xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision ab73b751)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 
39 #include <asm/emulated_ops.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/debug.h>
62 
63 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
64 int (*__debugger)(struct pt_regs *regs) __read_mostly;
65 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_dabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
71 
72 EXPORT_SYMBOL(__debugger);
73 EXPORT_SYMBOL(__debugger_ipi);
74 EXPORT_SYMBOL(__debugger_bpt);
75 EXPORT_SYMBOL(__debugger_sstep);
76 EXPORT_SYMBOL(__debugger_iabr_match);
77 EXPORT_SYMBOL(__debugger_dabr_match);
78 EXPORT_SYMBOL(__debugger_fault_handler);
79 #endif
80 
81 /*
82  * Trap & Exception support
83  */
84 
85 #ifdef CONFIG_PMAC_BACKLIGHT
86 static void pmac_backlight_unblank(void)
87 {
88 	mutex_lock(&pmac_backlight_mutex);
89 	if (pmac_backlight) {
90 		struct backlight_properties *props;
91 
92 		props = &pmac_backlight->props;
93 		props->brightness = props->max_brightness;
94 		props->power = FB_BLANK_UNBLANK;
95 		backlight_update_status(pmac_backlight);
96 	}
97 	mutex_unlock(&pmac_backlight_mutex);
98 }
99 #else
100 static inline void pmac_backlight_unblank(void) { }
101 #endif
102 
103 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
104 static int die_owner = -1;
105 static unsigned int die_nest_count;
106 static int die_counter;
107 
108 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
109 {
110 	int cpu;
111 	unsigned long flags;
112 
113 	if (debugger(regs))
114 		return 1;
115 
116 	oops_enter();
117 
118 	/* racy, but better than risking deadlock. */
119 	raw_local_irq_save(flags);
120 	cpu = smp_processor_id();
121 	if (!arch_spin_trylock(&die_lock)) {
122 		if (cpu == die_owner)
123 			/* nested oops. should stop eventually */;
124 		else
125 			arch_spin_lock(&die_lock);
126 	}
127 	die_nest_count++;
128 	die_owner = cpu;
129 	console_verbose();
130 	bust_spinlocks(1);
131 	if (machine_is(powermac))
132 		pmac_backlight_unblank();
133 	return flags;
134 }
135 
136 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
137 			       int signr)
138 {
139 	bust_spinlocks(0);
140 	die_owner = -1;
141 	add_taint(TAINT_DIE);
142 	die_nest_count--;
143 	oops_exit();
144 	printk("\n");
145 	if (!die_nest_count)
146 		/* Nest count reaches zero, release the lock. */
147 		arch_spin_unlock(&die_lock);
148 	raw_local_irq_restore(flags);
149 
150 	crash_fadump(regs, "die oops");
151 
152 	/*
153 	 * A system reset (0x100) is a request to dump, so we always send
154 	 * it through the crashdump code.
155 	 */
156 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
157 		crash_kexec(regs);
158 
159 		/*
160 		 * We aren't the primary crash CPU. We need to send it
161 		 * to a holding pattern to avoid it ending up in the panic
162 		 * code.
163 		 */
164 		crash_kexec_secondary(regs);
165 	}
166 
167 	if (!signr)
168 		return;
169 
170 	/*
171 	 * While our oops output is serialised by a spinlock, output
172 	 * from panic() called below can race and corrupt it. If we
173 	 * know we are going to panic, delay for 1 second so we have a
174 	 * chance to get clean backtraces from all CPUs that are oopsing.
175 	 */
176 	if (in_interrupt() || panic_on_oops || !current->pid ||
177 	    is_global_init(current)) {
178 		mdelay(MSEC_PER_SEC);
179 	}
180 
181 	if (in_interrupt())
182 		panic("Fatal exception in interrupt");
183 	if (panic_on_oops)
184 		panic("Fatal exception");
185 	do_exit(signr);
186 }
187 
188 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
189 {
190 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
191 #ifdef CONFIG_PREEMPT
192 	printk("PREEMPT ");
193 #endif
194 #ifdef CONFIG_SMP
195 	printk("SMP NR_CPUS=%d ", NR_CPUS);
196 #endif
197 #ifdef CONFIG_DEBUG_PAGEALLOC
198 	printk("DEBUG_PAGEALLOC ");
199 #endif
200 #ifdef CONFIG_NUMA
201 	printk("NUMA ");
202 #endif
203 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
204 
205 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
206 		return 1;
207 
208 	print_modules();
209 	show_regs(regs);
210 
211 	return 0;
212 }
213 
214 void die(const char *str, struct pt_regs *regs, long err)
215 {
216 	unsigned long flags = oops_begin(regs);
217 
218 	if (__die(str, regs, err))
219 		err = 0;
220 	oops_end(flags, regs, err);
221 }
222 
223 void user_single_step_siginfo(struct task_struct *tsk,
224 				struct pt_regs *regs, siginfo_t *info)
225 {
226 	memset(info, 0, sizeof(*info));
227 	info->si_signo = SIGTRAP;
228 	info->si_code = TRAP_TRACE;
229 	info->si_addr = (void __user *)regs->nip;
230 }
231 
232 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
233 {
234 	siginfo_t info;
235 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
236 			"at %08lx nip %08lx lr %08lx code %x\n";
237 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
238 			"at %016lx nip %016lx lr %016lx code %x\n";
239 
240 	if (!user_mode(regs)) {
241 		die("Exception in kernel mode", regs, signr);
242 		return;
243 	}
244 
245 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
246 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
247 				   current->comm, current->pid, signr,
248 				   addr, regs->nip, regs->link, code);
249 	}
250 
251 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
252 		local_irq_enable();
253 
254 	memset(&info, 0, sizeof(info));
255 	info.si_signo = signr;
256 	info.si_code = code;
257 	info.si_addr = (void __user *) addr;
258 	force_sig_info(signr, &info, current);
259 }
260 
261 #ifdef CONFIG_PPC64
262 void system_reset_exception(struct pt_regs *regs)
263 {
264 	/* See if any machine dependent calls */
265 	if (ppc_md.system_reset_exception) {
266 		if (ppc_md.system_reset_exception(regs))
267 			return;
268 	}
269 
270 	die("System Reset", regs, SIGABRT);
271 
272 	/* Must die if the interrupt is not recoverable */
273 	if (!(regs->msr & MSR_RI))
274 		panic("Unrecoverable System Reset");
275 
276 	/* What should we do here? We could issue a shutdown or hard reset. */
277 }
278 #endif
279 
280 /*
281  * I/O accesses can cause machine checks on powermacs.
