xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision a91c3fb2)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74 
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83 
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90 
91 /*
92  * Trap & Exception support
93  */
94 
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 	mutex_lock(&pmac_backlight_mutex);
99 	if (pmac_backlight) {
100 		struct backlight_properties *props;
101 
102 		props = &pmac_backlight->props;
103 		props->brightness = props->max_brightness;
104 		props->power = FB_BLANK_UNBLANK;
105 		backlight_update_status(pmac_backlight);
106 	}
107 	mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112 
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117 
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 	int cpu;
121 	unsigned long flags;
122 
123 	if (debugger(regs))
124 		return 1;
125 
126 	oops_enter();
127 
128 	/* racy, but better than risking deadlock. */
129 	raw_local_irq_save(flags);
130 	cpu = smp_processor_id();
131 	if (!arch_spin_trylock(&die_lock)) {
132 		if (cpu == die_owner)
133 			/* nested oops. should stop eventually */;
134 		else
135 			arch_spin_lock(&die_lock);
136 	}
137 	die_nest_count++;
138 	die_owner = cpu;
139 	console_verbose();
140 	bust_spinlocks(1);
141 	if (machine_is(powermac))
142 		pmac_backlight_unblank();
143 	return flags;
144 }
145 
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 			       int signr)
148 {
149 	bust_spinlocks(0);
150 	die_owner = -1;
151 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 	die_nest_count--;
153 	oops_exit();
154 	printk("\n");
155 	if (!die_nest_count)
156 		/* Nest count reaches zero, release the lock. */
157 		arch_spin_unlock(&die_lock);
158 	raw_local_irq_restore(flags);
159 
160 	crash_fadump(regs, "die oops");
161 
162 	/*
163 	 * A system reset (0x100) is a request to dump, so we always send
164 	 * it through the crashdump code.
165 	 */
166 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 		crash_kexec(regs);
168 
169 		/*
170 		 * We aren't the primary crash CPU. We need to send it
171 		 * to a holding pattern to avoid it ending up in the panic
172 		 * code.
173 		 */
174 		crash_kexec_secondary(regs);
175 	}
176 
177 	if (!signr)
178 		return;
179 
180 	/*
181 	 * While our oops output is serialised by a spinlock, output
182 	 * from panic() called below can race and corrupt it. If we
183 	 * know we are going to panic, delay for 1 second so we have a
184 	 * chance to get clean backtraces from all CPUs that are oopsing.
185 	 */
186 	if (in_interrupt() || panic_on_oops || !current->pid ||
187 	    is_global_init(current)) {
188 		mdelay(MSEC_PER_SEC);
189 	}
190 
191 	if (in_interrupt())
192 		panic("Fatal exception in interrupt");
193 	if (panic_on_oops)
194 		panic("Fatal exception");
195 	do_exit(signr);
196 }
197 
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 	printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 	printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 #ifdef CONFIG_DEBUG_PAGEALLOC
208 	printk("DEBUG_PAGEALLOC ");
209 #endif
210 #ifdef CONFIG_NUMA
211 	printk("NUMA ");
212 #endif
213 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
214 
215 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
216 		return 1;
217 
218 	print_modules();
219 	show_regs(regs);
220 
221 	return 0;
222 }
223 
224 void die(const char *str, struct pt_regs *regs, long err)
225 {
226 	unsigned long flags = oops_begin(regs);
227 
228 	if (__die(str, regs, err))
229 		err = 0;
230 	oops_end(flags, regs, err);
231 }
232 
233 void user_single_step_siginfo(struct task_struct *tsk,
234 				struct pt_regs *regs, siginfo_t *info)
235 {
236 	memset(info, 0, sizeof(*info));
237 	info->si_signo = SIGTRAP;
238 	info->si_code = TRAP_TRACE;
239 	info->si_addr = (void __user *)regs->nip;
240 }
241 
242 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
243 {
244 	siginfo_t info;
245 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %08lx nip %08lx lr %08lx code %x\n";
247 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
248 			"at %016lx nip %016lx lr %016lx code %x\n";
249 
250 	if (!user_mode(regs)) {
251 		die("Exception in kernel mode", regs, signr);
252 		return;
253 	}
254 
255 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
257 				   current->comm, current->pid, signr,
258 				   addr, regs->nip, regs->link, code);
259 	}
260 
261 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 		local_irq_enable();
263 
264 	current->thread.trap_nr = code;
265 	memset(&info, 0, sizeof(info));
266 	info.si_signo = signr;
267 	info.si_code = code;
268 	info.si_addr = (void __user *) addr;
269 	force_sig_info(signr, &info, current);
270 }
271 
272 #ifdef CONFIG_PPC64
273 void system_reset_exception(struct pt_regs *regs)
274 {
275 	/* See if any machine dependent calls */
276 	if (ppc_md.system_reset_exception) {
277 		if (ppc_md.system_reset_exception(regs))
278 			return;
279 	}
280 
281 	die("System Reset", regs, SIGABRT);
282 
283 	/* Must die if the interrupt is not recoverable */
284 	if (!(regs->msr & MSR_RI))
285 		panic("Unrecoverable System Reset");
286 
287 	/* What should we do here? We could issue a shutdown or hard reset. */
288 }
289 #endif
290 
291 /*
292  * I/O accesses can cause machine checks on powermacs.
293  * Check if the NIP corresponds to the address of a sync
294  * instruction for which there is an entry in the exception
295  * table.
296  * Note that the 601 only takes a machine check on TEA
297  * (transfer error ack) signal assertion, and does not
298  * set any of the top 16 bits of SRR1.
299  *  -- paulus.
300  */
301 static inline int check_io_access(struct pt_regs *regs)
302 {
303 #ifdef CONFIG_PPC32
304 	unsigned long msr = regs->msr;
305 	const struct exception_table_entry *entry;
306 	unsigned int *nip = (unsigned int *)regs->nip;
307 
308 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
309 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
310 		/*
311 		 * Check that it's a sync instruction, or somewhere
312 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
313 		 * As the address is in the exception table
314 		 * we should be able to read the instr there.
315 		 * For the debug message, we look at the preceding
316 		 * load or store.
