);
1308 }
1309 
1310 void vsx_unavailable_exception(struct pt_regs *regs)
1311 {
1312 	if (user_mode(regs)) {
1313 		/* A user program has executed an vsx instruction,
1314 		   but this kernel doesn't support vsx. */
1315 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1316 		return;
1317 	}
1318 
1319 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1320 			"%lx at %lx\n", regs->trap, regs->nip);
1321 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1322 }
1323 
1324 #ifdef CONFIG_PPC64
1325 void facility_unavailable_exception(struct pt_regs *regs)
1326 {
1327 	static char *facility_strings[] = {
1328 		[FSCR_FP_LG] = "FPU",
1329 		[FSCR_VECVSX_LG] = "VMX/VSX",
1330 		[FSCR_DSCR_LG] = "DSCR",
1331 		[FSCR_PM_LG] = "PMU SPRs",
1332 		[FSCR_BHRB_LG] = "BHRB",
1333 		[FSCR_TM_LG] = "TM",
1334 		[FSCR_EBB_LG] = "EBB",
1335 		[FSCR_TAR_LG] = "TAR",
1336 	};
1337 	char *facility = "unknown";
1338 	u64 value;
1339 	u8 status;
1340 	bool hv;
1341 
1342 	hv = (regs->trap == 0xf80);
1343 	if (hv)
1344 		value = mfspr(SPRN_HFSCR);
1345 	else
1346 		value = mfspr(SPRN_FSCR);
1347 
1348 	status = value >> 56;
1349 	if (status == FSCR_DSCR_LG) {
1350 		/* User is acessing the DSCR.  Set the inherit bit and allow
1351 		 * the user to set it directly in future by setting via the
1352 		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1353 		 */
1354 		current->thread.dscr_inherit = 1;
1355 		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1356 		return;
1357 	}
1358 
1359 	if ((status < ARRAY_SIZE(facility_strings)) &&
1360 	    facility_strings[status])
1361 		facility = facility_strings[status];
1362 
1363 	/* We restore the interrupt state now */
1364 	if (!arch_irq_disabled_regs(regs))
1365 		local_irq_enable();
1366 
1367 	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1368 	       hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1369 
1370 	if (user_mode(regs)) {
1371 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1372 		return;
1373 	}
1374 
1375 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1376 }
1377 #endif
1378 
1379 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1380 
1381 void fp_unavailable_tm(struct pt_regs *regs)
1382 {
1383 	/* Note:  This does not handle any kind of FP laziness. */
1384 
1385 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1386 		 regs->nip, regs->msr);
1387 	tm_enable();
1388 
1389         /* We can only have got here if the task started using FP after
1390          * beginning the transaction.  So, the transactional regs are just a
1391          * copy of the checkpointed ones.  But, we still need to recheckpoint
1392          * as we're enabling FP for the process; it will return, abort the
1393          * transaction, and probably retry but now with FP enabled.  So the
1394          * checkpointed FP registers need to be loaded.
1395 	 */
1396 	tm_reclaim(&current->thread, current->thread.regs->msr,
1397 		   TM_CAUSE_FAC_UNAV);
1398 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1399 
1400 	/* Enable FP for the task: */
1401 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1402 
1403 	/* This loads and recheckpoints the FP registers from
1404 	 * thread.fpr[].  They will remain in registers after the
1405 	 * checkpoint so we don't need to reload them after.
1406 	 */
1407 	tm_recheckpoint(&current->thread, regs->msr);
1408 }
1409 
1410 #ifdef CONFIG_ALTIVEC
1411 void altivec_unavailable_tm(struct pt_regs *regs)
1412 {
1413 	/* See the comments in fp_unavailable_tm().  This function operates
1414 	 * the same way.
1415 	 */
1416 
1417 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1418 		 "MSR=%lx\n",
1419 		 regs->nip, regs->msr);
1420 	tm_enable();
1421 	tm_reclaim(&current->thread, current->thread.regs->msr,
1422 		   TM_CAUSE_FAC_UNAV);
1423 	regs->msr |= MSR_VEC;
1424 	tm_recheckpoint(&current->thread, regs->msr);
1425 	current->thread.used_vr = 1;
1426 }
1427 #endif
1428 
1429 #ifdef CONFIG_VSX
1430 void vsx_unavailable_tm(struct pt_regs *regs)
1431 {
1432 	/* See the comments in fp_unavailable_tm().  This works similarly,
1433 	 * though we're loading both FP and VEC registers in here.
1434 	 *
1435 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1436 	 * regs.  Either way, set MSR_VSX.
