xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 79a93295)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/extable.h>
29 #include <linux/module.h>	/* print_modules */
30 #include <linux/prctl.h>
31 #include <linux/delay.h>
32 #include <linux/kprobes.h>
33 #include <linux/kexec.h>
34 #include <linux/backlight.h>
35 #include <linux/bug.h>
36 #include <linux/kdebug.h>
37 #include <linux/debugfs.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/machdep.h>
46 #include <asm/rtas.h>
47 #include <asm/pmc.h>
48 #include <asm/reg.h>
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #include <asm/tm.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 
69 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
70 int (*__debugger)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
77 
78 EXPORT_SYMBOL(__debugger);
79 EXPORT_SYMBOL(__debugger_ipi);
80 EXPORT_SYMBOL(__debugger_bpt);
81 EXPORT_SYMBOL(__debugger_sstep);
82 EXPORT_SYMBOL(__debugger_iabr_match);
83 EXPORT_SYMBOL(__debugger_break_match);
84 EXPORT_SYMBOL(__debugger_fault_handler);
85 #endif
86 
87 /* Transactional Memory trap debug */
88 #ifdef TM_DEBUG_SW
89 #define TM_DEBUG(x...) printk(KERN_INFO x)
90 #else
91 #define TM_DEBUG(x...) do { } while(0)
92 #endif
93 
94 /*
95  * Trap & Exception support
96  */
97 
98 #ifdef CONFIG_PMAC_BACKLIGHT
99 static void pmac_backlight_unblank(void)
100 {
101 	mutex_lock(&pmac_backlight_mutex);
102 	if (pmac_backlight) {
103 		struct backlight_properties *props;
104 
105 		props = &pmac_backlight->props;
106 		props->brightness = props->max_brightness;
107 		props->power = FB_BLANK_UNBLANK;
108 		backlight_update_status(pmac_backlight);
109 	}
110 	mutex_unlock(&pmac_backlight_mutex);
111 }
112 #else
113 static inline void pmac_backlight_unblank(void) { }
114 #endif
115 
116 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
117 static int die_owner = -1;
118 static unsigned int die_nest_count;
119 static int die_counter;
120 
121 static unsigned long oops_begin(struct pt_regs *regs)
122 {
123 	int cpu;
124 	unsigned long flags;
125 
126 	oops_enter();
127 
128 	/* racy, but better than risking deadlock. */
129 	raw_local_irq_save(flags);
130 	cpu = smp_processor_id();
131 	if (!arch_spin_trylock(&die_lock)) {
132 		if (cpu == die_owner)
133 			/* nested oops. should stop eventually */;
134 		else
135 			arch_spin_lock(&die_lock);
136 	}
137 	die_nest_count++;
138 	die_owner = cpu;
139 	console_verbose();
140 	bust_spinlocks(1);
141 	if (machine_is(powermac))
142 		pmac_backlight_unblank();
143 	return flags;
144 }
145 NOKPROBE_SYMBOL(oops_begin);
146 
147 static void oops_end(unsigned long flags, struct pt_regs *regs,
148 			       int signr)
149 {
150 	bust_spinlocks(0);
151 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 	die_nest_count--;
153 	oops_exit();
154 	printk("\n");
155 	if (!die_nest_count) {
156 		/* Nest count reaches zero, release the lock. */
157 		die_owner = -1;
158 		arch_spin_unlock(&die_lock);
159 	}
160 	raw_local_irq_restore(flags);
161 
162 	crash_fadump(regs, "die oops");
163 
164 	/*
165 	 * A system reset (0x100) is a request to dump, so we always send
166 	 * it through the crashdump code.
167 	 */
168 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
169 		crash_kexec(regs);
170 
171 		/*
172 		 * We aren't the primary crash CPU. We need to send it
173 		 * to a holding pattern to avoid it ending up in the panic
174 		 * code.
175 		 */
176 		crash_kexec_secondary(regs);
177 	}
178 
179 	if (!signr)
180 		return;
181 
182 	/*
183 	 * While our oops output is serialised by a spinlock, output
184 	 * from panic() called below can race and corrupt it. If we
185 	 * know we are going to panic, delay for 1 second so we have a
186 	 * chance to get clean backtraces from all CPUs that are oopsing.