282  * Check if the NIP corresponds to the address of a sync
283  * instruction for which there is an entry in the exception
284  * table.
285  * Note that the 601 only takes a machine check on TEA
286  * (transfer error ack) signal assertion, and does not
287  * set any of the top 16 bits of SRR1.
288  *  -- paulus.
289  */
290 static inline int check_io_access(struct pt_regs *regs)
291 {
292 #ifdef CONFIG_PPC32
293 	unsigned long msr = regs->msr;
294 	const struct exception_table_entry *entry;
295 	unsigned int *nip = (unsigned int *)regs->nip;
296 
297 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
298 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
299 		/*
300 		 * Check that it's a sync instruction, or somewhere
301 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
302 		 * As the address is in the exception table
303 		 * we should be able to read the instr there.
304 		 * For the debug message, we look at the preceding
305 		 * load or store.
306 		 */
307 		if (*nip == 0x60000000)		/* nop */
308 			nip -= 2;
309 		else if (*nip == 0x4c00012c)	/* isync */
310 			--nip;
311 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
312 			/* sync or twi */
313 			unsigned int rb;
314 
315 			--nip;
316 			rb = (*nip >> 11) & 0x1f;
317 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
318 			       (*nip & 0x100)? "OUT to": "IN from",
319 			       regs->gpr[rb] - _IO_BASE, nip);
320 			regs->msr |= MSR_RI;
321 			regs->nip = entry->fixup;
322 			return 1;
323 		}
324 	}
325 #endif /* CONFIG_PPC32 */
326 	return 0;
327 }
328 
329 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
330 /* On 4xx, the reason for the machine check or program exception
331    is in the ESR. */
332 #define get_reason(regs)	((regs)->dsisr)
333 #ifndef CONFIG_FSL_BOOKE
334 #define get_mc_reason(regs)	((regs)->dsisr)
335 #else
336 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
337 #endif
338 #define REASON_FP		ESR_FP
339 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
340 #define REASON_PRIVILEGED	ESR_PPR
341 #define REASON_TRAP		ESR_PTR
342 
343 /* single-step stuff */
344 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
345 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
346 
347 #else
348 /* On non-4xx, the reason for the machine check or program
349    exception is in the MSR. */
350 #define get_reason(regs)	((regs)->msr)
351 #define get_mc_reason(regs)	((regs)->msr)
352 #define REASON_FP		0x100000
353 #define REASON_ILLEGAL		0x80000
354 #define REASON_PRIVILEGED	0x40000
355 #define REASON_TRAP		0x20000
356 
357 #define single_stepping(regs)	((regs)->msr & MSR_SE)
358 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
359 #endif
360 
361 #if defined(CONFIG_4xx)
362 int machine_check_4xx(struct pt_regs *regs)
363 {
364 	unsigned long reason = get_mc_reason(regs);
365 
366 	if (reason & ESR_IMCP) {
367 		printk("Instruction");
368 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
369 	} else
370 		printk("Data");
371 	printk(" machine check in kernel mode.\n");
372 
373 	return 0;
374 }
375 
376 int machine_check_440A(struct pt_regs *regs)
377 {
378 	unsigned long reason = get_mc_reason(regs);
379 
380 	printk("Machine check in kernel mode.\n");
381 	if (reason & ESR_IMCP){
382 		printk("Instruction Synchronous Machine Check exception\n");
383 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
384 	}
385 	else {
386 		u32 mcsr = mfspr(SPRN_MCSR);
387 		if (mcsr & MCSR_IB)
388 			printk("Instruction Read PLB Error\n");
389 		if (mcsr & MCSR_DRB)
390 			printk("Data Read PLB Error\n");
391 		if (mcsr & MCSR_DWB)
392 			printk("Data Write PLB Error\n");
393 		if (mcsr & MCSR_TLBP)
394 			printk("TLB Parity Error\n");
395 		if (mcsr & MCSR_ICP){
396 			flush_instruction_cache();
397 			printk("I-Cache Parity Error\n");
398 		}
399 		if (mcsr & MCSR_DCSP)
400 			printk("D-Cache Search Parity Error\n");
401 		if (mcsr & MCSR_DCFP)
402 			printk("D-Cache Flush Parity Error\n");
403 		if (mcsr & MCSR_IMPE)
404 			printk("Machine Check exception is imprecise\n");
405 
406 		/* Clear MCSR */
407 		mtspr(SPRN_MCSR, mcsr);
408 	}
409 	return 0;
410 }
411 
412 int machine_check_47x(struct pt_regs *regs)
413 {
414 	unsigned long reason = get_mc_reason(regs);
415 	u32 mcsr;
416 
417 	printk(KERN_ERR "Machine check in kernel mode.\n");
418 	if (reason & ESR_IMCP) {
419 		printk(KERN_ERR
420 		       "Instruction Synchronous Machine Check exception\n");
421 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
422 		return 0;
423 	}
424 	mcsr = mfspr(SPRN_MCSR);
425 	if (mcsr & MCSR_IB)
426 		printk(KERN_ERR "Instruction Read PLB Error\n");
427 	if (mcsr & MCSR_DRB)
428 		printk(KERN_ERR "Data Read PLB Error\n");
429 	if (mcsr & MCSR_DWB)
430 		printk(KERN_ERR "Data Write PLB Error\n");
431 	if (mcsr & MCSR_TLBP)
432 		printk(KERN_ERR "TLB Parity Error\n");
433 	if (mcsr & MCSR_ICP) {
434 		flush_instruction_cache();
435 		printk(KERN_ERR "I-Cache Parity Error\n");
436 	}
437 	if (mcsr & MCSR_DCSP)
438 		printk(KERN_ERR "D-Cache Search Parity Error\n");
439 	if (mcsr & PPC47x_MCSR_GPR)
440 		printk(KERN_ERR "GPR Parity Error\n");
441 	if (mcsr & PPC47x_MCSR_FPR)
442 		printk(KERN_ERR "FPR Parity Error\n");
443 	if (mcsr & PPC47x_MCSR_IPR)
444 		printk(KERN_ERR "Machine Check exception is imprecise\n");
445 
446 	/* Clear MCSR */
447 	mtspr(SPRN_MCSR, mcsr);
448 
449 	return 0;
450 }
451 #elif defined(CONFIG_E500)
452 int machine_check_e500mc(struct pt_regs *regs)
453 {
454 	unsigned long mcsr = mfspr(SPRN_MCSR);
455 	unsigned long reason = mcsr;
456 	int recoverable = 1;
457 
458 	if (reason & MCSR_LD) {
459 		recoverable = fsl_rio_mcheck_exception(regs);
460 		if (recoverable == 1)
461 			goto silent_out;
462 	}
463 
464 	printk("Machine check in kernel mode.\n");
465 	printk("Caused by (from MCSR=%lx): ", reason);
466 
467 	if (reason & MCSR_MCP)
468 		printk("Machine Check Signal\n");
469 
470 	if (reason & MCSR_ICPERR) {
471 		printk("Instruction Cache Parity Error\n");
472 
473 		/*
474 		 * This is recoverable by invalidating the i-cache.