1437 	 */
1438 
1439 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1440 		 "MSR=%lx\n",
1441 		 regs->nip, regs->msr);
1442 
1443 	tm_enable();
1444 	/* This reclaims FP and/or VR regs if they're already enabled */
1445 	tm_reclaim(&current->thread, current->thread.regs->msr,
1446 		   TM_CAUSE_FAC_UNAV);
1447 
1448 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1449 		MSR_VSX;
1450 	/* This loads & recheckpoints FP and VRs. */
1451 	tm_recheckpoint(&current->thread, regs->msr);
1452 	current->thread.used_vsr = 1;
1453 }
1454 #endif
1455 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1456 
1457 void performance_monitor_exception(struct pt_regs *regs)
1458 {
1459 	__get_cpu_var(irq_stat).pmu_irqs++;
1460 
1461 	perf_irq(regs);
1462 }
1463 
1464 #ifdef CONFIG_8xx
1465 void SoftwareEmulation(struct pt_regs *regs)
1466 {
1467 	CHECK_FULL_REGS(regs);
1468 
1469 	if (!user_mode(regs)) {
1470 		debugger(regs);
1471 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1472 			regs, SIGFPE);
1473 	}
1474 
1475 	if (!emulate_math(regs))
1476 		return;
1477 
1478 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1479 }
1480 #endif /* CONFIG_8xx */
1481 
1482 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1483 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1484 {
1485 	int changed = 0;
1486 	/*
1487 	 * Determine the cause of the debug event, clear the
1488 	 * event flags and send a trap to the handler. Torez
1489 	 */
1490 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1491 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1492 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1493 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1494 #endif
1495 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1496 			     5);
1497 		changed |= 0x01;
1498 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1499 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1500 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1501 			     6);
1502 		changed |= 0x01;
1503 	}  else if (debug_status & DBSR_IAC1) {
1504 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1505 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1506 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1507 			     1);
1508 		changed |= 0x01;
1509 	}  else if (debug_status & DBSR_IAC2) {
1510 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1511 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1512 			     2);
1513 		changed |= 0x01;
1514 	}  else if (debug_status & DBSR_IAC3) {
1515 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1516 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1517 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1518 			     3);
1519 		changed |= 0x01;
1520 	}  else if (debug_status & DBSR_IAC4) {
1521 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1522 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1523 			     4);
1524 		changed |= 0x01;
1525 	}
1526 	/*
1527 	 * At the point this routine was called, the MSR(DE) was turned off.
1528 	 * Check all other debug flags and see if that bit needs to be turned
1529 	 * back on or not.
1530 	 */
1531 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1532 			       current->thread.debug.dbcr1))
1533 		regs->msr |= MSR_DE;
1534 	else
1535 		/* Make sure the IDM flag is off */
1536 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1537 
1538 	if (changed & 0x01)
1539 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1540 }
1541 
1542 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1543 {
1544 	current->thread.debug.dbsr = debug_status;
1545 
1546 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1547 	 * on server, it stops on the target of the branch. In order to simulate
1548 	 * the server behaviour, we thus restart right away with a single step
1549 	 * instead of stopping here when hitting a BT
1550 	 */
1551 	if (debug_status & DBSR_BT) {
1552 		regs->msr &= ~MSR_DE;
1553 
1554 		/* Disable BT */
1555 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1556 		/* Clear the BT event */
1557 		mtspr(SPRN_DBSR, DBSR_BT);
1558 
1559 		/* Do the single step trick only when coming from userspace */
1560 		if (user_mode(regs)) {
1561 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1562 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1563 			regs->msr |= MSR_DE;
1564 			return;
1565 		}
1566 
1567 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1568 			       5, SIGTRAP) == NOTIFY_STOP) {
1569 			return;
1570 		}
1571 		if (debugger_sstep(regs))
1572 			return;
1573 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1574 		regs->msr &= ~MSR_DE;
1575 
1576 		/* Disable instruction completion */
1577 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1578 		/* Clear the instruction completion event */
1579 		mtspr(SPRN_DBSR, DBSR_IC);
1580 
1581 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1582 			       5, SIGTRAP) == NOTIFY_STOP) {
1583 			return;
1584 		}
1585 
1586 		if (debugger_sstep(regs))
1587 			return;
1588 
1589 		if (user_mode(regs)) {
1590 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1591 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1592 					       current->thread.debug.dbcr1))