317 		 */
318 		if (*nip == 0x60000000)		/* nop */
319 			nip -= 2;
320 		else if (*nip == 0x4c00012c)	/* isync */
321 			--nip;
322 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
323 			/* sync or twi */
324 			unsigned int rb;
325 
326 			--nip;
327 			rb = (*nip >> 11) & 0x1f;
328 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
329 			       (*nip & 0x100)? "OUT to": "IN from",
330 			       regs->gpr[rb] - _IO_BASE, nip);
331 			regs->msr |= MSR_RI;
332 			regs->nip = entry->fixup;
333 			return 1;
334 		}
335 	}
336 #endif /* CONFIG_PPC32 */
337 	return 0;
338 }
339 
340 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
341 /* On 4xx, the reason for the machine check or program exception
342    is in the ESR. */
343 #define get_reason(regs)	((regs)->dsisr)
344 #ifndef CONFIG_FSL_BOOKE
345 #define get_mc_reason(regs)	((regs)->dsisr)
346 #else
347 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
348 #endif
349 #define REASON_FP		ESR_FP
350 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
351 #define REASON_PRIVILEGED	ESR_PPR
352 #define REASON_TRAP		ESR_PTR
353 
354 /* single-step stuff */
355 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
356 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
357 
358 #else
359 /* On non-4xx, the reason for the machine check or program
360    exception is in the MSR. */
361 #define get_reason(regs)	((regs)->msr)
362 #define get_mc_reason(regs)	((regs)->msr)
363 #define REASON_TM		0x200000
364 #define REASON_FP		0x100000
365 #define REASON_ILLEGAL		0x80000
366 #define REASON_PRIVILEGED	0x40000
367 #define REASON_TRAP		0x20000
368 
369 #define single_stepping(regs)	((regs)->msr & MSR_SE)
370 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
371 #endif
372 
373 #if defined(CONFIG_4xx)
374 int machine_check_4xx(struct pt_regs *regs)
375 {
376 	unsigned long reason = get_mc_reason(regs);
377 
378 	if (reason & ESR_IMCP) {
379 		printk("Instruction");
380 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
381 	} else
382 		printk("Data");
383 	printk(" machine check in kernel mode.\n");
384 
385 	return 0;
386 }
387 
388 int machine_check_440A(struct pt_regs *regs)
389 {
390 	unsigned long reason = get_mc_reason(regs);
391 
392 	printk("Machine check in kernel mode.\n");
393 	if (reason & ESR_IMCP){
394 		printk("Instruction Synchronous Machine Check exception\n");
395 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
396 	}
397 	else {
398 		u32 mcsr = mfspr(SPRN_MCSR);
399 		if (mcsr & MCSR_IB)
400 			printk("Instruction Read PLB Error\n");
401 		if (mcsr & MCSR_DRB)
402 			printk("Data Read PLB Error\n");
403 		if (mcsr & MCSR_DWB)
404 			printk("Data Write PLB Error\n");
405 		if (mcsr & MCSR_TLBP)
406 			printk("TLB Parity Error\n");
407 		if (mcsr & MCSR_ICP){
408 			flush_instruction_cache();
409 			printk("I-Cache Parity Error\n");
410 		}
411 		if (mcsr & MCSR_DCSP)
412 			printk("D-Cache Search Parity Error\n");
413 		if (mcsr & MCSR_DCFP)
414 			printk("D-Cache Flush Parity Error\n");
415 		if (mcsr & MCSR_IMPE)
416 			printk("Machine Check exception is imprecise\n");
417 
418 		/* Clear MCSR */
419 		mtspr(SPRN_MCSR, mcsr);
420 	}
421 	return 0;
422 }
423 
424 int machine_check_47x(struct pt_regs *regs)
425 {
426 	unsigned long reason = get_mc_reason(regs);
427 	u32 mcsr;
428 
429 	printk(KERN_ERR "Machine check in kernel mode.\n");
430 	if (reason & ESR_IMCP) {
431 		printk(KERN_ERR
432 		       "Instruction Synchronous Machine Check exception\n");
433 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
434 		return 0;
435 	}
436 	mcsr = mfspr(SPRN_MCSR);
437 	if (mcsr & MCSR_IB)
438 		printk(KERN_ERR "Instruction Read PLB Error\n");
439 	if (mcsr & MCSR_DRB)
440 		printk(KERN_ERR "Data Read PLB Error\n");
441 	if (mcsr & MCSR_DWB)
442 		printk(KERN_ERR "Data Write PLB Error\n");
443 	if (mcsr & MCSR_TLBP)
444 		printk(KERN_ERR "TLB Parity Error\n");
445 	if (mcsr & MCSR_ICP) {
446 		flush_instruction_cache();
447 		printk(KERN_ERR "I-Cache Parity Error\n");
448 	}
449 	if (mcsr & MCSR_DCSP)
450 		printk(KERN_ERR "D-Cache Search Parity Error\n");
451 	if (mcsr & PPC47x_MCSR_GPR)
452 		printk(KERN_ERR "GPR Parity Error\n");
453 	if (mcsr & PPC47x_MCSR_FPR)
454 		printk(KERN_ERR "FPR Parity Error\n");
455 	if (mcsr & PPC47x_MCSR_IPR)
456 		printk(KERN_ERR "Machine Check exception is imprecise\n");
457 
458 	/* Clear MCSR */
459 	mtspr(SPRN_MCSR, mcsr);
460 
461 	return 0;
462 }
463 #elif defined(CONFIG_E500)
464 int machine_check_e500mc(struct pt_regs *regs)
465 {
466 	unsigned long mcsr = mfspr(SPRN_MCSR);
467 	unsigned long reason = mcsr;
468 	int recoverable = 1;
469 
470 	if (reason & MCSR_LD) {
471 		recoverable = fsl_rio_mcheck_exception(regs);
472 		if (recoverable == 1)
473 			goto silent_out;
474 	}
475 
476 	printk("Machine check in kernel mode.\n");
477 	printk("Caused by (from MCSR=%lx): ", reason);
478 
479 	if (reason & MCSR_MCP)
480 		printk("Machine Check Signal\n");
481 
482 	if (reason & MCSR_ICPERR) {
483 		printk("Instruction Cache Parity Error\n");
484 
485 		/*
486 		 * This is recoverable by invalidating the i-cache.
487 		 */
488 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
489 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
490 			;
491 
492 		/*
493 		 * This will generally be accompanied by an instruction
494 		 * fetch error report -- only treat MCSR_IF as fatal
495 		 * if it wasn't due to an L1 parity error.
496 		 */
497 		reason &= ~MCSR_IF;
498 	}
499 
500 	if (reason & MCSR_DCPERR_MC) {
501 		printk("Data Cache Parity Error\n");
502 
503 		/*
504 		 * In write shadow mode we auto-recover from the error, but it
505 		 * may still get logged and cause a machine check.  We should
506 		 * only treat the non-write shadow case as non-recoverable.