475 		 */
476 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
477 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
478 			;
479 
480 		/*
481 		 * This will generally be accompanied by an instruction
482 		 * fetch error report -- only treat MCSR_IF as fatal
483 		 * if it wasn't due to an L1 parity error.
484 		 */
485 		reason &= ~MCSR_IF;
486 	}
487 
488 	if (reason & MCSR_DCPERR_MC) {
489 		printk("Data Cache Parity Error\n");
490 
491 		/*
492 		 * In write shadow mode we auto-recover from the error, but it
493 		 * may still get logged and cause a machine check.  We should
494 		 * only treat the non-write shadow case as non-recoverable.
495 		 */
496 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
497 			recoverable = 0;
498 	}
499 
500 	if (reason & MCSR_L2MMU_MHIT) {
501 		printk("Hit on multiple TLB entries\n");
502 		recoverable = 0;
503 	}
504 
505 	if (reason & MCSR_NMI)
506 		printk("Non-maskable interrupt\n");
507 
508 	if (reason & MCSR_IF) {
509 		printk("Instruction Fetch Error Report\n");
510 		recoverable = 0;
511 	}
512 
513 	if (reason & MCSR_LD) {
514 		printk("Load Error Report\n");
515 		recoverable = 0;
516 	}
517 
518 	if (reason & MCSR_ST) {
519 		printk("Store Error Report\n");
520 		recoverable = 0;
521 	}
522 
523 	if (reason & MCSR_LDG) {
524 		printk("Guarded Load Error Report\n");
525 		recoverable = 0;
526 	}
527 
528 	if (reason & MCSR_TLBSYNC)
529 		printk("Simultaneous tlbsync operations\n");
530 
531 	if (reason & MCSR_BSL2_ERR) {
532 		printk("Level 2 Cache Error\n");
533 		recoverable = 0;
534 	}
535 
536 	if (reason & MCSR_MAV) {
537 		u64 addr;
538 
539 		addr = mfspr(SPRN_MCAR);
540 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
541 
542 		printk("Machine Check %s Address: %#llx\n",
543 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
544 	}
545 
546 silent_out:
547 	mtspr(SPRN_MCSR, mcsr);
548 	return mfspr(SPRN_MCSR) == 0 && recoverable;
549 }
550 
551 int machine_check_e500(struct pt_regs *regs)
552 {
553 	unsigned long reason = get_mc_reason(regs);
554 
555 	if (reason & MCSR_BUS_RBERR) {
556 		if (fsl_rio_mcheck_exception(regs))
557 			return 1;
558 	}
559 
560 	printk("Machine check in kernel mode.\n");
561 	printk("Caused by (from MCSR=%lx): ", reason);
562 
563 	if (reason & MCSR_MCP)
564 		printk("Machine Check Signal\n");
565 	if (reason & MCSR_ICPERR)
566 		printk("Instruction Cache Parity Error\n");
567 	if (reason & MCSR_DCP_PERR)
568 		printk("Data Cache Push Parity Error\n");
569 	if (reason & MCSR_DCPERR)
570 		printk("Data Cache Parity Error\n");
571 	if (reason & MCSR_BUS_IAERR)
572 		printk("Bus - Instruction Address Error\n");
573 	if (reason & MCSR_BUS_RAERR)
574 		printk("Bus - Read Address Error\n");
575 	if (reason & MCSR_BUS_WAERR)
576 		printk("Bus - Write Address Error\n");
577 	if (reason & MCSR_BUS_IBERR)
578 		printk("Bus - Instruction Data Error\n");
579 	if (reason & MCSR_BUS_RBERR)
580 		printk("Bus - Read Data Bus Error\n");
581 	if (reason & MCSR_BUS_WBERR)
582 		printk("Bus - Read Data Bus Error\n");
583 	if (reason & MCSR_BUS_IPERR)
584 		printk("Bus - Instruction Parity Error\n");
585 	if (reason & MCSR_BUS_RPERR)
586 		printk("Bus - Read Parity Error\n");
587 
588 	return 0;
589 }
590 
591 int machine_check_generic(struct pt_regs *regs)
592 {
593 	return 0;
594 }
595 #elif defined(CONFIG_E200)
596 int machine_check_e200(struct pt_regs *regs)
597 {
598 	unsigned long reason = get_mc_reason(regs);
599 
600 	printk("Machine check in kernel mode.\n");
601 	printk("Caused by (from MCSR=%lx): ", reason);
602 
603 	if (reason & MCSR_MCP)
604 		printk("Machine Check Signal\n");
605 	if (reason & MCSR_CP_PERR)
606 		printk("Cache Push Parity Error\n");
607 	if (reason & MCSR_CPERR)
608 		printk("Cache Parity Error\n");
609 	if (reason & MCSR_EXCP_ERR)
610 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
611 	if (reason & MCSR_BUS_IRERR)
612 		printk("Bus - Read Bus Error on instruction fetch\n");
613 	if (reason & MCSR_BUS_DRERR)
614 		printk("Bus - Read Bus Error on data load\n");
615 	if (reason & MCSR_BUS_WRERR)
616 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
617 
618 	return 0;
619 }
620 #else
621 int machine_check_generic(struct pt_regs *regs)
622 {
623 	unsigned long reason = get_mc_reason(regs);
624 
625 	printk("Machine check in kernel mode.\n");
626 	printk("Caused by (from SRR1=%lx): ", reason);
627 	switch (reason & 0x601F0000) {
628 	case 0x80000:
629 		printk("Machine check signal\n");
630 		break;
631 	case 0:		/* for 601 */
632 	case 0x40000:
633 	case 0x140000:	/* 7450 MSS error and TEA */
634 		printk("Transfer error ack signal\n");
635 		break;
636 	case 0x20000:
637 		printk("Data parity error signal\n");
638 		break;
639 	case 0x10000:
640 		printk("Address parity error signal\n");
641 		break;
642 	case 0x20000000:
643 		printk("L1 Data Cache error\n");
644 		break;
645 	case 0x40000000:
646 		printk("L1 Instruction Cache error\n");
647 		break;
648 	case 0x00100000:
649 		printk("L2 data cache parity error\n");
650 		break;
651 	default:
652 		printk("Unknown values in msr\n");
653 	}
654 	return 0;
655 }
656 #endif /* everything else */
657 
658 void machine_check_exception(struct pt_regs *regs)
659 {
660 	int recover = 0;
661 
662 	__get_cpu_var(irq_stat).mce_exceptions++;
663 
664 	/* See if any machine dependent calls. In theory, we would want
665 	 * to call the CPU first, and call the ppc_md. one if the CPU
666 	 * one returns a positive number. However there is existing code
667 	 * that assumes the board gets a first chance, so let's keep it
668 	 * that way for now and fix things later. --BenH.
