1 /* 2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 3 * Copyright 2007-2010 Freescale Semiconductor, Inc. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 8 * 2 of the License, or (at your option) any later version. 9 * 10 * Modified by Cort Dougan (cort@cs.nmt.edu) 11 * and Paul Mackerras (paulus@samba.org) 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of hardware exceptions 16 */ 17 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/pkeys.h> 24 #include <linux/stddef.h> 25 #include <linux/unistd.h> 26 #include <linux/ptrace.h> 27 #include <linux/user.h> 28 #include <linux/interrupt.h> 29 #include <linux/init.h> 30 #include <linux/extable.h> 31 #include <linux/module.h> /* print_modules */ 32 #include <linux/prctl.h> 33 #include <linux/delay.h> 34 #include <linux/kprobes.h> 35 #include <linux/kexec.h> 36 #include <linux/backlight.h> 37 #include <linux/bug.h> 38 #include <linux/kdebug.h> 39 #include <linux/ratelimit.h> 40 #include <linux/context_tracking.h> 41 #include <linux/smp.h> 42 #include <linux/console.h> 43 #include <linux/kmsg_dump.h> 44 45 #include <asm/emulated_ops.h> 46 #include <asm/pgtable.h> 47 #include <linux/uaccess.h> 48 #include <asm/debugfs.h> 49 #include <asm/io.h> 50 #include <asm/machdep.h> 51 #include <asm/rtas.h> 52 #include <asm/pmc.h> 53 #include <asm/reg.h> 54 #ifdef CONFIG_PMAC_BACKLIGHT 55 #include <asm/backlight.h> 56 #endif 57 #ifdef CONFIG_PPC64 58 #include <asm/firmware.h> 59 #include <asm/processor.h> 60 #include <asm/tm.h> 61 #endif 62 #include <asm/kexec.h> 63 #include <asm/ppc-opcode.h> 64 #include <asm/rio.h> 65 #include <asm/fadump.h> 66 #include <asm/switch_to.h> 67 #include <asm/tm.h> 68 #include <asm/debug.h> 69 #include <asm/asm-prototypes.h> 70 #include <asm/hmi.h> 71 #include <sysdev/fsl_pci.h> 72 #include <asm/kprobes.h> 73 #include <asm/stacktrace.h> 74 #include <asm/nmi.h> 75 76 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) 77 int (*__debugger)(struct pt_regs *regs) __read_mostly; 78 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; 79 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; 80 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; 81 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; 82 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; 83 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; 84 85 EXPORT_SYMBOL(__debugger); 86 EXPORT_SYMBOL(__debugger_ipi); 87 EXPORT_SYMBOL(__debugger_bpt); 88 EXPORT_SYMBOL(__debugger_sstep); 89 EXPORT_SYMBOL(__debugger_iabr_match); 90 EXPORT_SYMBOL(__debugger_break_match); 91 EXPORT_SYMBOL(__debugger_fault_handler); 92 #endif 93 94 /* Transactional Memory trap debug */ 95 #ifdef TM_DEBUG_SW 96 #define TM_DEBUG(x...) printk(KERN_INFO x) 97 #else 98 #define TM_DEBUG(x...) do { } while(0) 99 #endif 100 101 static const char *signame(int signr) 102 { 103 switch (signr) { 104 case SIGBUS: return "bus error"; 105 case SIGFPE: return "floating point exception"; 106 case SIGILL: return "illegal instruction"; 107 case SIGSEGV: return "segfault"; 108 case SIGTRAP: return "unhandled trap"; 109 } 110 111 return "unknown signal"; 112 } 113 114 /* 115 * Trap & Exception support 116 */ 117 118 #ifdef CONFIG_PMAC_BACKLIGHT 119 static void pmac_backlight_unblank(void) 120 { 121 mutex_lock(&pmac_backlight_mutex); 122 if (pmac_backlight) { 123 struct backlight_properties *props; 124 125 props = &pmac_backlight->props; 126 props->brightness = props->max_brightness; 127 props->power = FB_BLANK_UNBLANK; 128 backlight_update_status(pmac_backlight); 129 } 130 mutex_unlock(&pmac_backlight_mutex); 131 } 132 #else 133 static inline void pmac_backlight_unblank(void) { } 134 #endif 135 136 /* 137 * If oops/die is expected to crash the machine, return true here. 138 * 139 * This should not be expected to be 100% accurate, there may be 140 * notifiers registered or other unexpected conditions that may bring 141 * down the kernel. Or if the current process in the kernel is holding 142 * locks or has other critical state, the kernel may become effectively 143 * unusable anyway. 144 */ 145 bool die_will_crash(void) 146 { 147 if (should_fadump_crash()) 148 return true; 149 if (kexec_should_crash(current)) 150 return true; 151 if (in_interrupt() || panic_on_oops || 152 !current->pid || is_global_init(current)) 153 return true; 154 155 return false; 156 } 157 158 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 159 static int die_owner = -1; 160 static unsigned int die_nest_count; 161 static int die_counter; 162 163 extern void panic_flush_kmsg_start(void) 164 { 165 /* 166 * These are mostly taken from kernel/panic.c, but tries to do 167 * relatively minimal work. Don't use delay functions (TB may 168 * be broken), don't crash dump (need to set a firmware log), 169 * don't run notifiers. We do want to get some information to 170 * Linux console. 171 */ 172 console_verbose(); 173 bust_spinlocks(1); 174 } 175 176 extern void panic_flush_kmsg_end(void) 177 { 178 printk_safe_flush_on_panic(); 179 kmsg_dump(KMSG_DUMP_PANIC); 180 bust_spinlocks(0); 181 debug_locks_off(); 182 console_flush_on_panic(); 183 } 184 185 static unsigned long oops_begin(struct pt_regs *regs) 186 { 187 int cpu; 188 unsigned long flags; 189 190 oops_enter(); 191 192 /* racy, but better than risking deadlock. */ 193 raw_local_irq_save(flags); 194 cpu = smp_processor_id(); 195 if (!arch_spin_trylock(&die_lock)) { 196 if (cpu == die_owner) 197 /* nested oops. should stop eventually */; 198 else 199 arch_spin_lock(&die_lock); 200 } 201 die_nest_count++; 202 die_owner = cpu; 203 console_verbose(); 204 bust_spinlocks(1); 205 if (machine_is(powermac)) 206 pmac_backlight_unblank(); 207 return flags; 208 } 209 NOKPROBE_SYMBOL(oops_begin); 210 211 static void oops_end(unsigned long flags, struct pt_regs *regs, 212 int signr) 213 { 214 bust_spinlocks(0); 215 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 216 die_nest_count--; 217 oops_exit(); 218 printk("\n"); 219 if (!die_nest_count) { 220 /* Nest count reaches zero, release the lock. */ 221 die_owner = -1; 222 arch_spin_unlock(&die_lock); 223 } 224 raw_local_irq_restore(flags); 225 226 /* 227 * system_reset_excption handles debugger, crash dump, panic, for 0x100 228 */ 229 if (TRAP(regs) == 0x100) 230 return; 231 232 crash_fadump(regs, "die oops"); 233 234 if (kexec_should_crash(current)) 235 crash_kexec(regs); 236 237 if (!signr) 238 return; 239 240 /* 241 * While our oops output is serialised by a spinlock, output 242 * from panic() called below can race and corrupt it. If we 243 * know we are going to panic, delay for 1 second so we have a 244 * chance to get clean backtraces from all CPUs that are oopsing. 245 */ 246 if (in_interrupt() || panic_on_oops || !current->pid || 247 is_global_init(current)) { 248 mdelay(MSEC_PER_SEC); 249 } 250 251 if (panic_on_oops) 252 panic("Fatal exception"); 253 do_exit(signr); 254 } 255 NOKPROBE_SYMBOL(oops_end); 256 257 static int __die(const char *str, struct pt_regs *regs, long err) 258 { 259 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); 260 261 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s%s %s\n", 262 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE", 263 PAGE_SIZE / 1024, 264 early_radix_enabled() ? " MMU=Radix" : "", 265 early_mmu_has_feature(MMU_FTR_HPTE_TABLE) ? " MMU=Hash" : "", 266 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "", 267 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 268 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "", 269 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 270 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "", 271 ppc_md.name ? ppc_md.name : ""); 272 273 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) 274 return 1; 275 276 print_modules(); 277 show_regs(regs); 278 279 return 0; 280 } 281 NOKPROBE_SYMBOL(__die); 282 283 void die(const char *str, struct pt_regs *regs, long err) 284 { 285 unsigned long flags; 286 287 /* 288 * system_reset_excption handles debugger, crash dump, panic, for 0x100 289 */ 290 if (TRAP(regs) != 0x100) { 291 if (debugger(regs)) 292 return; 293 } 294 295 flags = oops_begin(regs); 296 if (__die(str, regs, err)) 297 err = 0; 298 oops_end(flags, regs, err); 299 } 300 NOKPROBE_SYMBOL(die); 301 302 void user_single_step_report(struct pt_regs *regs) 303 { 304 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip, current); 305 } 306 307 static void show_signal_msg(int signr, struct pt_regs *regs, int code, 308 unsigned long addr) 309 { 310 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 311 DEFAULT_RATELIMIT_BURST); 312 313 if (!show_unhandled_signals) 314 return; 315 316 if (!unhandled_signal(current, signr)) 317 return; 318 319 if (!