187 	 */
188 	if (in_interrupt() || panic_on_oops || !current->pid ||
189 	    is_global_init(current)) {
190 		mdelay(MSEC_PER_SEC);
191 	}
192 
193 	if (in_interrupt())
194 		panic("Fatal exception in interrupt");
195 	if (panic_on_oops)
196 		panic("Fatal exception");
197 	do_exit(signr);
198 }
199 NOKPROBE_SYMBOL(oops_end);
200 
201 static int __die(const char *str, struct pt_regs *regs, long err)
202 {
203 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
204 #ifdef CONFIG_PREEMPT
205 	printk("PREEMPT ");
206 #endif
207 #ifdef CONFIG_SMP
208 	printk("SMP NR_CPUS=%d ", NR_CPUS);
209 #endif
210 	if (debug_pagealloc_enabled())
211 		printk("DEBUG_PAGEALLOC ");
212 #ifdef CONFIG_NUMA
213 	printk("NUMA ");
214 #endif
215 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
216 
217 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
218 		return 1;
219 
220 	print_modules();
221 	show_regs(regs);
222 
223 	return 0;
224 }
225 NOKPROBE_SYMBOL(__die);
226 
227 void die(const char *str, struct pt_regs *regs, long err)
228 {
229 	unsigned long flags;
230 
231 	if (debugger(regs))
232 		return;
233 
234 	flags = oops_begin(regs);
235 	if (__die(str, regs, err))
236 		err = 0;
237 	oops_end(flags, regs, err);
238 }
239 
240 void user_single_step_siginfo(struct task_struct *tsk,
241 				struct pt_regs *regs, siginfo_t *info)
242 {
243 	memset(info, 0, sizeof(*info));
244 	info->si_signo = SIGTRAP;
245 	info->si_code = TRAP_TRACE;
246 	info->si_addr = (void __user *)regs->nip;
247 }
248 
249 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
250 {
251 	siginfo_t info;
252 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
253 			"at %08lx nip %08lx lr %08lx code %x\n";
254 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
255 			"at %016lx nip %016lx lr %016lx code %x\n";
256 
257 	if (!user_mode(regs)) {
258 		die("Exception in kernel mode", regs, signr);
259 		return;
260 	}
261 
262 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
263 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
264 				   current->comm, current->pid, signr,
265 				   addr, regs->nip, regs->link, code);
266 	}
267 
268 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
269 		local_irq_enable();
270 
271 	current->thread.trap_nr = code;
272 	memset(&info, 0, sizeof(info));
273 	info.si_signo = signr;
274 	info.si_code = code;
275 	info.si_addr = (void __user *) addr;
276 	force_sig_info(signr, &info, current);
277 }
278 
279 void system_reset_exception(struct pt_regs *regs)
280 {
281 	/* See if any machine dependent calls */
282 	if (ppc_md.system_reset_exception) {
283 		if (ppc_md.system_reset_exception(regs))
284 			return;
285 	}
286 
287 	die("System Reset", regs, SIGABRT);
288 
289 	/* Must die if the interrupt is not recoverable */
290 	if (!(regs->msr & MSR_RI))
291 		panic("Unrecoverable System Reset");
292 
293 	/* What should we do here? We could issue a shutdown or hard reset. */
294 }
295 
296 #ifdef CONFIG_PPC64
297 /*
298  * This function is called in real mode. Strictly no printk's please.
299  *
300  * regs->nip and regs->msr contains srr0 and ssr1.
301  */
302 long machine_check_early(struct pt_regs *regs)
303 {
304 	long handled = 0;
305 
306 	__this_cpu_inc(irq_stat.mce_exceptions);
307 
308 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
309 
310 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
311 		handled = cur_cpu_spec->machine_check_early(regs);
312 	return handled;
313 }
314 
315 long hmi_exception_realmode(struct pt_regs *regs)
316 {
317 	__this_cpu_inc(irq_stat.hmi_exceptions);
318 
319 	wait_for_subcore_guest_exit();
320 
321 	if (ppc_md.hmi_exception_early)
322 		ppc_md.hmi_exception_early(regs);
323 
324 	wait_for_tb_resync();
325 
326 	return 0;
327 }
328 
329 #endif
330 
331 /*
332  * I/O accesses can cause machine checks on powermacs.
333  * Check if the NIP corresponds to the address of a sync
334  * instruction for which there is an entry in the exception
335  * table.
336  * Note that the 601 only takes a machine check on TEA
337  * (transfer error ack) signal assertion, and does not
338  * set any of the top 16 bits of SRR1.
339  *  -- paulus.
340  */
341 static inline int check_io_access(struct pt_regs *regs)
342 {
343 #ifdef CONFIG_PPC32
344 	unsigned long msr = regs->msr;
345 	const struct exception_table_entry *entry;
346 	unsigned int *nip = (unsigned int *)regs->nip;
347 
348 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
349 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
350 		/*
351 		 * Check that it's a sync instruction, or somewhere
352 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
353 		 * As the address is in the exception table
354 		 * we should be able to read the instr there.
355 		 * For the debug message, we look at the preceding
356 		 * load or store.