507 		 */
508 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
509 			recoverable = 0;
510 	}
511 
512 	if (reason & MCSR_L2MMU_MHIT) {
513 		printk("Hit on multiple TLB entries\n");
514 		recoverable = 0;
515 	}
516 
517 	if (reason & MCSR_NMI)
518 		printk("Non-maskable interrupt\n");
519 
520 	if (reason & MCSR_IF) {
521 		printk("Instruction Fetch Error Report\n");
522 		recoverable = 0;
523 	}
524 
525 	if (reason & MCSR_LD) {
526 		printk("Load Error Report\n");
527 		recoverable = 0;
528 	}
529 
530 	if (reason & MCSR_ST) {
531 		printk("Store Error Report\n");
532 		recoverable = 0;
533 	}
534 
535 	if (reason & MCSR_LDG) {
536 		printk("Guarded Load Error Report\n");
537 		recoverable = 0;
538 	}
539 
540 	if (reason & MCSR_TLBSYNC)
541 		printk("Simultaneous tlbsync operations\n");
542 
543 	if (reason & MCSR_BSL2_ERR) {
544 		printk("Level 2 Cache Error\n");
545 		recoverable = 0;
546 	}
547 
548 	if (reason & MCSR_MAV) {
549 		u64 addr;
550 
551 		addr = mfspr(SPRN_MCAR);
552 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
553 
554 		printk("Machine Check %s Address: %#llx\n",
555 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
556 	}
557 
558 silent_out:
559 	mtspr(SPRN_MCSR, mcsr);
560 	return mfspr(SPRN_MCSR) == 0 && recoverable;
561 }
562 
563 int machine_check_e500(struct pt_regs *regs)
564 {
565 	unsigned long reason = get_mc_reason(regs);
566 
567 	if (reason & MCSR_BUS_RBERR) {
568 		if (fsl_rio_mcheck_exception(regs))
569 			return 1;
570 	}
571 
572 	printk("Machine check in kernel mode.\n");
573 	printk("Caused by (from MCSR=%lx): ", reason);
574 
575 	if (reason & MCSR_MCP)
576 		printk("Machine Check Signal\n");
577 	if (reason & MCSR_ICPERR)
578 		printk("Instruction Cache Parity Error\n");
579 	if (reason & MCSR_DCP_PERR)
580 		printk("Data Cache Push Parity Error\n");
581 	if (reason & MCSR_DCPERR)
582 		printk("Data Cache Parity Error\n");
583 	if (reason & MCSR_BUS_IAERR)
584 		printk("Bus - Instruction Address Error\n");
585 	if (reason & MCSR_BUS_RAERR)
586 		printk("Bus - Read Address Error\n");
587 	if (reason & MCSR_BUS_WAERR)
588 		printk("Bus - Write Address Error\n");
589 	if (reason & MCSR_BUS_IBERR)
590 		printk("Bus - Instruction Data Error\n");
591 	if (reason & MCSR_BUS_RBERR)
592 		printk("Bus - Read Data Bus Error\n");
593 	if (reason & MCSR_BUS_WBERR)
594 		printk("Bus - Read Data Bus Error\n");
595 	if (reason & MCSR_BUS_IPERR)
596 		printk("Bus - Instruction Parity Error\n");
597 	if (reason & MCSR_BUS_RPERR)
598 		printk("Bus - Read Parity Error\n");
599 
600 	return 0;
601 }
602 
603 int machine_check_generic(struct pt_regs *regs)
604 {
605 	return 0;
606 }
607 #elif defined(CONFIG_E200)
608 int machine_check_e200(struct pt_regs *regs)
609 {
610 	unsigned long reason = get_mc_reason(regs);
611 
612 	printk("Machine check in kernel mode.\n");
613 	printk("Caused by (from MCSR=%lx): ", reason);
614 
615 	if (reason & MCSR_MCP)
616 		printk("Machine Check Signal\n");
617 	if (reason & MCSR_CP_PERR)
618 		printk("Cache Push Parity Error\n");
619 	if (reason & MCSR_CPERR)
620 		printk("Cache Parity Error\n");
621 	if (reason & MCSR_EXCP_ERR)
622 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
623 	if (reason & MCSR_BUS_IRERR)
624 		printk("Bus - Read Bus Error on instruction fetch\n");
625 	if (reason & MCSR_BUS_DRERR)
626 		printk("Bus - Read Bus Error on data load\n");
627 	if (reason & MCSR_BUS_WRERR)
628 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
629 
630 	return 0;
631 }
632 #else
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 	unsigned long reason = get_mc_reason(regs);
636 
637 	printk("Machine check in kernel mode.\n");
638 	printk("Caused by (from SRR1=%lx): ", reason);
639 	switch (reason & 0x601F0000) {
640 	case 0x80000:
641 		printk("Machine check signal\n");
642 		break;
643 	case 0:		/* for 601 */
644 	case 0x40000:
645 	case 0x140000:	/* 7450 MSS error and TEA */
646 		printk("Transfer error ack signal\n");
647 		break;
648 	case 0x20000:
649 		printk("Data parity error signal\n");
650 		break;
651 	case 0x10000:
652 		printk("Address parity error signal\n");
653 		break;
654 	case 0x20000000:
655 		printk("L1 Data Cache error\n");
656 		break;
657 	case 0x40000000:
658 		printk("L1 Instruction Cache error\n");
659 		break;
660 	case 0x00100000:
661 		printk("L2 data cache parity error\n");
662 		break;
663 	default:
664 		printk("Unknown values in msr\n");
665 	}
666 	return 0;
667 }
668 #endif /* everything else */
669 
670 void machine_check_exception(struct pt_regs *regs)
671 {
672 	enum ctx_state prev_state = exception_enter();
673 	int recover = 0;
674 
675 	__get_cpu_var(irq_stat).mce_exceptions++;
676 
677 	/* See if any machine dependent calls. In theory, we would want
678 	 * to call the CPU first, and call the ppc_md. one if the CPU
679 	 * one returns a positive number. However there is existing code
680 	 * that assumes the board gets a first chance, so let's keep it
681 	 * that way for now and fix things later. --BenH.
682 	 */
683 	if (ppc_md.machine_check_exception)
684 		recover = ppc_md.machine_check_exception(regs);
685 	else if (cur_cpu_spec->machine_check)
686 		recover = cur_cpu_spec->machine_check(regs);
687 
688 	if (recover > 0)
689 		goto bail;
690 
691 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
692 	/* the qspan pci read routines can cause machine checks -- Cort
693 	 *
694 	 * yuck !!! that totally needs to go away ! There are better ways
695 	 * to deal with that than having a wart in the mcheck handler.