__ratelimit(&rs)) 320 return; 321 322 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x", 323 current->comm, current->pid, signame(signr), signr, 324 addr, regs->nip, regs->link, code); 325 326 print_vma_addr(KERN_CONT " in ", regs->nip); 327 328 pr_cont("\n"); 329 330 show_user_instructions(regs); 331 } 332 333 static bool exception_common(int signr, struct pt_regs *regs, int code, 334 unsigned long addr) 335 { 336 if (!user_mode(regs)) { 337 die("Exception in kernel mode", regs, signr); 338 return false; 339 } 340 341 show_signal_msg(signr, regs, code, addr); 342 343 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs)) 344 local_irq_enable(); 345 346 current->thread.trap_nr = code; 347 348 /* 349 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need 350 * to capture the content, if the task gets killed. 351 */ 352 thread_pkey_regs_save(¤t->thread); 353 354 return true; 355 } 356 357 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key) 358 { 359 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr)) 360 return; 361 362 force_sig_pkuerr((void __user *) addr, key); 363 } 364 365 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) 366 { 367 if (!exception_common(signr, regs, code, addr)) 368 return; 369 370 force_sig_fault(signr, code, (void __user *)addr, current); 371 } 372 373 /* 374 * The interrupt architecture has a quirk in that the HV interrupts excluding 375 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing 376 * that an interrupt handler must do is save off a GPR into a scratch register, 377 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch. 378 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing 379 * that it is non-reentrant, which leads to random data corruption. 380 * 381 * The solution is for NMI interrupts in HV mode to check if they originated 382 * from these critical HV interrupt regions. If so, then mark them not 383 * recoverable. 384 * 385 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the 386 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux 387 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so 388 * that would work. However any other guest OS that may have the SPRG live 389 * and MSR[RI]=1 could encounter silent corruption. 390 * 391 * Builds that do not support KVM could take this second option to increase 392 * the recoverability of NMIs. 393 */ 394 void hv_nmi_check_nonrecoverable(struct pt_regs *regs) 395 { 396 #ifdef CONFIG_PPC_POWERNV 397 unsigned long kbase = (unsigned long)_stext; 398 unsigned long nip = regs->nip; 399 400 if (!(regs->msr & MSR_RI)) 401 return; 402 if (!(regs->msr & MSR_HV)) 403 return; 404 if (regs->msr & MSR_PR) 405 return; 406 407 /* 408 * Now test if the interrupt has hit a range that may be using 409 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The 410 * problem ranges all run un-relocated. Test real and virt modes 411 * at the same time by droping the high bit of the nip (virt mode 412 * entry points still have the +0x4000 offset). 413 */ 414 nip &= ~0xc000000000000000ULL; 415 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600)) 416 goto nonrecoverable; 417 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00)) 418 goto nonrecoverable; 419 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0)) 420 goto nonrecoverable; 421 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0)) 422 goto nonrecoverable; 423 424 /* Trampoline code runs un-relocated so subtract kbase. */ 425 if (nip >= (unsigned long)(start_real_trampolines - kbase) && 426 nip < (unsigned long)(end_real_trampolines - kbase)) 427 goto nonrecoverable; 428 if (nip >= (unsigned long)(start_virt_trampolines - kbase) && 429 nip < (unsigned long)(end_virt_trampolines - kbase)) 430 goto nonrecoverable; 431 return; 432 433 nonrecoverable: 434 regs->msr &= ~MSR_RI; 435 #endif 436 } 437 438 void system_reset_exception(struct pt_regs *regs) 439 { 440 unsigned long hsrr0, hsrr1; 441 bool nested = in_nmi(); 442 bool saved_hsrrs = false; 443 444 /* 445 * Avoid crashes in case of nested NMI exceptions. Recoverability 446 * is determined by RI and in_nmi 447 */ 448 if (!nested) 449 nmi_enter(); 450 451 /* 452 * System reset can interrupt code where HSRRs are live and MSR[RI]=1. 453 * The system reset interrupt itself may clobber HSRRs (e.g., to call 454 * OPAL), so save them here and restore them before returning. 455 * 456 * Machine checks don't need to save HSRRs, as the real mode handler 457 * is careful to avoid them, and the regular handler is not delivered 458 * as an NMI. 459 */ 460 if (cpu_has_feature(CPU_FTR_HVMODE)) { 461 hsrr0 = mfspr(SPRN_HSRR0); 462 hsrr1 = mfspr(SPRN_HSRR1); 463 saved_hsrrs = true; 464 } 465 466 hv_nmi_check_nonrecoverable(regs); 467 468 __this_cpu_inc(irq_stat.sreset_irqs); 469 470 /* See if any machine dependent calls */ 471 if (ppc_md.system_reset_exception) { 472 if (ppc_md.system_reset_exception(regs)) 473 goto out; 474 } 475 476 if (debugger(regs)) 477 goto out; 478 479 /* 480 * A system reset is a request to dump, so we always send 481 * it through the crashdump code (if fadump or kdump are 482 * registered). 483 */ 484 crash_fadump(regs, "System Reset"); 485 486 crash_kexec(regs); 487 488 /* 489 * We aren't the primary crash CPU. We need to send it 490 * to a holding pattern to avoid it ending up in the panic 491 * code. 492 */ 493 crash_kexec_secondary(regs); 494 495 /* 496 * No debugger or crash dump registered, print logs then 497 * panic. 498 */ 499 die("System Reset", regs, SIGABRT); 500 501 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ 502 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 503 nmi_panic(regs, "System Reset"); 504 505 out: 506 #ifdef CONFIG_PPC_BOOK3S_64 507 BUG_ON(get_paca()->in_nmi == 0); 508 if (get_paca()->in_nmi > 1) 509 nmi_panic(regs, "Unrecoverable nested System Reset"); 510 #endif 511 /* Must die if the interrupt is not recoverable */ 512 if (!(regs->msr & MSR_RI)) 513 nmi_panic(regs, "Unrecoverable System Reset"); 514 515 if (saved_hsrrs) { 516 mtspr(SPRN_HSRR0, hsrr0); 517 mtspr(SPRN_HSRR1, hsrr1); 518 } 519 520 if (!nested) 521 nmi_exit(); 522 523 /* What should we do here? We could issue a shutdown or hard reset. */ 524 } 525 526 /* 527 * I/O accesses can cause machine checks on powermacs. 528 * Check if the NIP corresponds to the address of a sync 529 * instruction for which there is an entry in the exception 530 * table. 531 * Note that the 601 only takes a machine check on TEA 532 * (transfer error ack) signal assertion, and does not 533 * set any of the top 16 bits of SRR1. 534 * -- paulus. 535 */ 536 static inline int check_io_access(struct pt_regs *regs) 537 { 538 #ifdef CONFIG_PPC32 539 unsigned long msr = regs->msr; 540 const struct exception_table_entry *entry; 541 unsigned int *nip = (unsigned int *)regs->nip; 542 543 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) 544 && (entry = search_exception_tables(regs->nip)) != NULL) { 545 /* 546 * Check that it's a sync instruction, or somewhere 547 * in the twi; isync; nop sequence that inb/inw/inl uses. 548 * As the address is in the exception table 549 * we should be able to read the instr there. 550 * For the debug message, we look at the preceding 551 * load or store. 