357 		 */
358 		if (*nip == PPC_INST_NOP)
359 			nip -= 2;
360 		else if (*nip == PPC_INST_ISYNC)
361 			--nip;
362 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
363 			unsigned int rb;
364 
365 			--nip;
366 			rb = (*nip >> 11) & 0x1f;
367 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
368 			       (*nip & 0x100)? "OUT to": "IN from",
369 			       regs->gpr[rb] - _IO_BASE, nip);
370 			regs->msr |= MSR_RI;
371 			regs->nip = extable_fixup(entry);
372 			return 1;
373 		}
374 	}
375 #endif /* CONFIG_PPC32 */
376 	return 0;
377 }
378 
379 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
380 /* On 4xx, the reason for the machine check or program exception
381    is in the ESR. */
382 #define get_reason(regs)	((regs)->dsisr)
383 #ifndef CONFIG_FSL_BOOKE
384 #define get_mc_reason(regs)	((regs)->dsisr)
385 #else
386 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
387 #endif
388 #define REASON_FP		ESR_FP
389 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
390 #define REASON_PRIVILEGED	ESR_PPR
391 #define REASON_TRAP		ESR_PTR
392 
393 /* single-step stuff */
394 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
395 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
396 
397 #else
398 /* On non-4xx, the reason for the machine check or program
399    exception is in the MSR. */
400 #define get_reason(regs)	((regs)->msr)
401 #define get_mc_reason(regs)	((regs)->msr)
402 #define REASON_TM		0x200000
403 #define REASON_FP		0x100000
404 #define REASON_ILLEGAL		0x80000
405 #define REASON_PRIVILEGED	0x40000
406 #define REASON_TRAP		0x20000
407 
408 #define single_stepping(regs)	((regs)->msr & MSR_SE)
409 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
410 #endif
411 
412 #if defined(CONFIG_4xx)
413 int machine_check_4xx(struct pt_regs *regs)
414 {
415 	unsigned long reason = get_mc_reason(regs);
416 
417 	if (reason & ESR_IMCP) {
418 		printk("Instruction");
419 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
420 	} else
421 		printk("Data");
422 	printk(" machine check in kernel mode.\n");
423 
424 	return 0;
425 }
426 
427 int machine_check_440A(struct pt_regs *regs)
428 {
429 	unsigned long reason = get_mc_reason(regs);
430 
431 	printk("Machine check in kernel mode.\n");
432 	if (reason & ESR_IMCP){
433 		printk("Instruction Synchronous Machine Check exception\n");
434 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
435 	}
436 	else {
437 		u32 mcsr = mfspr(SPRN_MCSR);
438 		if (mcsr & MCSR_IB)
439 			printk("Instruction Read PLB Error\n");
440 		if (mcsr & MCSR_DRB)
441 			printk("Data Read PLB Error\n");
442 		if (mcsr & MCSR_DWB)
443 			printk("Data Write PLB Error\n");
444 		if (mcsr & MCSR_TLBP)
445 			printk("TLB Parity Error\n");
446 		if (mcsr & MCSR_ICP){
447 			flush_instruction_cache();
448 			printk("I-Cache Parity Error\n");
449 		}
450 		if (mcsr & MCSR_DCSP)
451 			printk("D-Cache Search Parity Error\n");
452 		if (mcsr & MCSR_DCFP)
453 			printk("D-Cache Flush Parity Error\n");
454 		if (mcsr & MCSR_IMPE)
455 			printk("Machine Check exception is imprecise\n");
456 
457 		/* Clear MCSR */
458 		mtspr(SPRN_MCSR, mcsr);
459 	}
460 	return 0;
461 }
462 
463 int machine_check_47x(struct pt_regs *regs)
464 {
465 	unsigned long reason = get_mc_reason(regs);
466 	u32 mcsr;
467 
468 	printk(KERN_ERR "Machine check in kernel mode.\n");
469 	if (reason & ESR_IMCP) {
470 		printk(KERN_ERR
471 		       "Instruction Synchronous Machine Check exception\n");
472 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
473 		return 0;
474 	}
475 	mcsr = mfspr(SPRN_MCSR);
476 	if (mcsr & MCSR_IB)
477 		printk(KERN_ERR "Instruction Read PLB Error\n");
478 	if (mcsr & MCSR_DRB)
479 		printk(KERN_ERR "Data Read PLB Error\n");
480 	if (mcsr & MCSR_DWB)
481 		printk(KERN_ERR "Data Write PLB Error\n");
482 	if (mcsr & MCSR_TLBP)
483 		printk(KERN_ERR "TLB Parity Error\n");
484 	if (mcsr & MCSR_ICP) {
485 		flush_instruction_cache();
486 		printk(KERN_ERR "I-Cache Parity Error\n");
487 	}
488 	if (mcsr & MCSR_DCSP)
489 		printk(KERN_ERR "D-Cache Search Parity Error\n");
490 	if (mcsr & PPC47x_MCSR_GPR)
491 		printk(KERN_ERR "GPR Parity Error\n");
492 	if (mcsr & PPC47x_MCSR_FPR)
493 		printk(KERN_ERR "FPR Parity Error\n");
494 	if (mcsr & PPC47x_MCSR_IPR)
495 		printk(KERN_ERR "Machine Check exception is imprecise\n");
496 
497 	/* Clear MCSR */
498 	mtspr(SPRN_MCSR, mcsr);
499 
500 	return 0;
501 }
502 #elif defined(CONFIG_E500)
503 int machine_check_e500mc(struct pt_regs *regs)
504 {
505 	unsigned long mcsr = mfspr(SPRN_MCSR);
506 	unsigned long reason = mcsr;
507 	int recoverable = 1;
508 
509 	if (reason & MCSR_LD) {
510 		recoverable = fsl_rio_mcheck_exception(regs);
511 		if (recoverable == 1)
512 			goto silent_out;
513 	}
514 
515 	printk("Machine check in kernel mode.\n");
516 	printk("Caused by (from MCSR=%lx): ", reason);
517 
518 	if (reason & MCSR_MCP)
519 		printk("Machine Check Signal\n");
520 
521 	if (reason & MCSR_ICPERR) {
522 		printk("Instruction Cache Parity Error\n");
523 
524 		/*
525 		 * This is recoverable by invalidating the i-cache.