696 	 * -- BenH
697 	 */
698 	bad_page_fault(regs, regs->dar, SIGBUS);
699 	goto bail;
700 #endif
701 
702 	if (debugger_fault_handler(regs))
703 		goto bail;
704 
705 	if (check_io_access(regs))
706 		goto bail;
707 
708 	die("Machine check", regs, SIGBUS);
709 
710 	/* Must die if the interrupt is not recoverable */
711 	if (!(regs->msr & MSR_RI))
712 		panic("Unrecoverable Machine check");
713 
714 bail:
715 	exception_exit(prev_state);
716 }
717 
718 void SMIException(struct pt_regs *regs)
719 {
720 	die("System Management Interrupt", regs, SIGABRT);
721 }
722 
723 void unknown_exception(struct pt_regs *regs)
724 {
725 	enum ctx_state prev_state = exception_enter();
726 
727 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
728 	       regs->nip, regs->msr, regs->trap);
729 
730 	_exception(SIGTRAP, regs, 0, 0);
731 
732 	exception_exit(prev_state);
733 }
734 
735 void instruction_breakpoint_exception(struct pt_regs *regs)
736 {
737 	enum ctx_state prev_state = exception_enter();
738 
739 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
740 					5, SIGTRAP) == NOTIFY_STOP)
741 		goto bail;
742 	if (debugger_iabr_match(regs))
743 		goto bail;
744 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
745 
746 bail:
747 	exception_exit(prev_state);
748 }
749 
750 void RunModeException(struct pt_regs *regs)
751 {
752 	_exception(SIGTRAP, regs, 0, 0);
753 }
754 
755 void __kprobes single_step_exception(struct pt_regs *regs)
756 {
757 	enum ctx_state prev_state = exception_enter();
758 
759 	clear_single_step(regs);
760 
761 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
762 					5, SIGTRAP) == NOTIFY_STOP)
763 		goto bail;
764 	if (debugger_sstep(regs))
765 		goto bail;
766 
767 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
768 
769 bail:
770 	exception_exit(prev_state);
771 }
772 
773 /*
774  * After we have successfully emulated an instruction, we have to
775  * check if the instruction was being single-stepped, and if so,
776  * pretend we got a single-step exception.  This was pointed out
777  * by Kumar Gala.  -- paulus
778  */
779 static void emulate_single_step(struct pt_regs *regs)
780 {
781 	if (single_stepping(regs))
782 		single_step_exception(regs);
783 }
784 
785 static inline int __parse_fpscr(unsigned long fpscr)
786 {
787 	int ret = 0;
788 
789 	/* Invalid operation */
790 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
791 		ret = FPE_FLTINV;
792 
793 	/* Overflow */
794 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
795 		ret = FPE_FLTOVF;
796 
797 	/* Underflow */
798 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
799 		ret = FPE_FLTUND;
800 
801 	/* Divide by zero */
802 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
803 		ret = FPE_FLTDIV;
804 
805 	/* Inexact result */
806 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
807 		ret = FPE_FLTRES;
808 
809 	return ret;
810 }
811 
812 static void parse_fpe(struct pt_regs *regs)
813 {
814 	int code = 0;
815 
816 	flush_fp_to_thread(current);
817 
818 	code = __parse_fpscr(current->thread.fpscr.val);
819 
820 	_exception(SIGFPE, regs, code, regs->nip);
821 }
822 
823 /*
824  * Illegal instruction emulation support.  Originally written to
825  * provide the PVR to user applications using the mfspr rd, PVR.
826  * Return non-zero if we can't emulate, or -EFAULT if the associated
827  * memory access caused an access fault.  Return zero on success.
828  *
829  * There are a couple of ways to do this, either "decode" the instruction
830  * or directly match lots of bits.  In this case, matching lots of
831  * bits is faster and easier.
832  *
833  */
834 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
835 {
836 	u8 rT = (instword >> 21) & 0x1f;
837 	u8 rA = (instword >> 16) & 0x1f;
838 	u8 NB_RB = (instword >> 11) & 0x1f;
839 	u32 num_bytes;
840 	unsigned long EA;
841 	int pos = 0;
842 
843 	/* Early out if we are an invalid form of lswx */
844 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
845 		if ((rT == rA) || (rT == NB_RB))
846 			return -EINVAL;
847 
848 	EA = (rA == 0) ? 0 : regs->gpr[rA];
849 
850 	switch (instword & PPC_INST_STRING_MASK) {
851 		case PPC_INST_LSWX:
852 		case PPC_INST_STSWX:
853 			EA += NB_RB;
854 			num_bytes = regs->xer & 0x7f;
855 			break;
856 		case PPC_INST_LSWI:
857 		case PPC_INST_STSWI:
858 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
859 			break;
860 		default:
861 			return -EINVAL;
862 	}
863 
864 	while (num_bytes != 0)
865 	{
866 		u8 val;
867 		u32 shift = 8 * (3 - (pos & 0x3));
868 
869 		switch ((instword & PPC_INST_STRING_MASK)) {
870 			case PPC_INST_LSWX:
871 			case PPC_INST_LSWI:
872 				if (get_user(val, (u8 __user *)EA))
873 					return -EFAULT;
874 				/* first time updating this reg,
875 				 * zero it out */
876 				if (pos == 0)
877 					regs->gpr[rT] = 0;
878 				regs->gpr[rT] |= val << shift;
879 				break;
880 			case PPC_INST_STSWI:
881 			case PPC_INST_STSWX:
882 				val = regs->gpr[rT] >> shift;
883 				if (put_user(val, (u8 __user *)EA))
884 					return -EFAULT;
885 				break;
886 		}
887 		/* move EA to next address */
888 		EA += 1;
889 		num_bytes--;
890 
891 		/* manage our position within the register */
892 		if (++pos == 4) {
893 			pos = 0;
894 			if (++rT == 32)
895 				rT = 0;
896 		}
897 	}
898 
899 	return 0;
900 }
901 
902 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
903 {
904 	u32 ra,rs;
905 	unsigned long tmp;
906 
907 	ra = (instword >> 16) & 0x1f;
908 	rs = (instword >> 21) & 0x1f;
909 
910 	tmp = regs->gpr[rs];
911 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
912 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
913 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
914 	regs->gpr[ra] = tmp;
915 
916 	return 0;
917 }
918 
919 static int emulate_isel(struct pt_regs *regs, u32 instword)
920 {
921 	u8 rT = (instword >> 21) & 0x1f;
922 	u8 rA = (instword >> 16) & 0x1f;
923 	u8 rB = (instword >> 11) & 0x1f;
924 	u8 BC = (instword >> 6) & 0x1f;
925 	u8 bit;
926 	unsigned long tmp;
927 
928 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
929 	bit = (regs->ccr >> (31 - BC)) & 0x1;
930 
931 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
932 
933 	return 0;
934 }
935 
936 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
937 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
938 {
939         /* If we're emulating a load/store in an active transaction, we cannot
940          * emulate it as the kernel operates in transaction suspended context.
941          * We need to abort the transaction.  This creates a persistent TM
942          * abort so tell the user what caused it with a new code.