552 */ 553 if (*nip == PPC_INST_NOP) 554 nip -= 2; 555 else if (*nip == PPC_INST_ISYNC) 556 --nip; 557 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) { 558 unsigned int rb; 559 560 --nip; 561 rb = (*nip >> 11) & 0x1f; 562 printk(KERN_DEBUG "%s bad port %lx at %p\n", 563 (*nip & 0x100)? "OUT to": "IN from", 564 regs->gpr[rb] - _IO_BASE, nip); 565 regs->msr |= MSR_RI; 566 regs->nip = extable_fixup(entry); 567 return 1; 568 } 569 } 570 #endif /* CONFIG_PPC32 */ 571 return 0; 572 } 573 574 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 575 /* On 4xx, the reason for the machine check or program exception 576 is in the ESR. */ 577 #define get_reason(regs) ((regs)->dsisr) 578 #define REASON_FP ESR_FP 579 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) 580 #define REASON_PRIVILEGED ESR_PPR 581 #define REASON_TRAP ESR_PTR 582 583 /* single-step stuff */ 584 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) 585 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) 586 #define clear_br_trace(regs) do {} while(0) 587 #else 588 /* On non-4xx, the reason for the machine check or program 589 exception is in the MSR. */ 590 #define get_reason(regs) ((regs)->msr) 591 #define REASON_TM SRR1_PROGTM 592 #define REASON_FP SRR1_PROGFPE 593 #define REASON_ILLEGAL SRR1_PROGILL 594 #define REASON_PRIVILEGED SRR1_PROGPRIV 595 #define REASON_TRAP SRR1_PROGTRAP 596 597 #define single_stepping(regs) ((regs)->msr & MSR_SE) 598 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE) 599 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE) 600 #endif 601 602 #if defined(CONFIG_E500) 603 int machine_check_e500mc(struct pt_regs *regs) 604 { 605 unsigned long mcsr = mfspr(SPRN_MCSR); 606 unsigned long pvr = mfspr(SPRN_PVR); 607 unsigned long reason = mcsr; 608 int recoverable = 1; 609 610 if (reason & MCSR_LD) { 611 recoverable = fsl_rio_mcheck_exception(regs); 612 if (recoverable == 1) 613 goto silent_out; 614 } 615 616 printk("Machine check in kernel mode.\n"); 617 printk("Caused by (from MCSR=%lx): ", reason); 618 619 if (reason & MCSR_MCP) 620 pr_cont("Machine Check Signal\n"); 621 622 if (reason & MCSR_ICPERR) { 623 pr_cont("Instruction Cache Parity Error\n"); 624 625 /* 626 * This is recoverable by invalidating the i-cache. 627 */ 628 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); 629 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) 630 ; 631 632 /* 633 * This will generally be accompanied by an instruction 634 * fetch error report -- only treat MCSR_IF as fatal 635 * if it wasn't due to an L1 parity error. 636 */ 637 reason &= ~MCSR_IF; 638 } 639 640 if (reason & MCSR_DCPERR_MC) { 641 pr_cont("Data Cache Parity Error\n"); 642 643 /* 644 * In write shadow mode we auto-recover from the error, but it 645 * may still get logged and cause a machine check. We should 646 * only treat the non-write shadow case as non-recoverable. 647 */ 648 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit 649 * is not implemented but L1 data cache always runs in write 650 * shadow mode. Hence on data cache parity errors HW will 651 * automatically invalidate the L1 Data Cache. 652 */ 653 if (PVR_VER(pvr) != PVR_VER_E6500) { 654 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) 655 recoverable = 0; 656 } 657 } 658 659 if (reason & MCSR_L2MMU_MHIT) { 660 pr_cont("Hit on multiple TLB entries\n"); 661 recoverable = 0; 662 } 663 664 if (reason & MCSR_NMI) 665 pr_cont("Non-maskable interrupt\n"); 666 667 if (reason & MCSR_IF) { 668 pr_cont("Instruction Fetch Error Report\n"); 669 recoverable = 0; 670 } 671 672 if (reason & MCSR_LD) { 673 pr_cont("Load Error Report\n"); 674 recoverable = 0; 675 } 676 677 if (reason & MCSR_ST) { 678 pr_cont("Store Error Report\n"); 679 recoverable = 0; 680 } 681 682 if (reason & MCSR_LDG) { 683 pr_cont("Guarded Load Error Report\n"); 684 recoverable = 0; 685 } 686 687 if (reason & MCSR_TLBSYNC) 688 pr_cont("Simultaneous tlbsync operations\n"); 689 690 if (reason & MCSR_BSL2_ERR) { 691 pr_cont("Level 2 Cache Error\n"); 692 recoverable = 0; 693 } 694 695 if (reason & MCSR_MAV) { 696 u64 addr; 697 698 addr = mfspr(SPRN_MCAR); 699 addr |= (u64)mfspr(SPRN_MCARU) << 32; 700 701 pr_cont("Machine Check %s Address: %#llx\n", 702 reason & MCSR_MEA ? "Effective" : "Physical", addr); 703 } 704 705 silent_out: 706 mtspr(SPRN_MCSR, mcsr); 707 return mfspr(SPRN_MCSR) == 0 && recoverable; 708 } 709 710 int machine_check_e500(struct pt_regs *regs) 711 { 712 unsigned long reason = mfspr(SPRN_MCSR); 713 714 if (reason & MCSR_BUS_RBERR) { 715 if (fsl_rio_mcheck_exception(regs)) 716 return 1; 717 if (fsl_pci_mcheck_exception(regs)) 718 return 1; 719 } 720 721 printk("Machine check in kernel mode.\n"); 722 printk("Caused by (from MCSR=%lx): ", reason); 723 724 if (reason & MCSR_MCP) 725 pr_cont("Machine Check Signal\n"); 726 if (reason & MCSR_ICPERR) 727 pr_cont("Instruction Cache Parity Error\n"); 728 if (reason & MCSR_DCP_PERR) 729 pr_cont("Data Cache Push Parity Error\n"); 730 if (reason & MCSR_DCPERR) 731 pr_cont("Data Cache Parity Error\n"); 732 if (reason & MCSR_BUS_IAERR) 733 pr_cont("Bus - Instruction Address Error\n"); 734 if (reason & MCSR_BUS_RAERR) 735 pr_cont("Bus - Read Address Error\n"); 736 if (reason & MCSR_BUS_WAERR) 737 pr_cont("Bus - Write Address Error\n"); 738 if (reason & MCSR_BUS_IBERR) 739 pr_cont("Bus - Instruction Data Error\n"); 740 if (reason & MCSR_BUS_RBERR) 741 pr_cont("Bus - Read Data Bus Error\n"); 742 if (reason & MCSR_BUS_WBERR) 743 pr_cont("Bus - Write Data Bus Error\n"); 744 if (reason & MCSR_BUS_IPERR) 745 pr_cont("Bus - Instruction Parity Error\n"); 746 if (reason & MCSR_BUS_RPERR) 747 pr_cont("Bus - Read Parity Error\n"); 748 749 return 0; 750 } 751 752 int machine_check_generic(struct pt_regs *regs) 753 { 754 return 0; 755 } 756 #elif defined(CONFIG_E200) 757 int machine_check_e200(struct pt_regs *regs) 758 { 759 unsigned long reason = mfspr(SPRN_MCSR); 760 761 printk("Machine check in kernel mode.\n"); 762 printk("Caused by (from MCSR=%lx): ", reason); 763 764 if (reason & MCSR_MCP) 765 pr_cont("Machine Check Signal\n"); 766 if (reason & MCSR_CP_PERR) 767 pr_cont("Cache Push Parity Error\n"); 768 if (reason & MCSR_CPERR) 769 pr_cont("Cache Parity Error\n"); 770 if (reason & MCSR_EXCP_ERR) 771 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n"); 772 if (reason & MCSR_BUS_IRERR) 773 pr_cont("Bus - Read Bus Error on instruction fetch\n"); 774 if (reason & MCSR_BUS_DRERR) 775 pr_cont("Bus - Read Bus Error on data load\n"); 776 if (reason & MCSR_BUS_WRERR) 777 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n"); 778 779 return 0; 780 } 781 #elif defined(CONFIG_PPC32) 782 int machine_check_generic(struct pt_regs *regs) 783 { 784 unsigned long reason = regs->msr; 785 786 printk("Machine check in kernel mode.\n"); 787 printk("Caused by (from SRR1=%lx): ", reason); 788 switch (reason & 0x601F0000) { 789 case 0x80000: 790 pr_cont("Machine check signal\n"); 791 break; 792 case 0: /* for 601 */ 793 case 0x40000: 794 case 0x140000: /* 7450 MSS error and TEA */ 795 pr_cont("Transfer error ack signal\n"); 796 break; 797 case 0x20000: 798 pr_cont("Data parity error signal\n"); 799 break; 800 case 0x10000: 801 pr_cont("Address parity error signal\n"); 802 break; 803 case 0x20000000: 804 pr_cont("L1 Data Cache error\n"); 805 break; 806 case 0x40000000: 807 pr_cont("L1 Instruction Cache error\n"); 808 break; 809 case 0x00100000: 810 pr_cont("L2 data cache parity error\n"); 811 break; 812 default: 813 pr_cont("Unknown values in msr\n"); 814 } 815 return 0; 816 } 817 #endif /* everything else */ 818 819 void machine_check_exception(struct pt_regs *regs) 820 { 821 int recover = 0; 822 bool nested = in_nmi(); 823 if (!nested) 824 nmi_enter(); 825 826 __this_cpu_inc(irq_stat.mce_exceptions); 827 828 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 829 830 /* See if any machine dependent calls. In theory, we would want 831 * to call the CPU first, and call the ppc_md. one if the CPU 832 * one returns a positive number. However there is existing code 833 * that assumes the board gets a first chance, so let's keep it 834 * that way for now and fix things later. --BenH. 835 */ 836 if (ppc_md.machine_check_exception) 837 recover = ppc_md.machine_check_exception(regs); 838 else if (cur_cpu_spec->machine_check) 839 recover = cur_cpu_spec->machine_check(regs); 840 841 if (recover > 0) 842 goto bail; 843 844 if (debugger_fault_handler(regs)) 845 goto bail; 846 847 if (check_io_access(regs)) 848 goto bail; 849 850 if (!nested) 851 nmi_exit(); 852 853 die("Machine check", regs, SIGBUS); 854 855 /* Must die if the interrupt is not recoverable */ 856 if (!