526 		 */
527 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
528 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
529 			;
530 
531 		/*
532 		 * This will generally be accompanied by an instruction
533 		 * fetch error report -- only treat MCSR_IF as fatal
534 		 * if it wasn't due to an L1 parity error.
535 		 */
536 		reason &= ~MCSR_IF;
537 	}
538 
539 	if (reason & MCSR_DCPERR_MC) {
540 		printk("Data Cache Parity Error\n");
541 
542 		/*
543 		 * In write shadow mode we auto-recover from the error, but it
544 		 * may still get logged and cause a machine check.  We should
545 		 * only treat the non-write shadow case as non-recoverable.
546 		 */
547 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
548 			recoverable = 0;
549 	}
550 
551 	if (reason & MCSR_L2MMU_MHIT) {
552 		printk("Hit on multiple TLB entries\n");
553 		recoverable = 0;
554 	}
555 
556 	if (reason & MCSR_NMI)
557 		printk("Non-maskable interrupt\n");
558 
559 	if (reason & MCSR_IF) {
560 		printk("Instruction Fetch Error Report\n");
561 		recoverable = 0;
562 	}
563 
564 	if (reason & MCSR_LD) {
565 		printk("Load Error Report\n");
566 		recoverable = 0;
567 	}
568 
569 	if (reason & MCSR_ST) {
570 		printk("Store Error Report\n");
571 		recoverable = 0;
572 	}
573 
574 	if (reason & MCSR_LDG) {
575 		printk("Guarded Load Error Report\n");
576 		recoverable = 0;
577 	}
578 
579 	if (reason & MCSR_TLBSYNC)
580 		printk("Simultaneous tlbsync operations\n");
581 
582 	if (reason & MCSR_BSL2_ERR) {
583 		printk("Level 2 Cache Error\n");
584 		recoverable = 0;
585 	}
586 
587 	if (reason & MCSR_MAV) {
588 		u64 addr;
589 
590 		addr = mfspr(SPRN_MCAR);
591 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
592 
593 		printk("Machine Check %s Address: %#llx\n",
594 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
595 	}
596 
597 silent_out:
598 	mtspr(SPRN_MCSR, mcsr);
599 	return mfspr(SPRN_MCSR) == 0 && recoverable;
600 }
601 
602 int machine_check_e500(struct pt_regs *regs)
603 {
604 	unsigned long reason = get_mc_reason(regs);
605 
606 	if (reason & MCSR_BUS_RBERR) {
607 		if (fsl_rio_mcheck_exception(regs))
608 			return 1;
609 		if (fsl_pci_mcheck_exception(regs))
610 			return 1;
611 	}
612 
613 	printk("Machine check in kernel mode.\n");
614 	printk("Caused by (from MCSR=%lx): ", reason);
615 
616 	if (reason & MCSR_MCP)
617 		printk("Machine Check Signal\n");
618 	if (reason & MCSR_ICPERR)
619 		printk("Instruction Cache Parity Error\n");
620 	if (reason & MCSR_DCP_PERR)
621 		printk("Data Cache Push Parity Error\n");
622 	if (reason & MCSR_DCPERR)
623 		printk("Data Cache Parity Error\n");
624 	if (reason & MCSR_BUS_IAERR)
625 		printk("Bus - Instruction Address Error\n");
626 	if (reason & MCSR_BUS_RAERR)
627 		printk("Bus - Read Address Error\n");
628 	if (reason & MCSR_BUS_WAERR)
629 		printk("Bus - Write Address Error\n");
630 	if (reason & MCSR_BUS_IBERR)
631 		printk("Bus - Instruction Data Error\n");
632 	if (reason & MCSR_BUS_RBERR)
633 		printk("Bus - Read Data Bus Error\n");
634 	if (reason & MCSR_BUS_WBERR)
635 		printk("Bus - Write Data Bus Error\n");
636 	if (reason & MCSR_BUS_IPERR)
637 		printk("Bus - Instruction Parity Error\n");
638 	if (reason & MCSR_BUS_RPERR)
639 		printk("Bus - Read Parity Error\n");