669 	 */
670 	if (ppc_md.machine_check_exception)
671 		recover = ppc_md.machine_check_exception(regs);
672 	else if (cur_cpu_spec->machine_check)
673 		recover = cur_cpu_spec->machine_check(regs);
674 
675 	if (recover > 0)
676 		return;
677 
678 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
679 	/* the qspan pci read routines can cause machine checks -- Cort
680 	 *
681 	 * yuck !!! that totally needs to go away ! There are better ways
682 	 * to deal with that than having a wart in the mcheck handler.
683 	 * -- BenH
684 	 */
685 	bad_page_fault(regs, regs->dar, SIGBUS);
686 	return;
687 #endif
688 
689 	if (debugger_fault_handler(regs))
690 		return;
691 
692 	if (check_io_access(regs))
693 		return;
694 
695 	die("Machine check", regs, SIGBUS);
696 
697 	/* Must die if the interrupt is not recoverable */
698 	if (!(regs->msr & MSR_RI))
699 		panic("Unrecoverable Machine check");
700 }
701 
702 void SMIException(struct pt_regs *regs)
703 {
704 	die("System Management Interrupt", regs, SIGABRT);
705 }
706 
707 void unknown_exception(struct pt_regs *regs)
708 {
709 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
710 	       regs->nip, regs->msr, regs->trap);
711 
712 	_exception(SIGTRAP, regs, 0, 0);
713 }
714 
715 void instruction_breakpoint_exception(struct pt_regs *regs)
716 {
717 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
718 					5, SIGTRAP) == NOTIFY_STOP)
719 		return;
720 	if (debugger_iabr_match(regs))
721 		return;
722 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
723 }
724 
725 void RunModeException(struct pt_regs *regs)
726 {
727 	_exception(SIGTRAP, regs, 0, 0);
728 }
729 
730 void __kprobes single_step_exception(struct pt_regs *regs)
731 {
732 	clear_single_step(regs);
733 
734 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
735 					5, SIGTRAP) == NOTIFY_STOP)
736 		return;
737 	if (debugger_sstep(regs))
738 		return;
739 
740 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
741 }
742 
743 /*
744  * After we have successfully emulated an instruction, we have to
745  * check if the instruction was being single-stepped, and if so,
746  * pretend we got a single-step exception.  This was pointed out
747  * by Kumar Gala.  -- paulus
748  */
749 static void emulate_single_step(struct pt_regs *regs)
750 {
751 	if (single_stepping(regs))
752 		single_step_exception(regs);
753 }
754 
755 static inline int __parse_fpscr(unsigned long fpscr)
756 {
757 	int ret = 0;
758 
759 	/* Invalid operation */
760 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
761 		ret = FPE_FLTINV;
762 
763 	/* Overflow */
764 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
765 		ret = FPE_FLTOVF;
766 
767 	/* Underflow */
768 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
769 		ret = FPE_FLTUND;
770 
771 	/* Divide by zero */
772 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
773 		ret = FPE_FLTDIV;
774 
775 	/* Inexact result */
776 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
777 		ret = FPE_FLTRES;
778 
779 	return ret;
780 }
781 
782 static void parse_fpe(struct pt_regs *regs)
783 {
784 	int code = 0;
785 
786 	flush_fp_to_thread(current);
787 
788 	code = __parse_fpscr(current->thread.fpscr.val);
789 
790 	_exception(SIGFPE, regs, code, regs->nip);
791 }
792 
793 /*
794  * Illegal instruction emulation support.  Originally written to
795  * provide the PVR to user applications using the mfspr rd, PVR.
796  * Return non-zero if we can't emulate, or -EFAULT if the associated
797  * memory access caused an access fault.  Return zero on success.
798  *
799  * There are a couple of ways to do this, either "decode" the instruction
800  * or directly match lots of bits.  In this case, matching lots of
801  * bits is faster and easier.