(regs->msr & MSR_RI)) 857 nmi_panic(regs, "Unrecoverable Machine check"); 858 859 return; 860 861 bail: 862 if (!nested) 863 nmi_exit(); 864 } 865 866 void SMIException(struct pt_regs *regs) 867 { 868 die("System Management Interrupt", regs, SIGABRT); 869 } 870 871 #ifdef CONFIG_VSX 872 static void p9_hmi_special_emu(struct pt_regs *regs) 873 { 874 unsigned int ra, rb, t, i, sel, instr, rc; 875 const void __user *addr; 876 u8 vbuf[16], *vdst; 877 unsigned long ea, msr, msr_mask; 878 bool swap; 879 880 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip)) 881 return; 882 883 /* 884 * lxvb16x opcode: 0x7c0006d8 885 * lxvd2x opcode: 0x7c000698 886 * lxvh8x opcode: 0x7c000658 887 * lxvw4x opcode: 0x7c000618 888 */ 889 if ((instr & 0xfc00073e) != 0x7c000618) { 890 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" 891 " instr=%08x\n", 892 smp_processor_id(), current->comm, current->pid, 893 regs->nip, instr); 894 return; 895 } 896 897 /* Grab vector registers into the task struct */ 898 msr = regs->msr; /* Grab msr before we flush the bits */ 899 flush_vsx_to_thread(current); 900 enable_kernel_altivec(); 901 902 /* 903 * Is userspace running with a different endian (this is rare but 904 * not impossible) 905 */ 906 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 907 908 /* Decode the instruction */ 909 ra = (instr >> 16) & 0x1f; 910 rb = (instr >> 11) & 0x1f; 911 t = (instr >> 21) & 0x1f; 912 if (instr & 1) 913 vdst = (u8 *)¤t->thread.vr_state.vr[t]; 914 else 915 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; 916 917 /* Grab the vector address */ 918 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); 919 if (is_32bit_task()) 920 ea &= 0xfffffffful; 921 addr = (__force const void __user *)ea; 922 923 /* Check it */ 924 if (!access_ok(addr, 16)) { 925 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" 926 " instr=%08x addr=%016lx\n", 927 smp_processor_id(), current->comm, current->pid, 928 regs->nip, instr, (unsigned long)addr); 929 return; 930 } 931 932 /* Read the vector */ 933 rc = 0; 934 if ((unsigned long)addr & 0xfUL) 935 /* unaligned case */ 936 rc = __copy_from_user_inatomic(vbuf, addr, 16); 937 else 938 __get_user_atomic_128_aligned(vbuf, addr, rc); 939 if (rc) { 940 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" 941 " instr=%08x addr=%016lx\n", 942 smp_processor_id(), current->comm, current->pid, 943 regs->nip, instr, (unsigned long)addr); 944 return; 945 } 946 947 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" 948 " instr=%08x addr=%016lx\n", 949 smp_processor_id(), current->comm, current->pid, regs->nip, 950 instr, (unsigned long) addr); 951 952 /* Grab instruction "selector" */ 953 sel = (instr >> 6) & 3; 954 955 /* 956 * Check to make sure the facility is actually enabled. This 957 * could happen if we get a false positive hit. 958 * 959 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 960 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 961 */ 962 msr_mask = MSR_VSX; 963 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ 964 msr_mask = MSR_VEC; 965 if (!(msr & msr_mask)) { 966 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" 967 " instr=%08x msr:%016lx\n", 968 smp_processor_id(), current->comm, current->pid, 969 regs->nip, instr, msr); 970 return; 971 } 972 973 /* Do logging here before we modify sel based on endian */ 974 switch (sel) { 975 case 0: /* lxvw4x */ 976 PPC_WARN_EMULATED(lxvw4x, regs); 977 break; 978 case 1: /* lxvh8x */ 979 PPC_WARN_EMULATED(lxvh8x, regs); 980 break; 981 case 2: /* lxvd2x */ 982 PPC_WARN_EMULATED(lxvd2x, regs); 983 break; 984 case 3: /* lxvb16x */ 985 PPC_WARN_EMULATED(lxvb16x, regs); 986 break; 987 } 988 989 #ifdef __LITTLE_ENDIAN__ 990 /* 991 * An LE kernel stores the vector in the task struct as an LE 992 * byte array (effectively swapping both the components and 993 * the content of the components). Those instructions expect 994 * the components to remain in ascending address order, so we 995 * swap them back. 996 * 997 * If we are running a BE user space, the expectation is that 998 * of a simple memcpy, so forcing the emulation to look like 999 * a lxvb16x should do the trick. 1000 */ 1001 if (swap) 1002 sel = 3; 1003 1004 switch (sel) { 1005 case 0: /* lxvw4x */ 1006 for (i = 0; i < 4; i++) 1007 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; 1008 break; 1009 case 1: /* lxvh8x */ 1010 for (i = 0; i < 8; i++) 1011 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; 1012 break; 1013 case 2: /* lxvd2x */ 1014 for (i = 0; i < 2; i++) 1015 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; 1016 break; 1017 case 3: /* lxvb16x */ 1018 for (i = 0; i < 16; i++) 1019 vdst[i] = vbuf[15-i]; 1020 break; 1021 } 1022 #else /* __LITTLE_ENDIAN__ */ 1023 /* On a big endian kernel, a BE userspace only needs a memcpy */ 1024 if (!swap) 1025 sel = 3; 1026 1027 /* Otherwise, we need to swap the content of the components */ 1028 switch (sel) { 1029 case 0: /* lxvw4x */ 1030 for (i = 0; i < 4; i++) 1031 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); 1032 break; 1033 case 1: /* lxvh8x */ 1034 for (i = 0; i < 8; i++) 1035 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); 1036 break; 1037 case 2: /* lxvd2x */ 1038 for (i = 0; i < 2; i++) 1039 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); 1040 break; 1041 case 3: /* lxvb16x */ 1042 memcpy(vdst, vbuf, 16); 1043 break; 1044 } 1045 #endif /* !__LITTLE_ENDIAN__ */ 1046 1047 /* Go to next instruction */ 1048 regs->nip += 4; 1049 } 1050 #endif /* CONFIG_VSX */ 1051 1052 void handle_hmi_exception(struct pt_regs *regs) 1053 { 1054 struct pt_regs *old_regs; 1055 1056 old_regs = set_irq_regs(regs); 1057 irq_enter(); 1058 1059 #ifdef CONFIG_VSX 1060 /* Real mode flagged P9 special emu is needed */ 1061 if (local_paca->hmi_p9_special_emu) { 1062 local_paca->hmi_p9_special_emu = 0; 1063 1064 /* 1065 * We don't want to take page faults while doing the 1066 * emulation, we just replay the instruction if necessary. 1067 */ 1068 pagefault_disable(); 1069 p9_hmi_special_emu(regs); 1070 pagefault_enable(); 1071 } 1072 #endif /* CONFIG_VSX */ 1073 1074 if (ppc_md.handle_hmi_exception) 1075 ppc_md.handle_hmi_exception(regs); 1076 1077 irq_exit(); 1078 set_irq_regs(old_regs); 1079 } 1080 1081 void unknown_exception(struct pt_regs *regs) 1082 { 1083 enum ctx_state prev_state = exception_enter(); 1084 1085 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1086 regs->nip, regs->msr, regs->trap); 1087 1088 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1089 1090 exception_exit(prev_state); 1091 } 1092 1093 void instruction_breakpoint_exception(struct pt_regs *regs) 1094 { 1095 enum ctx_state prev_state = exception_enter(); 1096 1097 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, 1098 5, SIGTRAP) == NOTIFY_STOP) 1099 goto bail; 1100 if (debugger_iabr_match(regs)) 1101 goto bail; 1102 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1103 1104 bail: 1105 exception_exit(prev_state); 1106 } 1107 1108 void RunModeException(struct pt_regs *regs) 1109 { 1110 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1111 } 1112 1113 void single_step_exception(struct pt_regs *regs) 1114 { 1115 enum ctx_state prev_state = exception_enter(); 1116 1117 clear_single_step(regs); 1118 clear_br_trace(regs); 1119 1120 if (kprobe_post_handler(regs)) 1121 return; 1122 1123 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 1124 5, SIGTRAP) == NOTIFY_STOP) 1125 goto bail; 1126 if (debugger_sstep(regs)) 1127 goto bail; 1128 1129 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 1130 1131 bail: 1132 exception_exit(prev_state); 1133 } 1134 NOKPROBE_SYMBOL(single_step_exception); 1135 1136 /* 1137 * After we have successfully emulated an instruction, we have to 1138 * check if the instruction was being single-stepped, and if so, 1139 * pretend we got a single-step exception. This was pointed out 1140 * by Kumar Gala. -- paulus 1141 */ 1142 static void emulate_single_step(struct pt_regs *regs) 1143 { 1144 if (single_stepping(regs)) 1145 single_step_exception(regs); 1146 } 1147 1148 static inline int __parse_fpscr(unsigned long fpscr) 1149 { 1150 int ret = FPE_FLTUNK; 1151 1152 /* Invalid operation */ 1153 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) 1154 ret = FPE_FLTINV; 1155 1156 /* Overflow */ 1157 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) 1158 ret = FPE_FLTOVF; 1159 1160 /* Underflow */ 1161 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) 1162 ret = FPE_FLTUND; 1163 1164 /* Divide by zero */ 1165 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) 1166 ret = FPE_FLTDIV; 1167 1168 /* Inexact result */ 1169 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) 1170 ret = FPE_FLTRES; 1171 1172 return ret; 1173 } 1174 1175 static void parse_fpe(struct pt_regs *regs) 1176 { 1177 int code = 0; 1178 1179 flush_fp_to_thread(current); 1180 1181 code = __parse_fpscr(current->thread.fp_state.fpscr); 1182 1183 _exception(SIGFPE, regs, code, regs->nip); 1184 } 1185 1186 /* 1187 * Illegal instruction emulation support. Originally written to 1188 * provide the PVR to user applications using the mfspr rd, PVR. 1189 * Return non-zero if we can't emulate, or -EFAULT if the associated 1190 * memory access caused an access fault. Return zero on success. 