640 
641 	return 0;
642 }
643 
644 int machine_check_generic(struct pt_regs *regs)
645 {
646 	return 0;
647 }
648 #elif defined(CONFIG_E200)
649 int machine_check_e200(struct pt_regs *regs)
650 {
651 	unsigned long reason = get_mc_reason(regs);
652 
653 	printk("Machine check in kernel mode.\n");
654 	printk("Caused by (from MCSR=%lx): ", reason);
655 
656 	if (reason & MCSR_MCP)
657 		printk("Machine Check Signal\n");
658 	if (reason & MCSR_CP_PERR)
659 		printk("Cache Push Parity Error\n");
660 	if (reason & MCSR_CPERR)
661 		printk("Cache Parity Error\n");
662 	if (reason & MCSR_EXCP_ERR)
663 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
664 	if (reason & MCSR_BUS_IRERR)
665 		printk("Bus - Read Bus Error on instruction fetch\n");
666 	if (reason & MCSR_BUS_DRERR)
667 		printk("Bus - Read Bus Error on data load\n");
668 	if (reason & MCSR_BUS_WRERR)
669 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
670 
671 	return 0;
672 }
673 #elif defined(CONFIG_PPC_8xx)
674 int machine_check_8xx(struct pt_regs *regs)
675 {
676 	unsigned long reason = get_mc_reason(regs);
677 
678 	pr_err("Machine check in kernel mode.\n");
679 	pr_err("Caused by (from SRR1=%lx): ", reason);
680 	if (reason & 0x40000000)
681 		pr_err("Fetch error at address %lx\n", regs->nip);
682 	else
683 		pr_err("Data access error at address %lx\n", regs->dar);
684 
685 #ifdef CONFIG_PCI
686 	/* the qspan pci read routines can cause machine checks -- Cort
687 	 *
688 	 * yuck !!! that totally needs to go away ! There are better ways
689 	 * to deal with that than having a wart in the mcheck handler.
690 	 * -- BenH
691 	 */
692 	bad_page_fault(regs, regs->dar, SIGBUS);
693 	return 1;
694 #else
695 	return 0;
696 #endif
697 }
698 #else
699 int machine_check_generic(struct pt_regs *regs)
700 {
701 	unsigned long reason = get_mc_reason(regs);
702 
703 	printk("Machine check in kernel mode.\n");
704 	printk("Caused by (from SRR1=%lx): ", reason);
705 	switch (reason & 0x601F0000) {
706 	case 0x80000:
707 		printk("Machine check signal\n");
708 		break;
709 	case 0:		/* for 601 */
710 	case 0x40000:
711 	case 0x140000:	/* 7450 MSS error and TEA */
712 		printk("Transfer error ack signal\n");
713 		break;
714 	case 0x20000:
715 		printk("Data parity error signal\n");
716 		break;
717 	case 0x10000:
718 		printk("Address parity error signal\n");
719 		break;
720 	case 0x20000000:
721 		printk("L1 Data Cache error\n");
722 		break;
723 	case 0x40000000:
724 		printk("L1 Instruction Cache error\n");
725 		break;
726 	case 0x00100000:
727 		printk("L2 data cache parity error\n");
728 		break;
729 	default:
730 		printk("Unknown values in msr\n");
731 	}
732 	return 0;
733 }
734 #endif /* everything else */
735 
736 void machine_check_exception(struct pt_regs *regs)
737 {
738 	enum ctx_state prev_state = exception_enter();
739 	int recover = 0;
740 
741 	__this_cpu_inc(irq_stat.mce_exceptions);
742 
743 	/* See if any machine dependent calls. In theory, we would want
744 	 * to call the CPU first, and call the ppc_md. one if the CPU
745 	 * one returns a positive number. However there is existing code
746 	 * that assumes the board gets a first chance, so let's keep it
747 	 * that way for now and fix things later. --BenH.