802  *
803  */
804 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
805 {
806 	u8 rT = (instword >> 21) & 0x1f;
807 	u8 rA = (instword >> 16) & 0x1f;
808 	u8 NB_RB = (instword >> 11) & 0x1f;
809 	u32 num_bytes;
810 	unsigned long EA;
811 	int pos = 0;
812 
813 	/* Early out if we are an invalid form of lswx */
814 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
815 		if ((rT == rA) || (rT == NB_RB))
816 			return -EINVAL;
817 
818 	EA = (rA == 0) ? 0 : regs->gpr[rA];
819 
820 	switch (instword & PPC_INST_STRING_MASK) {
821 		case PPC_INST_LSWX:
822 		case PPC_INST_STSWX:
823 			EA += NB_RB;
824 			num_bytes = regs->xer & 0x7f;
825 			break;
826 		case PPC_INST_LSWI:
827 		case PPC_INST_STSWI:
828 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
829 			break;
830 		default:
831 			return -EINVAL;
832 	}
833 
834 	while (num_bytes != 0)
835 	{
836 		u8 val;
837 		u32 shift = 8 * (3 - (pos & 0x3));
838 
839 		switch ((instword & PPC_INST_STRING_MASK)) {
840 			case PPC_INST_LSWX:
841 			case PPC_INST_LSWI:
842 				if (get_user(val, (u8 __user *)EA))
843 					return -EFAULT;
844 				/* first time updating this reg,
845 				 * zero it out */
846 				if (pos == 0)
847 					regs->gpr[rT] = 0;
848 				regs->gpr[rT] |= val << shift;
849 				break;
850 			case PPC_INST_STSWI:
851 			case PPC_INST_STSWX:
852 				val = regs->gpr[rT] >> shift;
853 				if (put_user(val, (u8 __user *)EA))
854 					return -EFAULT;
855 				break;
856 		}
857 		/* move EA to next address */
858 		EA += 1;
859 		num_bytes--;
860 
861 		/* manage our position within the register */
862 		if (++pos == 4) {
863 			pos = 0;
864 			if (++rT == 32)
865 				rT = 0;
866 		}
867 	}
868 
869 	return 0;
870 }
871 
872 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
873 {
874 	u32 ra,rs;
875 	unsigned long tmp;
876 
877 	ra = (instword >> 16) & 0x1f;
878 	rs = (instword >> 21) & 0x1f;
879 
880 	tmp = regs->gpr[rs];
881 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
882 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
883 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
884 	regs->gpr[ra] = tmp;
885 
886 	return 0;
887 }
888 
889 static int emulate_isel(struct pt_regs *regs, u32 instword)
890 {
891 	u8 rT = (instword >> 21) & 0x1f;
892 	u8 rA = (instword >> 16) & 0x1f;
893 	u8 rB = (instword >> 11) & 0x1f;
894 	u8 BC = (instword >> 6) & 0x1f;
895 	u8 bit;
896 	unsigned long tmp;
897 
898 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
899 	bit = (regs->ccr >> (31 - BC)) & 0x1;
900 
901 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
902 
903 	return 0;
904 }
905 
906 static int emulate_instruction(struct pt_regs *regs)
907 {
908 	u32 instword;
909 	u32 rd;
910 
911 	if (!user_mode(regs) || (regs->msr & MSR_LE))
912 		return -EINVAL;
913 	CHECK_FULL_REGS(regs);
914 
915 	if (get_user(instword, (u32 __user *)(regs->nip)))
916 		return -EFAULT;
917 
918 	/* Emulate the mfspr rD, PVR. */
919 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
920 		PPC_WARN_EMULATED(mfpvr, regs);
921 		rd = (instword >> 21) & 0x1f;
922 		regs->gpr[rd] = mfspr(SPRN_PVR);
923 		return 0;
924 	}
925 
926 	/* Emulating the dcba insn is just a no-op.  */
927 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
928 		PPC_WARN_EMULATED(dcba, regs);
929 		return 0;
930 	}
931 
932 	/* Emulate the mcrxr insn.  */
933 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
934 		int shift = (instword >> 21) & 0x1c;
935 		unsigned long msk = 0xf0000000UL >> shift;
936 
937 		PPC_WARN_EMULATED(mcrxr, regs);
938 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
939 		regs->xer &= ~0xf0000000UL;
940 		return 0;
941 	}
942 
943 	/* Emulate load/store string insn. */
944 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
945 		PPC_WARN_EMULATED(string, regs);
946 		return emulate_string_inst(regs, instword);
947 	}
948 
949 	/* Emulate the popcntb (Population Count Bytes) instruction. */
950 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
951 		PPC_WARN_EMULATED(popcntb, regs);
952 		return emulate_popcntb_inst(regs, instword);
953 	}
954 
955 	/* Emulate isel (Integer Select) instruction */
956 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
957 		PPC_WARN_EMULATED(isel, regs);
958 		return emulate_isel(regs, instword);
959 	}
960 
961 #ifdef CONFIG_PPC64
962 	/* Emulate the mfspr rD, DSCR. */
963 	if (((instword & PPC_INST_MFSPR_DSCR_MASK) == PPC_INST_MFSPR_DSCR) &&
964 			cpu_has_feature(CPU_FTR_DSCR)) {
965 		PPC_WARN_EMULATED(mfdscr, regs);
966 		rd = (instword >> 21) & 0x1f;
967 		regs->gpr[rd] = mfspr(SPRN_DSCR);
968 		return 0;
969 	}
970 	/* Emulate the mtspr DSCR, rD. */
971 	if (((instword & PPC_INST_MTSPR_DSCR_MASK) == PPC_INST_MTSPR_DSCR) &&
972 			cpu_has_feature(CPU_FTR_DSCR)) {
973 		PPC_WARN_EMULATED(mtdscr, regs);
974 		rd = (instword >> 21) & 0x1f;
975 		mtspr(SPRN_DSCR, regs->gpr[rd]);
976 		current->thread.dscr_inherit = 1;
977 		return 0;
978 	}
979 #endif
980 
981 	return -EINVAL;
982 }
983 
984 int is_valid_bugaddr(unsigned long addr)
985 {
986 	return is_kernel_addr(addr);
987 }
988 
989 void __kprobes program_check_exception(struct pt_regs *regs)
990 {
991 	unsigned int reason = get_reason(regs);
992 	extern int do_mathemu(struct pt_regs *regs);
993 
994 	/* We can now get here via a FP Unavailable exception if the core
995 	 * has no FPU, in that case the reason flags will be 0 */
996 
997 	if (reason & REASON_FP) {
998 		/* IEEE FP exception */
999 		parse_fpe(regs);
1000 		return;
1001 	}
1002 	if (reason & REASON_TRAP) {
1003 		/* Debugger is first in line to stop recursive faults in
1004 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1005 		if (debugger_bpt(regs))
1006 			return;
1007 
1008 		/* trap exception */
1009 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1010 				== NOTIFY_STOP)
1011 			return;
1012 
1013 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1014 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1015 			regs->nip += 4;
1016 			return;
1017 		}
1018 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1019 		return;
1020 	}
1021 
1022 	/* We restore the interrupt state now */
1023 	if (!arch_irq_disabled_regs(regs))
1024 		local_irq_enable();
1025 
1026 #ifdef CONFIG_MATH_EMULATION
1027 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1028 	 * but there seems to be a hardware bug on the 405GP (RevD)
1029 	 * that means ESR is sometimes set incorrectly - either to
1030 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1031 	 * hardware people - not sure if it can happen on any illegal
1032 	 * instruction or only on FP instructions, whether there is a
1033 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1034 	switch (do_mathemu(regs)) {
1035 	case 0:
1036 		emulate_single_step(regs);
1037 		return;
1038 	case 1: {
1039 			int code = 0;
1040 			code = __parse_fpscr(current->thread.fpscr.val);
1041 			_exception(SIGFPE, regs, code, regs->nip);
1042 			return;
1043 		}
1044 	case -EFAULT:
1045 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1046 		return;