943 	 */
944 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
945 		tm_enable();
946 		tm_abort(cause);
947 		return true;
948 	}
949 	return false;
950 }
951 #else
952 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
953 {
954 	return false;
955 }
956 #endif
957 
958 static int emulate_instruction(struct pt_regs *regs)
959 {
960 	u32 instword;
961 	u32 rd;
962 
963 	if (!user_mode(regs) || (regs->msr & MSR_LE))
964 		return -EINVAL;
965 	CHECK_FULL_REGS(regs);
966 
967 	if (get_user(instword, (u32 __user *)(regs->nip)))
968 		return -EFAULT;
969 
970 	/* Emulate the mfspr rD, PVR. */
971 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
972 		PPC_WARN_EMULATED(mfpvr, regs);
973 		rd = (instword >> 21) & 0x1f;
974 		regs->gpr[rd] = mfspr(SPRN_PVR);
975 		return 0;
976 	}
977 
978 	/* Emulating the dcba insn is just a no-op.  */
979 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
980 		PPC_WARN_EMULATED(dcba, regs);
981 		return 0;
982 	}
983 
984 	/* Emulate the mcrxr insn.  */
985 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
986 		int shift = (instword >> 21) & 0x1c;
987 		unsigned long msk = 0xf0000000UL >> shift;
988 
989 		PPC_WARN_EMULATED(mcrxr, regs);
990 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
991 		regs->xer &= ~0xf0000000UL;
992 		return 0;
993 	}
994 
995 	/* Emulate load/store string insn. */
996 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
997 		if (tm_abort_check(regs,
998 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
999 			return -EINVAL;
1000 		PPC_WARN_EMULATED(string, regs);
1001 		return emulate_string_inst(regs, instword);
1002 	}
1003 
1004 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1005 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1006 		PPC_WARN_EMULATED(popcntb, regs);
1007 		return emulate_popcntb_inst(regs, instword);
1008 	}
1009 
1010 	/* Emulate isel (Integer Select) instruction */
1011 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1012 		PPC_WARN_EMULATED(isel, regs);
1013 		return emulate_isel(regs, instword);
1014 	}
1015 
1016 #ifdef CONFIG_PPC64
1017 	/* Emulate the mfspr rD, DSCR. */
1018 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1019 		PPC_INST_MFSPR_DSCR_USER) ||
1020 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1021 		PPC_INST_MFSPR_DSCR)) &&
1022 			cpu_has_feature(CPU_FTR_DSCR)) {
1023 		PPC_WARN_EMULATED(mfdscr, regs);
1024 		rd = (instword >> 21) & 0x1f;
1025 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1026 		return 0;
1027 	}
1028 	/* Emulate the mtspr DSCR, rD. */
1029 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1030 		PPC_INST_MTSPR_DSCR_USER) ||
1031 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1032 		PPC_INST_MTSPR_DSCR)) &&
1033 			cpu_has_feature(CPU_FTR_DSCR)) {
1034 		PPC_WARN_EMULATED(mtdscr, regs);
1035 		rd = (instword >> 21) & 0x1f;
1036 		current->thread.dscr = regs->gpr[rd];
1037 		current->thread.dscr_inherit = 1;
1038 		mtspr(SPRN_DSCR, current->thread.dscr);
1039 		return 0;
1040 	}
1041 #endif
1042 
1043 	return -EINVAL;
1044 }
1045 
1046 int is_valid_bugaddr(unsigned long addr)
1047 {
1048 	return is_kernel_addr(addr);
1049 }
1050 
1051 void __kprobes program_check_exception(struct pt_regs *regs)
1052 {
1053 	enum ctx_state prev_state = exception_enter();
1054 	unsigned int reason = get_reason(regs);
1055 	extern int do_mathemu(struct pt_regs *regs);
1056 
1057 	/* We can now get here via a FP Unavailable exception if the core
1058 	 * has no FPU, in that case the reason flags will be 0 */
1059 
1060 	if (reason & REASON_FP) {
1061 		/* IEEE FP exception */
1062 		parse_fpe(regs);
1063 		goto bail;
1064 	}
1065 	if (reason & REASON_TRAP) {
1066 		/* Debugger is first in line to stop recursive faults in
1067 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1068 		if (debugger_bpt(regs))
1069 			goto bail;
1070 
1071 		/* trap exception */
1072 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1073 				== NOTIFY_STOP)
1074 			goto bail;
1075 
1076 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1077 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1078 			regs->nip += 4;
1079 			goto bail;
1080 		}
1081 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1082 		goto bail;
1083 	}
1084 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1085 	if (reason & REASON_TM) {
1086 		/* This is a TM "Bad Thing Exception" program check.
1087 		 * This occurs when:
1088 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1089 		 *    transition in TM states.
1090 		 * -  A trechkpt is attempted when transactional.
1091 		 * -  A treclaim is attempted when non transactional.
1092 		 * -  A tend is illegally attempted.
1093 		 * -  writing a TM SPR when transactional.
1094 		 */
1095 		if (!user_mode(regs) &&
1096 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1097 			regs->nip += 4;
1098 			goto bail;
1099 		}
1100 		/* If usermode caused this, it's done something illegal and
1101 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1102 		 * operand to distinguish from the instruction just being bad
1103 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1104 		 * illegal /placement/ of a valid instruction.
1105 		 */
1106 		if (user_mode(regs)) {
1107 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1108 			goto bail;
1109 		} else {
1110 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1111 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1112 			die("Unrecoverable exception", regs, SIGABRT);
1113 		}
1114 	}
1115 #endif
1116 
1117 	/* We restore the interrupt state now */
1118 	if (!arch_irq_disabled_regs(regs))
1119 		local_irq_enable();
1120 
1121 #ifdef CONFIG_MATH_EMULATION
1122 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1123 	 * but there seems to be a hardware bug on the 405GP (RevD)
1124 	 * that means ESR is sometimes set incorrectly - either to
1125 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1126 	 * hardware people - not sure if it can happen on any illegal
1127 	 * instruction or only on FP instructions, whether there is a
1128 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1129 	switch (do_mathemu(regs)) {
1130 	case 0:
1131 		emulate_single_step(regs);
1132 		goto bail;
1133 	case 1: {
1134 			int code = 0;
1135 			code = __parse_fpscr(current->thread.fpscr.val);
1136 			_exception(SIGFPE, regs, code, regs->nip);
1137 			goto bail;
1138 		}
1139 	case -EFAULT:
1140 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1141 		goto bail;
1142 	}
1143 	/* fall through on any other errors */
1144 #endif /* CONFIG_MATH_EMULATION */
1145 
1146 	/* Try to emulate it if we should. */
1147 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1148 		switch (emulate_instruction(regs)) {
1149 		case 0:
1150 			regs->nip += 4;
1151 			emulate_single_step(regs);
1152 			goto bail;
1153 		case -EFAULT:
1154 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1155 			goto bail;
1156 		}
1157 	}
1158 
1159 	if (reason & REASON_PRIVILEGED)
1160 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1161 	else
1162 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1163 
1164 bail:
1165 	exception_exit(prev_state);
1166 }
1167 
1168 /*
1169  * This occurs when running in hypervisor mode on POWER6 or later
1170  * and an illegal instruction is encountered.