1191 * 1192 * There are a couple of ways to do this, either "decode" the instruction 1193 * or directly match lots of bits. In this case, matching lots of 1194 * bits is faster and easier. 1195 * 1196 */ 1197 static int emulate_string_inst(struct pt_regs *regs, u32 instword) 1198 { 1199 u8 rT = (instword >> 21) & 0x1f; 1200 u8 rA = (instword >> 16) & 0x1f; 1201 u8 NB_RB = (instword >> 11) & 0x1f; 1202 u32 num_bytes; 1203 unsigned long EA; 1204 int pos = 0; 1205 1206 /* Early out if we are an invalid form of lswx */ 1207 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) 1208 if ((rT == rA) || (rT == NB_RB)) 1209 return -EINVAL; 1210 1211 EA = (rA == 0) ? 0 : regs->gpr[rA]; 1212 1213 switch (instword & PPC_INST_STRING_MASK) { 1214 case PPC_INST_LSWX: 1215 case PPC_INST_STSWX: 1216 EA += NB_RB; 1217 num_bytes = regs->xer & 0x7f; 1218 break; 1219 case PPC_INST_LSWI: 1220 case PPC_INST_STSWI: 1221 num_bytes = (NB_RB == 0) ? 32 : NB_RB; 1222 break; 1223 default: 1224 return -EINVAL; 1225 } 1226 1227 while (num_bytes != 0) 1228 { 1229 u8 val; 1230 u32 shift = 8 * (3 - (pos & 0x3)); 1231 1232 /* if process is 32-bit, clear upper 32 bits of EA */ 1233 if ((regs->msr & MSR_64BIT) == 0) 1234 EA &= 0xFFFFFFFF; 1235 1236 switch ((instword & PPC_INST_STRING_MASK)) { 1237 case PPC_INST_LSWX: 1238 case PPC_INST_LSWI: 1239 if (get_user(val, (u8 __user *)EA)) 1240 return -EFAULT; 1241 /* first time updating this reg, 1242 * zero it out */ 1243 if (pos == 0) 1244 regs->gpr[rT] = 0; 1245 regs->gpr[rT] |= val << shift; 1246 break; 1247 case PPC_INST_STSWI: 1248 case PPC_INST_STSWX: 1249 val = regs->gpr[rT] >> shift; 1250 if (put_user(val, (u8 __user *)EA)) 1251 return -EFAULT; 1252 break; 1253 } 1254 /* move EA to next address */ 1255 EA += 1; 1256 num_bytes--; 1257 1258 /* manage our position within the register */ 1259 if (++pos == 4) { 1260 pos = 0; 1261 if (++rT == 32) 1262 rT = 0; 1263 } 1264 } 1265 1266 return 0; 1267 } 1268 1269 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) 1270 { 1271 u32 ra,rs; 1272 unsigned long tmp; 1273 1274 ra = (instword >> 16) & 0x1f; 1275 rs = (instword >> 21) & 0x1f; 1276 1277 tmp = regs->gpr[rs]; 1278 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); 1279 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); 1280 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1281 regs->gpr[ra] = tmp; 1282 1283 return 0; 1284 } 1285 1286 static int emulate_isel(struct pt_regs *regs, u32 instword) 1287 { 1288 u8 rT = (instword >> 21) & 0x1f; 1289 u8 rA = (instword >> 16) & 0x1f; 1290 u8 rB = (instword >> 11) & 0x1f; 1291 u8 BC = (instword >> 6) & 0x1f; 1292 u8 bit; 1293 unsigned long tmp; 1294 1295 tmp = (rA == 0) ? 0 : regs->gpr[rA]; 1296 bit = (regs->ccr >> (31 - BC)) & 0x1; 1297 1298 regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; 1299 1300 return 0; 1301 } 1302 1303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1304 static inline bool tm_abort_check(struct pt_regs *regs, int cause) 1305 { 1306 /* If we're emulating a load/store in an active transaction, we cannot 1307 * emulate it as the kernel operates in transaction suspended context. 1308 * We need to abort the transaction. This creates a persistent TM 1309 * abort so tell the user what caused it with a new code. 1310 */ 1311 if (MSR_TM_TRANSACTIONAL(regs->msr)) { 1312 tm_enable(); 1313 tm_abort(cause); 1314 return true; 1315 } 1316 return false; 1317 } 1318 #else 1319 static inline bool tm_abort_check(struct pt_regs *regs, int reason) 1320 { 1321 return false; 1322 } 1323 #endif 1324 1325 static int emulate_instruction(struct pt_regs *regs) 1326 { 1327 u32 instword; 1328 u32 rd; 1329 1330 if (!user_mode(regs)) 1331 return -EINVAL; 1332 CHECK_FULL_REGS(regs); 1333 1334 if (get_user(instword, (u32 __user *)(regs->nip))) 1335 return -EFAULT; 1336 1337 /* Emulate the mfspr rD, PVR. */ 1338 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { 1339 PPC_WARN_EMULATED(mfpvr, regs); 1340 rd = (instword >> 21) & 0x1f; 1341 regs->gpr[rd] = mfspr(SPRN_PVR); 1342 return 0; 1343 } 1344 1345 /* Emulating the dcba insn is just a no-op. */ 1346 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { 1347 PPC_WARN_EMULATED(dcba, regs); 1348 return 0; 1349 } 1350 1351 /* Emulate the mcrxr insn. */ 1352 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { 1353 int shift = (instword >> 21) & 0x1c; 1354 unsigned long msk = 0xf0000000UL >> shift; 1355 1356 PPC_WARN_EMULATED(mcrxr, regs); 1357 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); 1358 regs->xer &= ~0xf0000000UL; 1359 return 0; 1360 } 1361 1362 /* Emulate load/store string insn. */ 1363 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { 1364 if (tm_abort_check(regs, 1365 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) 1366 return -EINVAL; 1367 PPC_WARN_EMULATED(string, regs); 1368 return emulate_string_inst(regs, instword); 1369 } 1370 1371 /* Emulate the popcntb (Population Count Bytes) instruction. */ 1372 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { 1373 PPC_WARN_EMULATED(popcntb, regs); 1374 return emulate_popcntb_inst(regs, instword); 1375 } 1376 1377 /* Emulate isel (Integer Select) instruction */ 1378 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { 1379 PPC_WARN_EMULATED(isel, regs); 1380 return emulate_isel(regs, instword); 1381 } 1382 1383 /* Emulate sync instruction variants */ 1384 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { 1385 PPC_WARN_EMULATED(sync, regs); 1386 asm volatile("sync"); 1387 return 0; 1388 } 1389 1390 #ifdef CONFIG_PPC64 1391 /* Emulate the mfspr rD, DSCR. */ 1392 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == 1393 PPC_INST_MFSPR_DSCR_USER) || 1394 ((instword & PPC_INST_MFSPR_DSCR_MASK) == 1395 PPC_INST_MFSPR_DSCR)) && 1396 cpu_has_feature(CPU_FTR_DSCR)) { 1397 PPC_WARN_EMULATED(mfdscr, regs); 1398 rd = (instword >> 21) & 0x1f; 1399 regs->gpr[rd] = mfspr(SPRN_DSCR); 1400 return 0; 1401 } 1402 /* Emulate the mtspr DSCR, rD. */ 1403 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == 1404 PPC_INST_MTSPR_DSCR_USER) || 1405 ((instword & PPC_INST_MTSPR_DSCR_MASK) == 1406 PPC_INST_MTSPR_DSCR)) && 1407 cpu_has_feature(CPU_FTR_DSCR)) { 1408 PPC_WARN_EMULATED(mtdscr, regs); 1409 rd = (instword >> 21) & 0x1f; 1410 current->thread.dscr = regs->gpr[rd]; 1411 current->thread.dscr_inherit = 1; 1412 mtspr(SPRN_DSCR, current->thread.dscr); 1413 return 0; 1414 } 1415 #endif 1416 1417 return -EINVAL; 1418 } 1419 1420 int is_valid_bugaddr(unsigned long addr) 1421 { 1422 return is_kernel_addr(addr); 1423 } 1424 1425 #ifdef CONFIG_MATH_EMULATION 1426 static int emulate_math(struct pt_regs *regs) 1427 { 1428 int ret; 1429 extern int do_mathemu(struct pt_regs *regs); 1430 1431 ret = do_mathemu(regs); 1432 if (ret >= 0) 1433 PPC_WARN_EMULATED(math, regs); 1434 1435 switch (ret) { 1436 case 0: 1437 emulate_single_step(regs); 1438 return 0; 1439 case 1: { 1440 int code = 0; 1441 code = __parse_fpscr(current->thread.fp_state.fpscr); 1442 _exception(SIGFPE, regs, code, regs->nip); 1443 return 0; 1444 } 1445 case -EFAULT: 1446 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1447 return 0; 1448 } 1449 1450 return -1; 1451 } 1452 #else 1453 static inline int emulate_math(struct pt_regs *regs) { return -1; } 1454 #endif 1455 1456 void program_check_exception(struct pt_regs *regs) 1457 { 1458 enum ctx_state prev_state = exception_enter(); 1459 unsigned int reason = get_reason(regs); 1460 1461 /* We can now get here via a FP Unavailable exception if the core 1462 * has no FPU, in that case the reason flags will be 0 */ 1463 1464 if (reason & REASON_FP) { 1465 /* IEEE FP exception */ 1466 parse_fpe(regs); 1467 goto bail; 1468 } 1469 if (reason & REASON_TRAP) { 1470 unsigned long bugaddr; 1471 /* Debugger is first in line to stop recursive faults in 1472 * rcu_lock, notify_die, or atomic_notifier_call_chain */ 1473 if (debugger_bpt(regs)) 1474 goto bail; 1475 1476 if (kprobe_handler(regs)) 1477 goto bail; 1478 1479 /* trap exception */ 1480 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) 1481 == NOTIFY_STOP) 1482 goto bail; 1483 1484 bugaddr = regs->nip; 1485 /* 1486 * Fixup bugaddr for BUG_ON() in real mode 1487 */ 1488 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) 1489 bugaddr += PAGE_OFFSET; 1490 1491 if (!