1047 	}
1048 	/* fall through on any other errors */
1049 #endif /* CONFIG_MATH_EMULATION */
1050 
1051 	/* Try to emulate it if we should. */
1052 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1053 		switch (emulate_instruction(regs)) {
1054 		case 0:
1055 			regs->nip += 4;
1056 			emulate_single_step(regs);
1057 			return;
1058 		case -EFAULT:
1059 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1060 			return;
1061 		}
1062 	}
1063 
1064 	if (reason & REASON_PRIVILEGED)
1065 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1066 	else
1067 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1068 }
1069 
1070 void alignment_exception(struct pt_regs *regs)
1071 {
1072 	int sig, code, fixed = 0;
1073 
1074 	/* We restore the interrupt state now */
1075 	if (!arch_irq_disabled_regs(regs))
1076 		local_irq_enable();
1077 
1078 	/* we don't implement logging of alignment exceptions */
1079 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1080 		fixed = fix_alignment(regs);
1081 
1082 	if (fixed == 1) {
1083 		regs->nip += 4;	/* skip over emulated instruction */
1084 		emulate_single_step(regs);
1085 		return;
1086 	}
1087 
1088 	/* Operand address was bad */
1089 	if (fixed == -EFAULT) {
1090 		sig = SIGSEGV;
1091 		code = SEGV_ACCERR;
1092 	} else {
1093 		sig = SIGBUS;
1094 		code = BUS_ADRALN;
1095 	}
1096 	if (user_mode(regs))
1097 		_exception(sig, regs, code, regs->dar);
1098 	else
1099 		bad_page_fault(regs, regs->dar, sig);
1100 }
1101 
1102 void StackOverflow(struct pt_regs *regs)
1103 {
1104 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1105 	       current, regs->gpr[1]);
1106 	debugger(regs);
1107 	show_regs(regs);
1108 	panic("kernel stack overflow");
1109 }
1110 
1111 void nonrecoverable_exception(struct pt_regs *regs)
1112 {
1113 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1114 	       regs->nip, regs->msr);
1115 	debugger(regs);
1116 	die("nonrecoverable exception", regs, SIGKILL);
1117 }
1118 
1119 void trace_syscall(struct pt_regs *regs)
1120 {
1121 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1122 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1123 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1124 }
1125 
1126 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1127 {
1128 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1129 			  "%lx at %lx\n", regs->trap, regs->nip);
1130 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1131 }
1132 
1133 void altivec_unavailable_exception(struct pt_regs *regs)
1134 {
1135 	if (user_mode(regs)) {
1136 		/* A user program has executed an altivec instruction,
1137 		   but this kernel doesn't support altivec. */
1138 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1139 		return;
1140 	}
1141 
1142 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1143 			"%lx at %lx\n", regs->trap, regs->nip);
1144 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1145 }
1146 
1147 void vsx_unavailable_exception(struct pt_regs *regs)
1148 {
1149 	if (user_mode(regs)) {
1150 		/* A user program has executed an vsx instruction,
1151 		   but this kernel doesn't support vsx. */
1152 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1153 		return;
1154 	}
1155 
1156 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1157 			"%lx at %lx\n", regs->trap, regs->nip);
1158 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1159 }
1160 
1161 void performance_monitor_exception(struct pt_regs *regs)
1162 {
1163 	__get_cpu_var(irq_stat).pmu_irqs++;
1164 
1165 	perf_irq(regs);
1166 }
1167 
1168 #ifdef CONFIG_8xx
1169 void SoftwareEmulation(struct pt_regs *regs)
1170 {
1171 	extern int do_mathemu(struct pt_regs *);
1172 	extern int Soft_emulate_8xx(struct pt_regs *);
1173 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1174 	int errcode;
1175 #endif
1176 
1177 	CHECK_FULL_REGS(regs);
1178 
1179 	if (!user_mode(regs)) {
1180 		debugger(regs);
1181 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1182 	}
1183 
1184 #ifdef CONFIG_MATH_EMULATION
1185 	errcode = do_mathemu(regs);
1186 	if (errcode >= 0)
1187 		PPC_WARN_EMULATED(math, regs);
1188 
1189 	switch (errcode) {
1190 	case 0:
1191 		emulate_single_step(regs);
1192 		return;
1193 	case 1: {
1194 			int code = 0;
1195 			code = __parse_fpscr(current->thread.fpscr.val);
1196 			_exception(SIGFPE, regs, code, regs->nip);
1197 			return;
1198 		}
1199 	case -EFAULT:
1200 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1201 		return;
1202 	default:
1203 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1204 		return;
1205 	}
1206 
1207 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1208 	errcode = Soft_emulate_8xx(regs);
1209 	if (errcode >= 0)
1210 		PPC_WARN_EMULATED(8xx, regs);
1211 
1212 	switch (errcode) {
1213 	case 0:
1214 		emulate_single_step(regs);
1215 		return;
1216 	case 1:
1217 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1218 		return;
1219 	case -EFAULT:
1220 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1221 		return;
1222 	}
1223 #else
1224 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1225 #endif
1226 }
1227 #endif /* CONFIG_8xx */
1228 
1229 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1230 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1231 {
1232 	int changed = 0;
1233 	/*
1234 	 * Determine the cause of the debug event, clear the
1235 	 * event flags and send a trap to the handler. Torez
1236 	 */
1237 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1238 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1239 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1240 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1241 #endif
1242 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1243 			     5);
1244 		changed |= 0x01;
1245 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1246 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1247 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1248 			     6);
1249 		changed |= 0x01;
1250 	}  else if (debug_status & DBSR_IAC1) {
1251 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1252 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1253 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1254 			     1);
1255 		changed |= 0x01;
1256 	}  else if (debug_status & DBSR_IAC2) {
1257 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1258 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1259 			     2);
1260 		changed |= 0x01;
1261 	}  else if (debug_status & DBSR_IAC3) {
1262 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1263 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1264 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1265 			     3);
1266 		changed |= 0x01;
1267 	}  else if (debug_status & DBSR_IAC4) {
1268 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1269 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1270 			     4);
1271 		changed |= 0x01;
1272 	}
1273 	/*
1274 	 * At the point this routine was called, the MSR(DE) was turned off.