1171  */
1172 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1173 {
1174 	regs->msr |= REASON_ILLEGAL;
1175 	program_check_exception(regs);
1176 }
1177 
1178 void alignment_exception(struct pt_regs *regs)
1179 {
1180 	enum ctx_state prev_state = exception_enter();
1181 	int sig, code, fixed = 0;
1182 
1183 	/* We restore the interrupt state now */
1184 	if (!arch_irq_disabled_regs(regs))
1185 		local_irq_enable();
1186 
1187 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1188 		goto bail;
1189 
1190 	/* we don't implement logging of alignment exceptions */
1191 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1192 		fixed = fix_alignment(regs);
1193 
1194 	if (fixed == 1) {
1195 		regs->nip += 4;	/* skip over emulated instruction */
1196 		emulate_single_step(regs);
1197 		goto bail;
1198 	}
1199 
1200 	/* Operand address was bad */
1201 	if (fixed == -EFAULT) {
1202 		sig = SIGSEGV;
1203 		code = SEGV_ACCERR;
1204 	} else {
1205 		sig = SIGBUS;
1206 		code = BUS_ADRALN;
1207 	}
1208 	if (user_mode(regs))
1209 		_exception(sig, regs, code, regs->dar);
1210 	else
1211 		bad_page_fault(regs, regs->dar, sig);
1212 
1213 bail:
1214 	exception_exit(prev_state);
1215 }
1216 
1217 void StackOverflow(struct pt_regs *regs)
1218 {
1219 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1220 	       current, regs->gpr[1]);
1221 	debugger(regs);
1222 	show_regs(regs);
1223 	panic("kernel stack overflow");
1224 }
1225 
1226 void nonrecoverable_exception(struct pt_regs *regs)
1227 {
1228 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1229 	       regs->nip, regs->msr);
1230 	debugger(regs);
1231 	die("nonrecoverable exception", regs, SIGKILL);
1232 }
1233 
1234 void trace_syscall(struct pt_regs *regs)
1235 {
1236 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1237 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1238 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1239 }
1240 
1241 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1242 {
1243 	enum ctx_state prev_state = exception_enter();
1244 
1245 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1246 			  "%lx at %lx\n", regs->trap, regs->nip);
1247 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1248 
1249 	exception_exit(prev_state);
1250 }
1251 
1252 void altivec_unavailable_exception(struct pt_regs *regs)
1253 {
1254 	enum ctx_state prev_state = exception_enter();
1255 
1256 	if (user_mode(regs)) {
1257 		/* A user program has executed an altivec instruction,
1258 		   but this kernel doesn't support altivec. */
1259 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1260 		goto bail;
1261 	}
1262 
1263 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1264 			"%lx at %lx\n", regs->trap, regs->nip);
1265 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1266 
1267 bail:
1268 	exception_exit(prev_state);
1269 }
1270 
1271 void vsx_unavailable_exception(struct pt_regs *regs)
1272 {
1273 	if (user_mode(regs)) {
1274 		/* A user program has executed an vsx instruction,
1275 		   but this kernel doesn't support vsx. */
1276 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1277 		return;
1278 	}
1279 
1280 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1281 			"%lx at %lx\n", regs->trap, regs->nip);
1282 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1283 }
1284 
1285 void tm_unavailable_exception(struct pt_regs *regs)
1286 {
1287 	/* We restore the interrupt state now */
1288 	if (!arch_irq_disabled_regs(regs))
1289 		local_irq_enable();
1290 
1291 	/* Currently we never expect a TMU exception.  Catch
1292 	 * this and kill the process!
1293 	 */
1294 	printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1295 	       "(msr %lx)\n",
1296 	       regs->nip, regs->msr);
1297 
1298 	if (user_mode(regs)) {
1299 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1300 		return;
1301 	}
1302 
1303 	die("Unexpected TM unavailable exception", regs, SIGABRT);
1304 }
1305 
1306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1307 
1308 extern void do_load_up_fpu(struct pt_regs *regs);
1309 
1310 void fp_unavailable_tm(struct pt_regs *regs)
1311 {
1312 	/* Note:  This does not handle any kind of FP laziness. */
1313 
1314 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1315 		 regs->nip, regs->msr);
1316 	tm_enable();
1317 
1318         /* We can only have got here if the task started using FP after
1319          * beginning the transaction.  So, the transactional regs are just a
1320          * copy of the checkpointed ones.  But, we still need to recheckpoint
1321          * as we're enabling FP for the process; it will return, abort the
1322          * transaction, and probably retry but now with FP enabled.  So the
1323          * checkpointed FP registers need to be loaded.
1324 	 */
1325 	tm_reclaim(&current->thread, current->thread.regs->msr,
1326 		   TM_CAUSE_FAC_UNAV);
1327 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1328 
1329 	/* Enable FP for the task: */
1330 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1331 
1332 	/* This loads and recheckpoints the FP registers from
1333 	 * thread.fpr[].  They will remain in registers after the
1334 	 * checkpoint so we don't need to reload them after.
1335 	 */
1336 	tm_recheckpoint(&current->thread, regs->msr);
1337 }
1338 
1339 #ifdef CONFIG_ALTIVEC
1340 extern void do_load_up_altivec(struct pt_regs *regs);
1341 
1342 void altivec_unavailable_tm(struct pt_regs *regs)
1343 {
1344 	/* See the comments in fp_unavailable_tm().  This function operates
1345 	 * the same way.
1346 	 */
1347 
1348 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1349 		 "MSR=%lx\n",
1350 		 regs->nip, regs->msr);
1351 	tm_enable();
1352 	tm_reclaim(&current->thread, current->thread.regs->msr,
1353 		   TM_CAUSE_FAC_UNAV);
1354 	regs->msr |= MSR_VEC;
1355 	tm_recheckpoint(&current->thread, regs->msr);
1356 	current->thread.used_vr = 1;
1357 }
1358 #endif
1359 
1360 #ifdef CONFIG_VSX
1361 void vsx_unavailable_tm(struct pt_regs *regs)
1362 {
1363 	/* See the comments in fp_unavailable_tm().  This works similarly,
1364 	 * though we're loading both FP and VEC registers in here.
1365 	 *
1366 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1367 	 * regs.  Either way, set MSR_VSX.