1593 				regs->msr |= MSR_DE;
1594 			else
1595 				/* Make sure the IDM bit is off */
1596 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1597 		}
1598 
1599 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1600 	} else
1601 		handle_debug(regs, debug_status);
1602 }
1603 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1604 
1605 #if !defined(CONFIG_TAU_INT)
1606 void TAUException(struct pt_regs *regs)
1607 {
1608 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1609 	       regs->nip, regs->msr, regs->trap, print_tainted());
1610 }
1611 #endif /* CONFIG_INT_TAU */
1612 
1613 #ifdef CONFIG_ALTIVEC
1614 void altivec_assist_exception(struct pt_regs *regs)
1615 {
1616 	int err;
1617 
1618 	if (!user_mode(regs)) {
1619 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1620 		       " at %lx\n", regs->nip);
1621 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1622 	}
1623 
1624 	flush_altivec_to_thread(current);
1625 
1626 	PPC_WARN_EMULATED(altivec, regs);
1627 	err = emulate_altivec(regs);
1628 	if (err == 0) {
1629 		regs->nip += 4;		/* skip emulated instruction */
1630 		emulate_single_step(regs);
1631 		return;
1632 	}
1633 
1634 	if (err == -EFAULT) {
1635 		/* got an error reading the instruction */
1636 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1637 	} else {
1638 		/* didn't recognize the instruction */
1639 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1640 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1641 				   "in %s at %lx\n", current->comm, regs->nip);
1642 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1643 	}
1644 }
1645 #endif /* CONFIG_ALTIVEC */
1646 
1647 #ifdef CONFIG_VSX
1648 void vsx_assist_exception(struct pt_regs *regs)
1649 {
1650 	if (!user_mode(regs)) {
1651 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1652 		       " at %lx\n", regs->nip);
1653 		die("Kernel VSX assist exception", regs, SIGILL);
1654 	}
1655 
1656 	flush_vsx_to_thread(current);
1657 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1658 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1659 }
1660 #endif /* CONFIG_VSX */
1661 
1662 #ifdef CONFIG_FSL_BOOKE
1663 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1664 			   unsigned long error_code)
1665 {
1666 	/* We treat cache locking instructions from the user
1667 	 * as priv ops, in the future we could try to do
1668 	 * something smarter
1669 	 */
1670 	if (error_code & (ESR_DLK|ESR_ILK))
1671 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1672 	return;
1673 }
1674 #endif /* CONFIG_FSL_BOOKE */
1675 
1676 #ifdef CONFIG_SPE
1677 void SPEFloatingPointException(struct pt_regs *regs)
1678 {
1679 	extern int do_spe_mathemu(struct pt_regs *regs);
1680 	unsigned long spefscr;
1681 	int fpexc_mode;
1682 	int code = 0;
1683 	int err;
1684 
1685 	flush_spe_to_thread(current);
1686 
1687 	spefscr = current->thread.spefscr;
1688 	fpexc_mode = current->thread.fpexc_mode;
1689 
1690 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1691 		code = FPE_FLTOVF;
1692 	}
1693 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1694 		code = FPE_FLTUND;
1695 	}
1696 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1697 		code = FPE_FLTDIV;
1698 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1699 		code = FPE_FLTINV;
1700 	}
1701 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1702 		code = FPE_FLTRES;
1703 
1704 	err = do_spe_mathemu(regs);
1705 	if (err == 0) {
1706 		regs->nip += 4;		/* skip emulated instruction */
1707 		emulate_single_step(regs);
1708 		return;
1709 	}
1710 
1711 	if (err == -EFAULT) {
1712 		/* got an error reading the instruction */
1713 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1714 	} else if (err == -EINVAL) {
1715 		/* didn't recognize the instruction */
1716 		printk(KERN_ERR "unrecognized spe instruction "
1717 		       "in %s at %lx\n", current->comm, regs->nip);
1718 	} else {
1719 		_exception(SIGFPE, regs, code, regs->nip);
1720 	}
1721 
1722 	return;
1723 }
1724 
1725 void SPEFloatingPointRoundException(struct pt_regs *regs)
1726 {
1727 	extern int speround_handler(struct pt_regs *regs);
1728 	int err;
1729 
1730 	preempt_disable();
1731 	if (regs->msr & MSR_SPE)
1732 		giveup_spe(current);
1733 	preempt_enable();
1734 
1735 	regs->nip -= 4;
1736 	err = speround_handler(regs);
1737 	if (err == 0) {
1738 		regs->nip += 4;		/* skip emulated instruction */
1739 		emulate_single_step(regs);
1740 		return;
1741 	}
1742 
1743 	if (err == -EFAULT) {
1744 		/* got an error reading the instruction */
1745 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1746 	} else if (err == -EINVAL) {
1747 		/* didn't recognize the instruction */
1748 		printk(KERN_ERR "unrecognized spe instruction "
1749 		       "in %s at %lx\n", current->comm, regs->nip);
1750 	} else {
1751 		_exception(SIGFPE, regs, 0, regs->nip);
1752 		return;
1753 	}
1754 }
1755 #endif
1756 
1757 /*
1758  * We enter here if we get an unrecoverable exception, that is, one
1759  * that happened at a point where the RI (recoverable interrupt) bit
1760  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1761  * we therefore lost state by taking this exception.