1275 	 * Check all other debug flags and see if that bit needs to be turned
1276 	 * back on or not.
1277 	 */
1278 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1279 		regs->msr |= MSR_DE;
1280 	else
1281 		/* Make sure the IDM flag is off */
1282 		current->thread.dbcr0 &= ~DBCR0_IDM;
1283 
1284 	if (changed & 0x01)
1285 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1286 }
1287 
1288 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1289 {
1290 	current->thread.dbsr = debug_status;
1291 
1292 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1293 	 * on server, it stops on the target of the branch. In order to simulate
1294 	 * the server behaviour, we thus restart right away with a single step
1295 	 * instead of stopping here when hitting a BT
1296 	 */
1297 	if (debug_status & DBSR_BT) {
1298 		regs->msr &= ~MSR_DE;
1299 
1300 		/* Disable BT */
1301 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1302 		/* Clear the BT event */
1303 		mtspr(SPRN_DBSR, DBSR_BT);
1304 
1305 		/* Do the single step trick only when coming from userspace */
1306 		if (user_mode(regs)) {
1307 			current->thread.dbcr0 &= ~DBCR0_BT;
1308 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1309 			regs->msr |= MSR_DE;
1310 			return;
1311 		}
1312 
1313 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1314 			       5, SIGTRAP) == NOTIFY_STOP) {
1315 			return;
1316 		}
1317 		if (debugger_sstep(regs))
1318 			return;
1319 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1320 		regs->msr &= ~MSR_DE;
1321 
1322 		/* Disable instruction completion */
1323 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1324 		/* Clear the instruction completion event */
1325 		mtspr(SPRN_DBSR, DBSR_IC);
1326 
1327 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1328 			       5, SIGTRAP) == NOTIFY_STOP) {
1329 			return;
1330 		}
1331 
1332 		if (debugger_sstep(regs))
1333 			return;
1334 
1335 		if (user_mode(regs)) {
1336 			current->thread.dbcr0 &= ~DBCR0_IC;
1337 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1338 					       current->thread.dbcr1))
1339 				regs->msr |= MSR_DE;
1340 			else
1341 				/* Make sure the IDM bit is off */
1342 				current->thread.dbcr0 &= ~DBCR0_IDM;
1343 		}
1344 
1345 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1346 	} else
1347 		handle_debug(regs, debug_status);
1348 }
1349 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1350 
1351 #if !defined(CONFIG_TAU_INT)
1352 void TAUException(struct pt_regs *regs)
1353 {
1354 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1355 	       regs->nip, regs->msr, regs->trap, print_tainted());
1356 }
1357 #endif /* CONFIG_INT_TAU */
1358 
1359 #ifdef CONFIG_ALTIVEC
1360 void altivec_assist_exception(struct pt_regs *regs)
1361 {
1362 	int err;
1363 
1364 	if (!user_mode(regs)) {
1365 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1366 		       " at %lx\n", regs->nip);
1367 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1368 	}
1369 
1370 	flush_altivec_to_thread(current);
1371 
1372 	PPC_WARN_EMULATED(altivec, regs);
1373 	err = emulate_altivec(regs);
1374 	if (err == 0) {
1375 		regs->nip += 4;		/* skip emulated instruction */
1376 		emulate_single_step(regs);
1377 		return;
1378 	}
1379 
1380 	if (err == -EFAULT) {
1381 		/* got an error reading the instruction */
1382 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1383 	} else {
1384 		/* didn't recognize the instruction */
1385 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1386 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1387 				   "in %s at %lx\n", current->comm, regs->nip);
1388 		current->thread.vscr.u[3] |= 0x10000;
1389 	}
1390 }
1391 #endif /* CONFIG_ALTIVEC */
1392 
1393 #ifdef CONFIG_VSX
1394 void vsx_assist_exception(struct pt_regs *regs)
1395 {
1396 	if (!user_mode(regs)) {
1397 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1398 		       " at %lx\n", regs->nip);
1399 		die("Kernel VSX assist exception", regs, SIGILL);
1400 	}
1401 
1402 	flush_vsx_to_thread(current);
1403 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1404 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1405 }
1406 #endif /* CONFIG_VSX */
1407 
1408 #ifdef CONFIG_FSL_BOOKE
1409 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1410 			   unsigned long error_code)
1411 {
1412 	/* We treat cache locking instructions from the user
1413 	 * as priv ops, in the future we could try to do
1414 	 * something smarter
1415 	 */
1416 	if (error_code & (ESR_DLK|ESR_ILK))
1417 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1418 	return;
1419 }
1420 #endif /* CONFIG_FSL_BOOKE */
1421 
1422 #ifdef CONFIG_SPE
1423 void SPEFloatingPointException(struct pt_regs *regs)
1424 {
1425 	extern int do_spe_mathemu(struct pt_regs *regs);
1426 	unsigned long spefscr;
1427 	int fpexc_mode;
1428 	int code = 0;
1429 	int err;
1430 
1431 	flush_spe_to_thread(current);
1432 
1433 	spefscr = current->thread.spefscr;
1434 	fpexc_mode = current->thread.fpexc_mode;
1435 
1436 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1437 		code = FPE_FLTOVF;
1438 	}
1439 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1440 		code = FPE_FLTUND;
1441 	}
1442 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1443 		code = FPE_FLTDIV;