(regs->msr & MSR_PR) && /* not user-mode */ 1492 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { 1493 regs->nip += 4; 1494 goto bail; 1495 } 1496 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1497 goto bail; 1498 } 1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1500 if (reason & REASON_TM) { 1501 /* This is a TM "Bad Thing Exception" program check. 1502 * This occurs when: 1503 * - An rfid/hrfid/mtmsrd attempts to cause an illegal 1504 * transition in TM states. 1505 * - A trechkpt is attempted when transactional. 1506 * - A treclaim is attempted when non transactional. 1507 * - A tend is illegally attempted. 1508 * - writing a TM SPR when transactional. 1509 * 1510 * If usermode caused this, it's done something illegal and 1511 * gets a SIGILL slap on the wrist. We call it an illegal 1512 * operand to distinguish from the instruction just being bad 1513 * (e.g. executing a 'tend' on a CPU without TM!); it's an 1514 * illegal /placement/ of a valid instruction. 1515 */ 1516 if (user_mode(regs)) { 1517 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); 1518 goto bail; 1519 } else { 1520 printk(KERN_EMERG "Unexpected TM Bad Thing exception " 1521 "at %lx (msr 0x%lx) tm_scratch=%llx\n", 1522 regs->nip, regs->msr, get_paca()->tm_scratch); 1523 die("Unrecoverable exception", regs, SIGABRT); 1524 } 1525 } 1526 #endif 1527 1528 /* 1529 * If we took the program check in the kernel skip down to sending a 1530 * SIGILL. The subsequent cases all relate to emulating instructions 1531 * which we should only do for userspace. We also do not want to enable 1532 * interrupts for kernel faults because that might lead to further 1533 * faults, and loose the context of the original exception. 1534 */ 1535 if (!user_mode(regs)) 1536 goto sigill; 1537 1538 /* We restore the interrupt state now */ 1539 if (!arch_irq_disabled_regs(regs)) 1540 local_irq_enable(); 1541 1542 /* (reason & REASON_ILLEGAL) would be the obvious thing here, 1543 * but there seems to be a hardware bug on the 405GP (RevD) 1544 * that means ESR is sometimes set incorrectly - either to 1545 * ESR_DST (!?) or 0. In the process of chasing this with the 1546 * hardware people - not sure if it can happen on any illegal 1547 * instruction or only on FP instructions, whether there is a 1548 * pattern to occurrences etc. -dgibson 31/Mar/2003 1549 */ 1550 if (!emulate_math(regs)) 1551 goto bail; 1552 1553 /* Try to emulate it if we should. */ 1554 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { 1555 switch (emulate_instruction(regs)) { 1556 case 0: 1557 regs->nip += 4; 1558 emulate_single_step(regs); 1559 goto bail; 1560 case -EFAULT: 1561 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1562 goto bail; 1563 } 1564 } 1565 1566 sigill: 1567 if (reason & REASON_PRIVILEGED) 1568 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 1569 else 1570 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1571 1572 bail: 1573 exception_exit(prev_state); 1574 } 1575 NOKPROBE_SYMBOL(program_check_exception); 1576 1577 /* 1578 * This occurs when running in hypervisor mode on POWER6 or later 1579 * and an illegal instruction is encountered. 1580 */ 1581 void emulation_assist_interrupt(struct pt_regs *regs) 1582 { 1583 regs->msr |= REASON_ILLEGAL; 1584 program_check_exception(regs); 1585 } 1586 NOKPROBE_SYMBOL(emulation_assist_interrupt); 1587 1588 void alignment_exception(struct pt_regs *regs) 1589 { 1590 enum ctx_state prev_state = exception_enter(); 1591 int sig, code, fixed = 0; 1592 1593 /* We restore the interrupt state now */ 1594 if (!arch_irq_disabled_regs(regs)) 1595 local_irq_enable(); 1596 1597 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) 1598 goto bail; 1599 1600 /* we don't implement logging of alignment exceptions */ 1601 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 1602 fixed = fix_alignment(regs); 1603 1604 if (fixed == 1) { 1605 regs->nip += 4; /* skip over emulated instruction */ 1606 emulate_single_step(regs); 1607 goto bail; 1608 } 1609 1610 /* Operand address was bad */ 1611 if (fixed == -EFAULT) { 1612 sig = SIGSEGV; 1613 code = SEGV_ACCERR; 1614 } else { 1615 sig = SIGBUS; 1616 code = BUS_ADRALN; 1617 } 1618 if (user_mode(regs)) 1619 _exception(sig, regs, code, regs->dar); 1620 else 1621 bad_page_fault(regs, regs->dar, sig); 1622 1623 bail: 1624 exception_exit(prev_state); 1625 } 1626 1627 void StackOverflow(struct pt_regs *regs) 1628 { 1629 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n", 1630 current->comm, task_pid_nr(current), regs->gpr[1]); 1631 debugger(regs); 1632 show_regs(regs); 1633 panic("kernel stack overflow"); 1634 } 1635 1636 void kernel_fp_unavailable_exception(struct pt_regs *regs) 1637 { 1638 enum ctx_state prev_state = exception_enter(); 1639 1640 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " 1641 "%lx at %lx\n", regs->trap, regs->nip); 1642 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); 1643 1644 exception_exit(prev_state); 1645 } 1646 1647 void altivec_unavailable_exception(struct pt_regs *regs) 1648 { 1649 enum ctx_state prev_state = exception_enter(); 1650 1651 if (user_mode(regs)) { 1652 /* A user program has executed an altivec instruction, 1653 but this kernel doesn't support altivec. */ 1654 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1655 goto bail; 1656 } 1657 1658 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " 1659 "%lx at %lx\n", regs->trap, regs->nip); 1660 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); 1661 1662 bail: 1663 exception_exit(prev_state); 1664 } 1665 1666 void vsx_unavailable_exception(struct pt_regs *regs) 1667 { 1668 if (user_mode(regs)) { 1669 /* A user program has executed an vsx instruction, 1670 but this kernel doesn't support vsx. */ 1671 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1672 return; 1673 } 1674 1675 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " 1676 "%lx at %lx\n", regs->trap, regs->nip); 1677 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); 1678 } 1679 1680 #ifdef CONFIG_PPC64 1681 static void tm_unavailable(struct pt_regs *regs) 1682 { 1683 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1684 if (user_mode(regs)) { 1685 current->thread.load_tm++; 1686 regs->msr |= MSR_TM; 1687 tm_enable(); 1688 tm_restore_sprs(¤t->thread); 1689 return; 1690 } 1691 #endif 1692 pr_emerg("Unrecoverable TM Unavailable Exception " 1693 "%lx at %lx\n", regs->trap, regs->nip); 1694 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); 1695 } 1696 1697 void facility_unavailable_exception(struct pt_regs *regs) 1698 { 1699 static char *facility_strings[] = { 1700 [FSCR_FP_LG] = "FPU", 1701 [FSCR_VECVSX_LG] = "VMX/VSX", 1702 [FSCR_DSCR_LG] = "DSCR", 1703 [FSCR_PM_LG] = "PMU SPRs", 1704 [FSCR_BHRB_LG] = "BHRB", 1705 [FSCR_TM_LG] = "TM", 1706 [FSCR_EBB_LG] = "EBB", 1707 [FSCR_TAR_LG] = "TAR", 1708 [FSCR_MSGP_LG] = "MSGP", 1709 [FSCR_SCV_LG] = "SCV", 1710 }; 1711 char *facility = "unknown"; 1712 u64 value; 1713 u32 instword, rd; 1714 u8 status; 1715 bool hv; 1716 1717 hv = (TRAP(regs) == 0xf80); 1718 if (hv) 1719 value = mfspr(SPRN_HFSCR); 1720 else 1721 value = mfspr(SPRN_FSCR); 1722 1723 status = value >> 56; 1724 if ((hv || status >= 2) && 1725 (status < ARRAY_SIZE(facility_strings)) && 1726 facility_strings[status]) 1727 facility = facility_strings[status]; 1728 1729 /* We should not have taken this interrupt in kernel */ 1730 if (!user_mode(regs)) { 1731 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", 1732 facility, status, regs->nip); 1733 die("Unexpected facility unavailable exception", regs, SIGABRT); 1734 } 1735 1736 /* We restore the interrupt state now */ 1737 if (!arch_irq_disabled_regs(regs)) 1738 local_irq_enable(); 1739 1740 if (status == FSCR_DSCR_LG) { 1741 /* 1742 * User is accessing the DSCR register using the problem 1743 * state only SPR number (0x03) either through a mfspr or 1744 * a mtspr instruction. If it is a write attempt through 1745 * a mtspr, then we set the inherit bit. This also allows 1746 * the user to write or read the register directly in the 1747 * future by setting via the FSCR DSCR bit. But in case it 1748 * is a read DSCR attempt through a mfspr instruction, we 1749 * just emulate the instruction instead. This code path will 1750 * always emulate all the mfspr instructions till the user 1751 * has attempted at least one mtspr instruction. This way it 1752 * preserves the same behaviour when the user is accessing 1753 * the DSCR through privilege level only SPR number (0x11) 1754 * which is emulated through illegal instruction exception. 