1368 	 */
1369 
1370 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1371 		 "MSR=%lx\n",
1372 		 regs->nip, regs->msr);
1373 
1374 	tm_enable();
1375 	/* This reclaims FP and/or VR regs if they're already enabled */
1376 	tm_reclaim(&current->thread, current->thread.regs->msr,
1377 		   TM_CAUSE_FAC_UNAV);
1378 
1379 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1380 		MSR_VSX;
1381 	/* This loads & recheckpoints FP and VRs. */
1382 	tm_recheckpoint(&current->thread, regs->msr);
1383 	current->thread.used_vsr = 1;
1384 }
1385 #endif
1386 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1387 
1388 void performance_monitor_exception(struct pt_regs *regs)
1389 {
1390 	__get_cpu_var(irq_stat).pmu_irqs++;
1391 
1392 	perf_irq(regs);
1393 }
1394 
1395 #ifdef CONFIG_8xx
1396 void SoftwareEmulation(struct pt_regs *regs)
1397 {
1398 	extern int do_mathemu(struct pt_regs *);
1399 	extern int Soft_emulate_8xx(struct pt_regs *);
1400 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1401 	int errcode;
1402 #endif
1403 
1404 	CHECK_FULL_REGS(regs);
1405 
1406 	if (!user_mode(regs)) {
1407 		debugger(regs);
1408 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1409 	}
1410 
1411 #ifdef CONFIG_MATH_EMULATION
1412 	errcode = do_mathemu(regs);
1413 	if (errcode >= 0)
1414 		PPC_WARN_EMULATED(math, regs);
1415 
1416 	switch (errcode) {
1417 	case 0:
1418 		emulate_single_step(regs);
1419 		return;
1420 	case 1: {
1421 			int code = 0;
1422 			code = __parse_fpscr(current->thread.fpscr.val);
1423 			_exception(SIGFPE, regs, code, regs->nip);
1424 			return;
1425 		}
1426 	case -EFAULT:
1427 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1428 		return;
1429 	default:
1430 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1431 		return;
1432 	}
1433 
1434 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1435 	errcode = Soft_emulate_8xx(regs);
1436 	if (errcode >= 0)
1437 		PPC_WARN_EMULATED(8xx, regs);
1438 
1439 	switch (errcode) {
1440 	case 0:
1441 		emulate_single_step(regs);
1442 		return;
1443 	case 1:
1444 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1445 		return;
1446 	case -EFAULT:
1447 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1448 		return;
1449 	}
1450 #else
1451 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1452 #endif
1453 }
1454 #endif /* CONFIG_8xx */
1455 
1456 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1457 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1458 {
1459 	int changed = 0;
1460 	/*
1461 	 * Determine the cause of the debug event, clear the
1462 	 * event flags and send a trap to the handler. Torez
1463 	 */
1464 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1465 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1466 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1467 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1468 #endif
1469 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1470 			     5);
1471 		changed |= 0x01;
1472 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1473 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1474 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1475 			     6);
1476 		changed |= 0x01;
1477 	}  else if (debug_status & DBSR_IAC1) {
1478 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1479 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1480 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1481 			     1);
1482 		changed |= 0x01;
1483 	}  else if (debug_status & DBSR_IAC2) {
1484 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1485 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1486 			     2);
1487 		changed |= 0x01;
1488 	}  else if (debug_status & DBSR_IAC3) {
1489 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1490 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1491 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1492 			     3);
1493 		changed |= 0x01;
1494 	}  else if (debug_status & DBSR_IAC4) {
1495 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1496 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1497 			     4);
1498 		changed |= 0x01;
1499 	}
1500 	/*
1501 	 * At the point this routine was called, the MSR(DE) was turned off.
1502 	 * Check all other debug flags and see if that bit needs to be turned
1503 	 * back on or not.
1504 	 */
1505 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1506 		regs->msr |= MSR_DE;
1507 	else
1508 		/* Make sure the IDM flag is off */
1509 		current->thread.dbcr0 &= ~DBCR0_IDM;
1510 
1511 	if (changed & 0x01)
1512 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1513 }
1514 
1515 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1516 {
1517 	current->thread.dbsr = debug_status;
1518 
1519 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1520 	 * on server, it stops on the target of the branch. In order to simulate
1521 	 * the server behaviour, we thus restart right away with a single step
1522 	 * instead of stopping here when hitting a BT
1523 	 */
1524 	if (debug_status & DBSR_BT) {
1525 		regs->msr &= ~MSR_DE;
1526 
1527 		/* Disable BT */
1528 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1529 		/* Clear the BT event */
1530 		mtspr(SPRN_DBSR, DBSR_BT);
1531 
1532 		/* Do the single step trick only when coming from userspace */
1533 		if (user_mode(regs)) {
1534 			current->thread.dbcr0 &= ~DBCR0_BT;
1535 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1536 			regs->msr |= MSR_DE;
1537 			return;
1538 		}
1539 
1540 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1541 			       5, SIGTRAP) == NOTIFY_STOP) {
1542 			return;
1543 		}
1544 		if (debugger_sstep(regs))
1545 			return;
1546 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1547 		regs->msr &= ~MSR_DE;
1548 
1549 		/* Disable instruction completion */
1550 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1551 		/* Clear the instruction completion event */
1552 		mtspr(SPRN_DBSR, DBSR_IC);
1553 
1554 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1555 			       5, SIGTRAP) == NOTIFY_STOP) {
1556 			return;
1557 		}
1558 
1559 		if (debugger_sstep(regs))
1560 			return;
1561 
1562 		if (user_mode(regs)) {
1563 			current->thread.dbcr0 &= ~DBCR0_IC;
1564 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1565 					       current->thread.dbcr1))
1566 				regs->msr |= MSR_DE;
1567 			else
1568 				/* Make sure the IDM bit is off */
1569 				current->thread.dbcr0 &= ~DBCR0_IDM;
1570 		}
1571 
1572 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1573 	} else
1574 		handle_debug(regs, debug_status);
1575 }
1576 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1577 
1578 #if !defined(CONFIG_TAU_INT)
1579 void TAUException(struct pt_regs *regs)
1580 {
1581 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1582 	       regs->nip, regs->msr, regs->trap, print_tainted());
1583 }
1584 #endif /* CONFIG_INT_TAU */
1585 
1586 #ifdef CONFIG_ALTIVEC
1587 void altivec_assist_exception(struct pt_regs *regs)
1588 {
1589 	int err;
1590 
1591 	if (!user_mode(regs)) {
1592 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1593 		       " at %lx\n", regs->nip);
1594 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1595 	}
1596 
1597 	flush_altivec_to_thread(current);
1598 
1599 	PPC_WARN_EMULATED(altivec, regs);
1600 	err = emulate_altivec(regs);
1601 	if (err == 0) {