1444 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1445 		code = FPE_FLTINV;
1446 	}
1447 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1448 		code = FPE_FLTRES;
1449 
1450 	err = do_spe_mathemu(regs);
1451 	if (err == 0) {
1452 		regs->nip += 4;		/* skip emulated instruction */
1453 		emulate_single_step(regs);
1454 		return;
1455 	}
1456 
1457 	if (err == -EFAULT) {
1458 		/* got an error reading the instruction */
1459 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1460 	} else if (err == -EINVAL) {
1461 		/* didn't recognize the instruction */
1462 		printk(KERN_ERR "unrecognized spe instruction "
1463 		       "in %s at %lx\n", current->comm, regs->nip);
1464 	} else {
1465 		_exception(SIGFPE, regs, code, regs->nip);
1466 	}
1467 
1468 	return;
1469 }
1470 
1471 void SPEFloatingPointRoundException(struct pt_regs *regs)
1472 {
1473 	extern int speround_handler(struct pt_regs *regs);
1474 	int err;
1475 
1476 	preempt_disable();
1477 	if (regs->msr & MSR_SPE)
1478 		giveup_spe(current);
1479 	preempt_enable();
1480 
1481 	regs->nip -= 4;
1482 	err = speround_handler(regs);
1483 	if (err == 0) {
1484 		regs->nip += 4;		/* skip emulated instruction */
1485 		emulate_single_step(regs);
1486 		return;
1487 	}
1488 
1489 	if (err == -EFAULT) {
1490 		/* got an error reading the instruction */
1491 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1492 	} else if (err == -EINVAL) {
1493 		/* didn't recognize the instruction */
1494 		printk(KERN_ERR "unrecognized spe instruction "
1495 		       "in %s at %lx\n", current->comm, regs->nip);
1496 	} else {
1497 		_exception(SIGFPE, regs, 0, regs->nip);
1498 		return;
1499 	}
1500 }
1501 #endif
1502 
1503 /*
1504  * We enter here if we get an unrecoverable exception, that is, one
1505  * that happened at a point where the RI (recoverable interrupt) bit
1506  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1507  * we therefore lost state by taking this exception.
1508  */
1509 void unrecoverable_exception(struct pt_regs *regs)
1510 {
1511 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1512 	       regs->trap, regs->nip);
1513 	die("Unrecoverable exception", regs, SIGABRT);
1514 }
1515 
1516 #ifdef CONFIG_BOOKE_WDT
1517 /*
1518  * Default handler for a Watchdog exception,
1519  * spins until a reboot occurs
1520  */
1521 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1522 {
1523 	/* Generic WatchdogHandler, implement your own */
1524 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1525 	return;
1526 }
1527 
1528 void WatchdogException(struct pt_regs *regs)
1529 {
1530 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1531 	WatchdogHandler(regs);
1532 }
1533 #endif
1534 
1535 /*
1536  * We enter here if we discover during exception entry that we are
1537  * running in supervisor mode with a userspace value in the stack pointer.
1538  */
1539 void kernel_bad_stack(struct pt_regs *regs)
1540 {
1541 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1542 	       regs->gpr[1], regs->nip);
1543 	die("Bad kernel stack pointer", regs, SIGABRT);
1544 }
1545 
1546 void __init trap_init(void)
1547 {
1548 }
1549 
1550 
1551 #ifdef CONFIG_PPC_EMULATED_STATS
1552 
1553 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1554 
1555 struct ppc_emulated ppc_emulated = {
1556 #ifdef CONFIG_ALTIVEC
1557 	WARN_EMULATED_SETUP(altivec),
1558 #endif
1559 	WARN_EMULATED_SETUP(dcba),
1560 	WARN_EMULATED_SETUP(dcbz),
1561 	WARN_EMULATED_SETUP(fp_pair),
1562 	WARN_EMULATED_SETUP(isel),
1563 	WARN_EMULATED_SETUP(mcrxr),
1564 	WARN_EMULATED_SETUP(mfpvr),
1565 	WARN_EMULATED_SETUP(multiple),
1566 	WARN_EMULATED_SETUP(popcntb),
1567 	WARN_EMULATED_SETUP(spe),
1568 	WARN_EMULATED_SETUP(string),
1569 	WARN_EMULATED_SETUP(unaligned),
1570 #ifdef CONFIG_MATH_EMULATION
1571 	WARN_EMULATED_SETUP(math),
1572 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1573 	WARN_EMULATED_SETUP(8xx),
1574 #endif
1575 #ifdef CONFIG_VSX
1576 	WARN_EMULATED_SETUP(vsx),
1577 #endif
1578 #ifdef CONFIG_PPC64
1579 	WARN_EMULATED_SETUP(mfdscr),
1580 	WARN_EMULATED_SETUP(mtdscr),
1581 #endif
1582 };
1583 
1584 u32 ppc_warn_emulated;
1585 
1586 void ppc_warn_emulated_print(const char *type)
1587 {
1588 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1589 			    type);
1590 }
1591 
1592 static int __init ppc_warn_emulated_init(void)
1593 {
1594 	struct dentry *dir, *d;
1595 	unsigned int i;
1596 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1597 
1598 	if (!powerpc_debugfs_root)
1599 		return -ENODEV;
1600 
1601 	dir = debugfs_create_dir("emulated_instructions",
1602 				 powerpc_debugfs_root);
1603 	if (!dir)
1604 		return -ENOMEM;
1605 
1606 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1607 			       &ppc_warn_emulated);
1608 	if (!d)
1609 		goto fail;
1610 
1611 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1612 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1613 				       (u32 *)&entries[i].val.counter);
1614 		if (!d)
1615 			goto fail;
1616 	}
1617 
1618 	return 0;
1619 
1620 fail:
1621 	debugfs_remove_recursive(dir);
1622 	return -ENOMEM;
1623 }
1624 
1625 device_initcall(ppc_warn_emulated_init);
1626 
1627 #endif /* CONFIG_PPC_EMULATED_STATS */
1628