1755 * We always leave HFSCR DSCR set. 1756 */ 1757 if (get_user(instword, (u32 __user *)(regs->nip))) { 1758 pr_err("Failed to fetch the user instruction\n"); 1759 return; 1760 } 1761 1762 /* Write into DSCR (mtspr 0x03, RS) */ 1763 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) 1764 == PPC_INST_MTSPR_DSCR_USER) { 1765 rd = (instword >> 21) & 0x1f; 1766 current->thread.dscr = regs->gpr[rd]; 1767 current->thread.dscr_inherit = 1; 1768 current->thread.fscr |= FSCR_DSCR; 1769 mtspr(SPRN_FSCR, current->thread.fscr); 1770 } 1771 1772 /* Read from DSCR (mfspr RT, 0x03) */ 1773 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) 1774 == PPC_INST_MFSPR_DSCR_USER) { 1775 if (emulate_instruction(regs)) { 1776 pr_err("DSCR based mfspr emulation failed\n"); 1777 return; 1778 } 1779 regs->nip += 4; 1780 emulate_single_step(regs); 1781 } 1782 return; 1783 } 1784 1785 if (status == FSCR_TM_LG) { 1786 /* 1787 * If we're here then the hardware is TM aware because it 1788 * generated an exception with FSRM_TM set. 1789 * 1790 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware 1791 * told us not to do TM, or the kernel is not built with TM 1792 * support. 1793 * 1794 * If both of those things are true, then userspace can spam the 1795 * console by triggering the printk() below just by continually 1796 * doing tbegin (or any TM instruction). So in that case just 1797 * send the process a SIGILL immediately. 1798 */ 1799 if (!cpu_has_feature(CPU_FTR_TM)) 1800 goto out; 1801 1802 tm_unavailable(regs); 1803 return; 1804 } 1805 1806 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", 1807 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); 1808 1809 out: 1810 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1811 } 1812 #endif 1813 1814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1815 1816 void fp_unavailable_tm(struct pt_regs *regs) 1817 { 1818 /* Note: This does not handle any kind of FP laziness. */ 1819 1820 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", 1821 regs->nip, regs->msr); 1822 1823 /* We can only have got here if the task started using FP after 1824 * beginning the transaction. So, the transactional regs are just a 1825 * copy of the checkpointed ones. But, we still need to recheckpoint 1826 * as we're enabling FP for the process; it will return, abort the 1827 * transaction, and probably retry but now with FP enabled. So the 1828 * checkpointed FP registers need to be loaded. 1829 */ 1830 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1831 1832 /* 1833 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and 1834 * then it was overwrite by the thr->fp_state by tm_reclaim_thread(). 1835 * 1836 * At this point, ck{fp,vr}_state contains the exact values we want to 1837 * recheckpoint. 1838 */ 1839 1840 /* Enable FP for the task: */ 1841 current->thread.load_fp = 1; 1842 1843 /* 1844 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers. 1845 */ 1846 tm_recheckpoint(¤t->thread); 1847 } 1848 1849 void altivec_unavailable_tm(struct pt_regs *regs) 1850 { 1851 /* See the comments in fp_unavailable_tm(). This function operates 1852 * the same way. 1853 */ 1854 1855 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," 1856 "MSR=%lx\n", 1857 regs->nip, regs->msr); 1858 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1859 current->thread.load_vec = 1; 1860 tm_recheckpoint(¤t->thread); 1861 current->thread.used_vr = 1; 1862 } 1863 1864 void vsx_unavailable_tm(struct pt_regs *regs) 1865 { 1866 /* See the comments in fp_unavailable_tm(). This works similarly, 1867 * though we're loading both FP and VEC registers in here. 1868 * 1869 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC 1870 * regs. Either way, set MSR_VSX. 1871 */ 1872 1873 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," 1874 "MSR=%lx\n", 1875 regs->nip, regs->msr); 1876 1877 current->thread.used_vsr = 1; 1878 1879 /* This reclaims FP and/or VR regs if they're already enabled */ 1880 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1881 1882 current->thread.load_vec = 1; 1883 current->thread.load_fp = 1; 1884 1885 tm_recheckpoint(¤t->thread); 1886 } 1887 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1888 1889 void performance_monitor_exception(struct pt_regs *regs) 1890 { 1891 __this_cpu_inc(irq_stat.pmu_irqs); 1892 1893 perf_irq(regs); 1894 } 1895 1896 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1897 static void handle_debug(struct pt_regs *regs, unsigned long debug_status) 1898 { 1899 int changed = 0; 1900 /* 1901 * Determine the cause of the debug event, clear the 1902 * event flags and send a trap to the handler. Torez 1903 */ 1904 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { 1905 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); 1906 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE 1907 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; 1908 #endif 1909 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, 1910 5); 1911 changed |= 0x01; 1912 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { 1913 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); 1914 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, 1915 6); 1916 changed |= 0x01; 1917 } else if (debug_status & DBSR_IAC1) { 1918 current->thread.debug.dbcr0 &= ~DBCR0_IAC1; 1919 dbcr_iac_range(current) &= ~DBCR_IAC12MODE; 1920 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, 1921 1); 1922 changed |= 0x01; 1923 } else if (debug_status & DBSR_IAC2) { 1924 current->thread.debug.dbcr0 &= ~DBCR0_IAC2; 1925 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, 1926 2); 1927 changed |= 0x01; 1928 } else if (debug_status & DBSR_IAC3) { 1929 current->thread.debug.dbcr0 &= ~DBCR0_IAC3; 1930 dbcr_iac_range(current) &= ~DBCR_IAC34MODE; 1931 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, 1932 3); 1933 changed |= 0x01; 1934 } else if (debug_status & DBSR_IAC4) { 1935 current->thread.debug.dbcr0 &= ~DBCR0_IAC4; 1936 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, 1937 4); 1938 changed |= 0x01; 1939 } 1940 /* 1941 * At the point this routine was called, the MSR(DE) was turned off. 1942 * Check all other debug flags and see if that bit needs to be turned 1943 * back on or not. 1944 */ 1945 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 1946 current->thread.debug.dbcr1)) 1947 regs->msr |= MSR_DE; 1948 else 1949 /* Make sure the IDM flag is off */ 1950 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 1951 1952 if (changed & 0x01) 1953 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); 1954 } 1955 1956 void DebugException(struct pt_regs *regs, unsigned long debug_status) 1957 { 1958 current->thread.debug.dbsr = debug_status; 1959 1960 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while 1961 * on server, it stops on the target of the branch. In order to simulate 1962 * the server behaviour, we thus restart right away with a single step 1963 * instead of stopping here when hitting a BT 1964 */ 1965 if (debug_status & DBSR_BT) { 1966 regs->msr &= ~MSR_DE; 1967 1968 /* Disable BT */ 1969 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); 1970 /* Clear the BT event */ 1971 mtspr(SPRN_DBSR, DBSR_BT); 1972 1973 /* Do the single step trick only when coming from userspace */ 1974 if (user_mode(regs)) { 1975 current->thread.debug.dbcr0 &= ~DBCR0_BT; 1976 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; 1977 regs->msr |= MSR_DE; 1978 return; 1979 } 1980 1981 if (kprobe_post_handler(regs)) 1982 return; 1983 1984 if (notify_die(DIE_SSTEP, "block_step", regs, 5, 1985 5, SIGTRAP) == NOTIFY_STOP) { 1986 return; 1987 } 1988 if (debugger_sstep(regs)) 1989 return; 1990 } else if (debug_status & DBSR_IC) { /* Instruction complete */ 1991 regs->msr &= ~MSR_DE; 1992 1993 /* Disable instruction completion */ 1994 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); 1995 /* Clear the instruction completion event */ 1996 mtspr(SPRN_DBSR, DBSR_IC); 1997 1998 if (kprobe_post_handler(regs)) 1999 return; 