1762  */
1763 void unrecoverable_exception(struct pt_regs *regs)
1764 {
1765 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1766 	       regs->trap, regs->nip);
1767 	die("Unrecoverable exception", regs, SIGABRT);
1768 }
1769 
1770 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1771 /*
1772  * Default handler for a Watchdog exception,
1773  * spins until a reboot occurs
1774  */
1775 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1776 {
1777 	/* Generic WatchdogHandler, implement your own */
1778 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1779 	return;
1780 }
1781 
1782 void WatchdogException(struct pt_regs *regs)
1783 {
1784 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1785 	WatchdogHandler(regs);
1786 }
1787 #endif
1788 
1789 /*
1790  * We enter here if we discover during exception entry that we are
1791  * running in supervisor mode with a userspace value in the stack pointer.
1792  */
1793 void kernel_bad_stack(struct pt_regs *regs)
1794 {
1795 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1796 	       regs->gpr[1], regs->nip);
1797 	die("Bad kernel stack pointer", regs, SIGABRT);
1798 }
1799 
1800 void __init trap_init(void)
1801 {
1802 }
1803 
1804 
1805 #ifdef CONFIG_PPC_EMULATED_STATS
1806 
1807 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1808 
1809 struct ppc_emulated ppc_emulated = {
1810 #ifdef CONFIG_ALTIVEC
1811 	WARN_EMULATED_SETUP(altivec),
1812 #endif
1813 	WARN_EMULATED_SETUP(dcba),
1814 	WARN_EMULATED_SETUP(dcbz),
1815 	WARN_EMULATED_SETUP(fp_pair),
1816 	WARN_EMULATED_SETUP(isel),
1817 	WARN_EMULATED_SETUP(mcrxr),
1818 	WARN_EMULATED_SETUP(mfpvr),
1819 	WARN_EMULATED_SETUP(multiple),
1820 	WARN_EMULATED_SETUP(popcntb),
1821 	WARN_EMULATED_SETUP(spe),
1822 	WARN_EMULATED_SETUP(string),
1823 	WARN_EMULATED_SETUP(sync),
1824 	WARN_EMULATED_SETUP(unaligned),
1825 #ifdef CONFIG_MATH_EMULATION
1826 	WARN_EMULATED_SETUP(math),
1827 #endif
1828 #ifdef CONFIG_VSX
1829 	WARN_EMULATED_SETUP(vsx),
1830 #endif
1831 #ifdef CONFIG_PPC64
1832 	WARN_EMULATED_SETUP(mfdscr),
1833 	WARN_EMULATED_SETUP(mtdscr),
1834 #endif
1835 };
1836 
1837 u32 ppc_warn_emulated;
1838 
1839 void ppc_warn_emulated_print(const char *type)
1840 {
1841 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1842 			    type);
1843 }
1844 
1845 static int __init ppc_warn_emulated_init(void)
1846 {
1847 	struct dentry *dir, *d;
1848 	unsigned int i;
1849 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1850 
1851 	if (!powerpc_debugfs_root)
1852 		return -ENODEV;
1853 
1854 	dir = debugfs_create_dir("emulated_instructions",
1855 				 powerpc_debugfs_root);
1856 	if (!dir)
1857 		return -ENOMEM;
1858 
1859 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1860 			       &ppc_warn_emulated);
1861 	if (!d)
1862 		goto fail;
1863 
1864 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1865 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1866 				       (u32 *)&entries[i].val.counter);
1867 		if (!d)
1868 			goto fail;
1869 	}
1870 
1871 	return 0;
1872 
1873 fail:
1874 	debugfs_remove_recursive(dir);
1875 	return -ENOMEM;
1876 }
1877 
1878 device_initcall(ppc_warn_emulated_init);
1879 
1880 #endif /* CONFIG_PPC_EMULATED_STATS */
1881