1602 		regs->nip += 4;		/* skip emulated instruction */
1603 		emulate_single_step(regs);
1604 		return;
1605 	}
1606 
1607 	if (err == -EFAULT) {
1608 		/* got an error reading the instruction */
1609 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1610 	} else {
1611 		/* didn't recognize the instruction */
1612 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1613 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1614 				   "in %s at %lx\n", current->comm, regs->nip);
1615 		current->thread.vscr.u[3] |= 0x10000;
1616 	}
1617 }
1618 #endif /* CONFIG_ALTIVEC */
1619 
1620 #ifdef CONFIG_VSX
1621 void vsx_assist_exception(struct pt_regs *regs)
1622 {
1623 	if (!user_mode(regs)) {
1624 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1625 		       " at %lx\n", regs->nip);
1626 		die("Kernel VSX assist exception", regs, SIGILL);
1627 	}
1628 
1629 	flush_vsx_to_thread(current);
1630 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1631 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1632 }
1633 #endif /* CONFIG_VSX */
1634 
1635 #ifdef CONFIG_FSL_BOOKE
1636 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1637 			   unsigned long error_code)
1638 {
1639 	/* We treat cache locking instructions from the user
1640 	 * as priv ops, in the future we could try to do
1641 	 * something smarter
1642 	 */
1643 	if (error_code & (ESR_DLK|ESR_ILK))
1644 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1645 	return;
1646 }
1647 #endif /* CONFIG_FSL_BOOKE */
1648 
1649 #ifdef CONFIG_SPE
1650 void SPEFloatingPointException(struct pt_regs *regs)
1651 {
1652 	extern int do_spe_mathemu(struct pt_regs *regs);
1653 	unsigned long spefscr;
1654 	int fpexc_mode;
1655 	int code = 0;
1656 	int err;
1657 
1658 	flush_spe_to_thread(current);
1659 
1660 	spefscr = current->thread.spefscr;
1661 	fpexc_mode = current->thread.fpexc_mode;
1662 
1663 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1664 		code = FPE_FLTOVF;
1665 	}
1666 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1667 		code = FPE_FLTUND;
1668 	}
1669 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1670 		code = FPE_FLTDIV;
1671 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1672 		code = FPE_FLTINV;
1673 	}
1674 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1675 		code = FPE_FLTRES;
1676 
1677 	err = do_spe_mathemu(regs);
1678 	if (err == 0) {
1679 		regs->nip += 4;		/* skip emulated instruction */
1680 		emulate_single_step(regs);
1681 		return;
1682 	}
1683 
1684 	if (err == -EFAULT) {
1685 		/* got an error reading the instruction */
1686 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1687 	} else if (err == -EINVAL) {
1688 		/* didn't recognize the instruction */
1689 		printk(KERN_ERR "unrecognized spe instruction "
1690 		       "in %s at %lx\n", current->comm, regs->nip);
1691 	} else {
1692 		_exception(SIGFPE, regs, code, regs->nip);
1693 	}
1694 
1695 	return;
1696 }
1697 
1698 void SPEFloatingPointRoundException(struct pt_regs *regs)
1699 {
1700 	extern int speround_handler(struct pt_regs *regs);
1701 	int err;
1702 
1703 	preempt_disable();
1704 	if (regs->msr & MSR_SPE)
1705 		giveup_spe(current);
1706 	preempt_enable();
1707 
1708 	regs->nip -= 4;
1709 	err = speround_handler(regs);
1710 	if (err == 0) {
1711 		regs->nip += 4;		/* skip emulated instruction */
1712 		emulate_single_step(regs);
1713 		return;
1714 	}
1715 
1716 	if (err == -EFAULT) {
1717 		/* got an error reading the instruction */
1718 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1719 	} else if (err == -EINVAL) {
1720 		/* didn't recognize the instruction */
1721 		printk(KERN_ERR "unrecognized spe instruction "
1722 		       "in %s at %lx\n", current->comm, regs->nip);
1723 	} else {
1724 		_exception(SIGFPE, regs, 0, regs->nip);
1725 		return;
1726 	}
1727 }
1728 #endif
1729 
1730 /*
1731  * We enter here if we get an unrecoverable exception, that is, one
1732  * that happened at a point where the RI (recoverable interrupt) bit
1733  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1734  * we therefore lost state by taking this exception.
1735  */
1736 void unrecoverable_exception(struct pt_regs *regs)
1737 {
1738 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1739 	       regs->trap, regs->nip);
1740 	die("Unrecoverable exception", regs, SIGABRT);
1741 }
1742 
1743 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1744 /*
1745  * Default handler for a Watchdog exception,
1746  * spins until a reboot occurs
1747  */
1748 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1749 {
1750 	/* Generic WatchdogHandler, implement your own */
1751 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1752 	return;
1753 }
1754 
1755 void WatchdogException(struct pt_regs *regs)
1756 {
1757 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1758 	WatchdogHandler(regs);
1759 }
1760 #endif
1761 
1762 /*
1763  * We enter here if we discover during exception entry that we are
1764  * running in supervisor mode with a userspace value in the stack pointer.
1765  */
1766 void kernel_bad_stack(struct pt_regs *regs)
1767 {
1768 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1769 	       regs->gpr[1], regs->nip);
1770 	die("Bad kernel stack pointer", regs, SIGABRT);
1771 }
1772 
1773 void __init trap_init(void)
1774 {
1775 }
1776 
1777 
1778 #ifdef CONFIG_PPC_EMULATED_STATS
1779 
1780 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1781 
1782 struct ppc_emulated ppc_emulated = {
1783 #ifdef CONFIG_ALTIVEC
1784 	WARN_EMULATED_SETUP(altivec),
1785 #endif
1786 	WARN_EMULATED_SETUP(dcba),
1787 	WARN_EMULATED_SETUP(dcbz),
1788 	WARN_EMULATED_SETUP(fp_pair),
1789 	WARN_EMULATED_SETUP(isel),
1790 	WARN_EMULATED_SETUP(mcrxr),
1791 	WARN_EMULATED_SETUP(mfpvr),
1792 	WARN_EMULATED_SETUP(multiple),
1793 	WARN_EMULATED_SETUP(popcntb),
1794 	WARN_EMULATED_SETUP(spe),
1795 	WARN_EMULATED_SETUP(string),
1796 	WARN_EMULATED_SETUP(unaligned),
1797 #ifdef CONFIG_MATH_EMULATION
1798 	WARN_EMULATED_SETUP(math),
1799 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1800 	WARN_EMULATED_SETUP(8xx),
1801 #endif
1802 #ifdef CONFIG_VSX
1803 	WARN_EMULATED_SETUP(vsx),
1804 #endif
1805 #ifdef CONFIG_PPC64
1806 	WARN_EMULATED_SETUP(mfdscr),
1807 	WARN_EMULATED_SETUP(mtdscr),
1808 #endif
1809 };
1810 
1811 u32 ppc_warn_emulated;
1812 
1813 void ppc_warn_emulated_print(const char *type)
1814 {
1815 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1816 			    type);
1817 }
1818 
1819 static int __init ppc_warn_emulated_init(void)
1820 {
1821 	struct dentry *dir, *d;
1822 	unsigned int i;
1823 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1824 
1825 	if (!powerpc_debugfs_root)
1826 		return -ENODEV;
1827 
1828 	dir = debugfs_create_dir("emulated_instructions",
1829 				 powerpc_debugfs_root);
1830 	if (!dir)
1831 		return -ENOMEM;
1832 
1833 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1834 			       &ppc_warn_emulated);
1835 	if (!d)
1836 		goto fail;
1837 
1838 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1839 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1840 				       (u32 *)&entries[i].val.counter);
1841 		if (!d)
1842 			goto fail;
1843 	}
1844 
1845 	return 0;
1846 
1847 fail:
1848 	debugfs_remove_recursive(dir);
1849 	return -ENOMEM;
1850 }
1851 
1852 device_initcall(ppc_warn_emulated_init);
1853 
1854 #endif /* CONFIG_PPC_EMULATED_STATS */
1855