2000 2001 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 2002 5, SIGTRAP) == NOTIFY_STOP) { 2003 return; 2004 } 2005 2006 if (debugger_sstep(regs)) 2007 return; 2008 2009 if (user_mode(regs)) { 2010 current->thread.debug.dbcr0 &= ~DBCR0_IC; 2011 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 2012 current->thread.debug.dbcr1)) 2013 regs->msr |= MSR_DE; 2014 else 2015 /* Make sure the IDM bit is off */ 2016 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 2017 } 2018 2019 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 2020 } else 2021 handle_debug(regs, debug_status); 2022 } 2023 NOKPROBE_SYMBOL(DebugException); 2024 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 2025 2026 #if !defined(CONFIG_TAU_INT) 2027 void TAUException(struct pt_regs *regs) 2028 { 2029 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n", 2030 regs->nip, regs->msr, regs->trap, print_tainted()); 2031 } 2032 #endif /* CONFIG_INT_TAU */ 2033 2034 #ifdef CONFIG_ALTIVEC 2035 void altivec_assist_exception(struct pt_regs *regs) 2036 { 2037 int err; 2038 2039 if (!user_mode(regs)) { 2040 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" 2041 " at %lx\n", regs->nip); 2042 die("Kernel VMX/Altivec assist exception", regs, SIGILL); 2043 } 2044 2045 flush_altivec_to_thread(current); 2046 2047 PPC_WARN_EMULATED(altivec, regs); 2048 err = emulate_altivec(regs); 2049 if (err == 0) { 2050 regs->nip += 4; /* skip emulated instruction */ 2051 emulate_single_step(regs); 2052 return; 2053 } 2054 2055 if (err == -EFAULT) { 2056 /* got an error reading the instruction */ 2057 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2058 } else { 2059 /* didn't recognize the instruction */ 2060 /* XXX quick hack for now: set the non-Java bit in the VSCR */ 2061 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " 2062 "in %s at %lx\n", current->comm, regs->nip); 2063 current->thread.vr_state.vscr.u[3] |= 0x10000; 2064 } 2065 } 2066 #endif /* CONFIG_ALTIVEC */ 2067 2068 #ifdef CONFIG_FSL_BOOKE 2069 void CacheLockingException(struct pt_regs *regs, unsigned long address, 2070 unsigned long error_code) 2071 { 2072 /* We treat cache locking instructions from the user 2073 * as priv ops, in the future we could try to do 2074 * something smarter 2075 */ 2076 if (error_code & (ESR_DLK|ESR_ILK)) 2077 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 2078 return; 2079 } 2080 #endif /* CONFIG_FSL_BOOKE */ 2081 2082 #ifdef CONFIG_SPE 2083 void SPEFloatingPointException(struct pt_regs *regs) 2084 { 2085 extern int do_spe_mathemu(struct pt_regs *regs); 2086 unsigned long spefscr; 2087 int fpexc_mode; 2088 int code = FPE_FLTUNK; 2089 int err; 2090 2091 flush_spe_to_thread(current); 2092 2093 spefscr = current->thread.spefscr; 2094 fpexc_mode = current->thread.fpexc_mode; 2095 2096 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { 2097 code = FPE_FLTOVF; 2098 } 2099 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { 2100 code = FPE_FLTUND; 2101 } 2102 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) 2103 code = FPE_FLTDIV; 2104 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { 2105 code = FPE_FLTINV; 2106 } 2107 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) 2108 code = FPE_FLTRES; 2109 2110 err = do_spe_mathemu(regs); 2111 if (err == 0) { 2112 regs->nip += 4; /* skip emulated instruction */ 2113 emulate_single_step(regs); 2114 return; 2115 } 2116 2117 if (err == -EFAULT) { 2118 /* got an error reading the instruction */ 2119 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2120 } else if (err == -EINVAL) { 2121 /* didn't recognize the instruction */ 2122 printk(KERN_ERR "unrecognized spe instruction " 2123 "in %s at %lx\n", current->comm, regs->nip); 2124 } else { 2125 _exception(SIGFPE, regs, code, regs->nip); 2126 } 2127 2128 return; 2129 } 2130 2131 void SPEFloatingPointRoundException(struct pt_regs *regs) 2132 { 2133 extern int speround_handler(struct pt_regs *regs); 2134 int err; 2135 2136 preempt_disable(); 2137 if (regs->msr & MSR_SPE) 2138 giveup_spe(current); 2139 preempt_enable(); 2140 2141 regs->nip -= 4; 2142 err = speround_handler(regs); 2143 if (err == 0) { 2144 regs->nip += 4; /* skip emulated instruction */ 2145 emulate_single_step(regs); 2146 return; 2147 } 2148 2149 if (err == -EFAULT) { 2150 /* got an error reading the instruction */ 2151 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2152 } else if (err == -EINVAL) { 2153 /* didn't recognize the instruction */ 2154 printk(KERN_ERR "unrecognized spe instruction " 2155 "in %s at %lx\n", current->comm, regs->nip); 2156 } else { 2157 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip); 2158 return; 2159 } 2160 } 2161 #endif 2162 2163 /* 2164 * We enter here if we get an unrecoverable exception, that is, one 2165 * that happened at a point where the RI (recoverable interrupt) bit 2166 * in the MSR is 0. This indicates that SRR0/1 are live, and that 2167 * we therefore lost state by taking this exception. 2168 */ 2169 void unrecoverable_exception(struct pt_regs *regs) 2170 { 2171 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n", 2172 regs->trap, regs->nip, regs->msr); 2173 die("Unrecoverable exception", regs, SIGABRT); 2174 } 2175 NOKPROBE_SYMBOL(unrecoverable_exception); 2176 2177 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) 2178 /* 2179 * Default handler for a Watchdog exception, 2180 * spins until a reboot occurs 2181 */ 2182 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) 2183 { 2184 /* Generic WatchdogHandler, implement your own */ 2185 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); 2186 return; 2187 } 2188 2189 void WatchdogException(struct pt_regs *regs) 2190 { 2191 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); 2192 WatchdogHandler(regs); 2193 } 2194 #endif 2195 2196 /* 2197 * We enter here if we discover during exception entry that we are 2198 * running in supervisor mode with a userspace value in the stack pointer. 2199 */ 2200 void kernel_bad_stack(struct pt_regs *regs) 2201 { 2202 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", 2203 regs->gpr[1], regs->nip); 2204 die("Bad kernel stack pointer", regs, SIGABRT); 2205 } 2206 NOKPROBE_SYMBOL(kernel_bad_stack); 2207 2208 void __init trap_init(void) 2209 { 2210 } 2211 2212 2213 #ifdef CONFIG_PPC_EMULATED_STATS 2214 2215 #define WARN_EMULATED_SETUP(type) .type = { .name = #type } 2216 2217 struct ppc_emulated ppc_emulated = { 2218 #ifdef CONFIG_ALTIVEC 2219 WARN_EMULATED_SETUP(altivec), 2220 #endif 2221 WARN_EMULATED_SETUP(dcba), 2222 WARN_EMULATED_SETUP(dcbz), 2223 WARN_EMULATED_SETUP(fp_pair), 2224 WARN_EMULATED_SETUP(isel), 2225 WARN_EMULATED_SETUP(mcrxr), 2226 WARN_EMULATED_SETUP(mfpvr), 2227 WARN_EMULATED_SETUP(multiple), 2228 WARN_EMULATED_SETUP(popcntb), 2229 WARN_EMULATED_SETUP(spe), 2230 WARN_EMULATED_SETUP(string), 2231 WARN_EMULATED_SETUP(sync), 2232 WARN_EMULATED_SETUP(unaligned), 2233 #ifdef CONFIG_MATH_EMULATION 2234 WARN_EMULATED_SETUP(math), 2235 #endif 2236 #ifdef CONFIG_VSX 2237 WARN_EMULATED_SETUP(vsx), 2238 #endif 2239 #ifdef CONFIG_PPC64 2240 WARN_EMULATED_SETUP(mfdscr), 2241 WARN_EMULATED_SETUP(mtdscr), 2242 WARN_EMULATED_SETUP(lq_stq), 2243 WARN_EMULATED_SETUP(lxvw4x), 2244 WARN_EMULATED_SETUP(lxvh8x), 2245 WARN_EMULATED_SETUP(lxvd2x), 2246 WARN_EMULATED_SETUP(lxvb16x), 2247 #endif 2248 }; 2249 2250 u32 ppc_warn_emulated; 2251 2252 void ppc_warn_emulated_print(const char *type) 2253 { 2254 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, 2255 type); 2256 } 2257 2258 static int __init ppc_warn_emulated_init(void) 2259 { 2260 struct dentry *dir, *d; 2261 unsigned int i; 2262 struct ppc_emulated_entry *entries = (void *)&ppc_emulated; 2263 2264 if (!powerpc_debugfs_root) 2265 return -ENODEV; 2266 2267 dir = debugfs_create_dir("emulated_instructions", 2268 powerpc_debugfs_root); 2269 if (!dir) 2270 return -ENOMEM; 2271 2272 d = debugfs_create_u32("do_warn", 0644, dir, 2273 &ppc_warn_emulated); 2274 if (!d) 2275 goto fail; 2276 2277 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) { 2278 d = debugfs_create_u32(entries[i].name, 0644, dir, 2279 (u32 *)&entries[i].val.counter); 2280 if (!d) 2281 goto fail; 2282 } 2283 2284 return 0; 2285 2286 fail: 2287 debugfs_remove_recursive(dir); 2288 return -ENOMEM; 2289 } 2290 2291 device_initcall(ppc_warn_emulated_init); 2292 2293 #endif /* CONFIG_PPC_EMULATED_STATS */ 2294