748 	 */
749 	if (ppc_md.machine_check_exception)
750 		recover = ppc_md.machine_check_exception(regs);
751 	else if (cur_cpu_spec->machine_check)
752 		recover = cur_cpu_spec->machine_check(regs);
753 
754 	if (recover > 0)
755 		goto bail;
756 
757 	if (debugger_fault_handler(regs))
758 		goto bail;
759 
760 	if (check_io_access(regs))
761 		goto bail;
762 
763 	die("Machine check", regs, SIGBUS);
764 
765 	/* Must die if the interrupt is not recoverable */
766 	if (!(regs->msr & MSR_RI))
767 		panic("Unrecoverable Machine check");
768 
769 bail:
770 	exception_exit(prev_state);
771 }
772 
773 void SMIException(struct pt_regs *regs)
774 {
775 	die("System Management Interrupt", regs, SIGABRT);
776 }
777 
778 void handle_hmi_exception(struct pt_regs *regs)
779 {
780 	struct pt_regs *old_regs;
781 
782 	old_regs = set_irq_regs(regs);
783 	irq_enter();
784 
785 	if (ppc_md.handle_hmi_exception)
786 		ppc_md.handle_hmi_exception(regs);
787 
788 	irq_exit();
789 	set_irq_regs(old_regs);
790 }
791 
792 void unknown_exception(struct pt_regs *regs)
793 {
794 	enum ctx_state prev_state = exception_enter();
795 
796 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
797 	       regs->nip, regs->msr, regs->trap);
798 
799 	_exception(SIGTRAP, regs, 0, 0);
800 
801 	exception_exit(prev_state);
802 }
803 
804 void instruction_breakpoint_exception(struct pt_regs *regs)
805 {
806 	enum ctx_state prev_state = exception_enter();
807 
808 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
809 					5, SIGTRAP) == NOTIFY_STOP)
810 		goto bail;
811 	if (debugger_iabr_match(regs))
812 		goto bail;
813 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
814 
815 bail:
816 	exception_exit(prev_state);
817 }
818 
819 void RunModeException(struct pt_regs *regs)
820 {
821 	_exception(SIGTRAP, regs, 0, 0);
822 }
823 
824 void single_step_exception(struct pt_regs *regs)
825 {
826 	enum ctx_state prev_state = exception_enter();
827 
828 	clear_single_step(regs);
829 
830 	if (kprobe_post_handler(regs))
831 		return;
832 
833 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
834 					5, SIGTRAP) == NOTIFY_STOP)
835 		goto bail;
836 	if (debugger_sstep(regs))
837 		goto bail;
838 
839 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
840 
841 bail:
842 	exception_exit(prev_state);
843 }
844 NOKPROBE_SYMBOL(single_step_exception);
845 
846 /*
847  * After we have successfully emulated an instruction, we have to
848  * check if the instruction was being single-stepped, and if so,
849  * pretend we got a single-step exception.  This was pointed out
850  * by Kumar Gala.  -- paulus
851  */
852 static void emulate_single_step(struct pt_regs *regs)
853 {
854 	if (single_stepping(regs))
855 		single_step_exception(regs);
856 }
857 
858 static inline int __parse_fpscr(unsigned long fpscr)
859 {
860 	int ret = 0;
861 
862 	/* Invalid operation */
863 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
864 		ret = FPE_FLTINV;
865 
866 	/* Overflow */
867 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
868 		ret = FPE_FLTOVF;
869 
870 	/* Underflow */
871 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
872 		ret = FPE_FLTUND;
873 
874 	/* Divide by zero */
875 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
876 		ret = FPE_FLTDIV;
877 
878 	/* Inexact result */
879 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
880 		ret = FPE_FLTRES;
881 
882 	return ret;
883 }
884 
885 static void parse_fpe(struct pt_regs *regs)
886 {
887 	int code = 0;
888 
889 	flush_fp_to_thread(current);
890 
891 	code = __parse_fpscr(current->thread.fp_state.fpscr);
892 
893 	_exception(SIGFPE, regs, code, regs->nip);
894 }
895 
896 /*
897  * Illegal instruction emulation support.  Originally written to
898  * provide the PVR to user applications using the mfspr rd, PVR.
899  * Return non-zero if we can't emulate, or -EFAULT if the associated
900  * memory access caused an access fault.  Return zero on success.
901  *
902  * There are a couple of ways to do this, either "decode" the instruction
903  * or directly match lots of bits.  In this case, matching lots of
904  * bits is faster and easier.
905  *
906  */
907 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
908 {
909 	u8 rT = (instword >> 21) & 0x1f;
910 	u8 rA = (instword >> 16) & 0x1f;
911 	u8 NB_RB = (instword >> 11) & 0x1f;
912 	u32 num_bytes;
913 	unsigned long EA;
914 	int pos = 0;
915 
916 	/* Early out if we are an invalid form of lswx */
917 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
918 		if ((rT == rA) || (rT == NB_RB))
919 			return -EINVAL;
920 
921 	EA = (rA == 0) ? 0 : regs->gpr[rA];
922 
923 	switch (instword & PPC_INST_STRING_MASK) {
924 		case PPC_INST_LSWX:
925 		case PPC_INST_STSWX:
926 			EA += NB_RB;
927 			num_bytes = regs->xer & 0x7f;
928 			break;
929 		case PPC_INST_LSWI:
930 		case PPC_INST_STSWI:
931 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
932 			break;
933 		default:
934 			return -EINVAL;
935 	}
936 
937 	while (num_bytes != 0)
938 	{
939 		u8 val;
940 		u32 shift = 8 * (3 - (pos & 0x3));
941 
942 		/* if process is 32-bit, clear upper 32 bits of EA */
943 		if ((regs->msr & MSR_64BIT) == 0)
944 			EA &= 0xFFFFFFFF;
945 
946 		switch ((instword & PPC_INST_STRING_MASK)) {
947 			case PPC_INST_LSWX:
948 			case PPC_INST_LSWI:
949 				if (get_user(val, (u8 __user *)EA))
950 					return -EFAULT;
951 				/* first time updating this reg,
952 				 * zero it out */
953 				if (pos == 0)
954 					regs->gpr[rT] = 0;
955 				regs->gpr[rT] |= val << shift;
956 				break;
957 			case PPC_INST_STSWI:
958 			case PPC_INST_STSWX:
959 				val = regs->gpr[rT] >> shift;
960 				if (put_user(val, (u8 __user *)EA))
961 					return -EFAULT;
962 				break;
963 		}
964 		/* move EA to next address */
965 		EA += 1;
966 		num_bytes--;
967 
968 		/* manage our position within the register */
969 		if (++pos == 4) {
970 			pos = 0;
971 			if (++rT == 32)
972 				rT = 0;
973 		}
974 	}
975 
976 	return 0;
977 }
978 
979 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
980 {
981 	u32 ra,rs;
982 	unsigned long tmp;
983 
984 	ra = (instword >> 16) & 0x1f;
985 	rs = (instword >> 21) & 0x1f;
986 
987 	tmp = regs->gpr[rs];
988 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
989 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
990 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
991 	regs->gpr[ra] = tmp;
992 
993 	return 0;
994 }
995 
996 static int emulate_isel(struct pt_regs *regs, u32 instword)
997 {
998 	u8 rT = (instword >> 21) & 0x1f;
999 	u8 rA = (instword >> 16) & 0x1f;
1000 	u8 rB = (instword >> 11) & 0x1f;
1001 	u8 BC = (instword >> 6) & 0x1f;
1002 	u8 bit;
1003 	unsigned long tmp;
1004 
1005 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1006 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1007 
1008 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1009 
1010 	return 0;
1011 }
1012 
1013 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1014 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1015 {
1016         /* If we're emulating a load/store in an active transaction, we cannot
1017          * emulate it as the kernel operates in transaction suspended context.
1018          * We need to abort the transaction.  This creates a persistent TM
1019          * abort so tell the user what caused it with a new code.
1020 	 */
1021 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1022 		tm_enable();
1023 		tm_abort(cause);
1024 		return true;
1025 	}
1026 	return false;
1027 }
1028 #else
1029 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1030 {
1031 	return false;
1032 }
1033 #endif
1034 
1035 static int emulate_instruction(struct pt_regs *regs)
1036 {
1037 	u32 instword;
1038 	u32 rd;
1039 
1040 	if (!user_mode(regs))
1041 		return -EINVAL;
1042 	CHECK_FULL_REGS(regs);
1043 
1044 	if (get_user(instword, (u32 __user *)(regs->nip)))
1045 		return -EFAULT;
1046 
1047 	/* Emulate the mfspr rD, PVR. */
1048 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1049 		PPC_WARN_EMULATED(mfpvr, regs);
1050 		rd = (instword >> 21) & 0x1f;
1051 		regs->gpr[rd] = mfspr(SPRN_PVR);
1052 		return 0;
1053 	}
1054 
1055 	/* Emulating the dcba insn is just a no-op.  */
1056 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1057 		PPC_WARN_EMULATED(dcba, regs);
1058 		return 0;
1059 	}
1060 
1061 	/* Emulate the mcrxr insn.  */
1062 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1063 		int shift = (instword >> 21) & 0x1c;
1064 		unsigned long msk = 0xf0000000UL >> shift;
1065 
1066 		PPC_WARN_EMULATED(mcrxr, regs);
1067 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1068 		regs->xer &= ~0xf0000000UL;
1069 		return 0;
1070 	}
1071 
1072 	/* Emulate load/store string insn. */
1073 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1074 		if (tm_abort_check(regs,
1075 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1076 			return -EINVAL;
1077 		PPC_WARN_EMULATED(string, regs);
1078 		return emulate_string_inst(regs, instword);
1079 	}
1080 
1081 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1082 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1083 		PPC_WARN_EMULATED(popcntb, regs);
1084 		return emulate_popcntb_inst(regs, instword);
1085 	}
1086 
1087 	/* Emulate isel (Integer Select) instruction */
1088 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1089 		PPC_WARN_EMULATED(isel, regs);
1090 		return emulate_isel(regs, instword);
1091 	}
1092 
1093 	/* Emulate sync instruction variants */
1094 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1095 		PPC_WARN_EMULATED(sync, regs);
1096 		asm volatile("sync");
1097 		return 0;
1098 	}
1099 
1100 #ifdef CONFIG_PPC64
1101 	/* Emulate the mfspr rD, DSCR. */
1102 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1103 		PPC_INST_MFSPR_DSCR_USER) ||
1104 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1105 		PPC_INST_MFSPR_DSCR)) &&
1106 			cpu_has_feature(CPU_FTR_DSCR)) {
1107 		PPC_WARN_EMULATED(mfdscr, regs);
1108 		rd = (instword >> 21) & 0x1f;
1109 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1110 		return 0;
1111 	}
1112 	/* Emulate the mtspr DSCR, rD. */
1113 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1114 		PPC_INST_MTSPR_DSCR_USER) ||
1115 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1116 		PPC_INST_MTSPR_DSCR)) &&
1117 			cpu_has_feature(CPU_FTR_DSCR)) {
1118 		PPC_WARN_EMULATED(mtdscr, regs);
1119 		rd = (instword >> 21) & 0x1f;
1120 		current->thread.dscr = regs->gpr[rd];
1121 		current->thread.dscr_inherit = 1;
1122 		mtspr(SPRN_DSCR, current->thread.dscr);
1123 		return 0;
1124 	}
1125 #endif
1126 
1127 	return -EINVAL;
1128 }
1129 
1130 int is_valid_bugaddr(unsigned long addr)
1131 {
1132 	return is_kernel_addr(addr);
1133 }
1134 
1135 #ifdef CONFIG_MATH_EMULATION
1136 static int emulate_math(struct pt_regs *regs)
1137 {
1138 	int ret;
1139 	extern int do_mathemu(struct pt_regs *regs);
1140 
1141 	ret = do_mathemu(regs);
1142 	if (ret >= 0)
1143 		PPC_WARN_EMULATED(math, regs);
1144 
1145 	switch (ret) {
1146 	case 0:
1147 		emulate_single_step(regs);
1148 		return 0;
1149 	case 1: {
1150 			int code = 0;
1151 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1152 			_exception(SIGFPE, regs, code, regs->nip);
1153 			return 0;
1154 		}
1155 	case -EFAULT:
1156 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1157 		return 0;
1158 	}
1159 
1160 	return -1;
1161 }
1162 #else
1163 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1164 #endif
1165 
1166 void program_check_exception(struct pt_regs *regs)
1167 {
1168 	enum ctx_state prev_state = exception_enter();
1169 	unsigned int reason = get_reason(regs);
1170 
1171 	/* We can now get here via a FP Unavailable exception if the core
1172 	 * has no FPU, in that case the reason flags will be 0 */
1173 
1174 	if (reason & REASON_FP) {
1175 		/* IEEE FP exception */
1176 		parse_fpe(regs);
1177 		goto bail;
1178 	}
1179 	if (reason & REASON_TRAP) {
1180 		unsigned long bugaddr;
1181 		/* Debugger is first in line to stop recursive faults in
1182 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1183 		if (debugger_bpt(regs))
1184 			goto bail;
1185 
1186 		if (kprobe_handler(regs))
1187 			goto bail;
1188 
1189 		/* trap exception */
1190 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1191 				== NOTIFY_STOP)
1192 			goto bail;
1193 
1194 		bugaddr = regs->nip;
1195 		/*
1196 		 * Fixup bugaddr for BUG_ON() in real mode
1197 		 */
1198 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1199 			bugaddr += PAGE_OFFSET;
1200 
1201 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1202 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1203 			regs->nip += 4;
1204 			goto bail;
1205 		}
1206 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1207 		goto bail;
1208 	}
1209 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1210 	if (reason & REASON_TM) {
1211 		/* This is a TM "Bad Thing Exception" program check.
1212 		 * This occurs when:
1213 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1214 		 *    transition in TM states.
1215 		 * -  A trechkpt is attempted when transactional.
1216 		 * -  A treclaim is attempted when non transactional.
1217 		 * -  A tend is illegally attempted.
1218 		 * -  writing a TM SPR when transactional.
1219 		 */
1220 		if (!user_mode(regs) &&
1221 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1222 			regs->nip += 4;
1223 			goto bail;
1224 		}
1225 		/* If usermode caused this, it's done something illegal and
1226 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1227 		 * operand to distinguish from the instruction just being bad
1228 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1229 		 * illegal /placement/ of a valid instruction.
1230 		 */
1231 		if (user_mode(regs)) {
1232 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1233 			goto bail;
1234 		} else {
1235 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1236 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1237 			die("Unrecoverable exception", regs, SIGABRT);
1238 		}
1239 	}
1240 #endif
1241 
1242 	/*
1243 	 * If we took the program check in the kernel skip down to sending a
1244 	 * SIGILL. The subsequent cases all relate to emulating instructions
1245 	 * which we should only do for userspace. We also do not want to enable
1246 	 * interrupts for kernel faults because that might lead to further
1247 	 * faults, and loose the context of the original exception.
1248 	 */
1249 	if (!user_mode(regs))
1250 		goto sigill;
1251 
1252 	/* We restore the interrupt state now */
1253 	if (!arch_irq_disabled_regs(regs))
1254 		local_irq_enable();
1255 
1256 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1257 	 * but there seems to be a hardware bug on the 405GP (RevD)
1258 	 * that means ESR is sometimes set incorrectly - either to
1259 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1260 	 * hardware people - not sure if it can happen on any illegal
1261 	 * instruction or only on FP instructions, whether there is a
1262 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1263 	 */
1264 	if (!emulate_math(regs))
1265 		goto bail;
1266 
1267 	/* Try to emulate it if we should. */
1268 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1269 		switch (emulate_instruction(regs)) {
1270 		case 0:
1271 			regs->nip += 4;
1272 			emulate_single_step(regs);
1273 			goto bail;
1274 		case -EFAULT:
1275 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1276 			goto bail;
1277 		}
1278 	}
1279 
1280 sigill:
1281 	if (reason & REASON_PRIVILEGED)
1282 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1283 	else
1284 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1285 
1286 bail:
1287 	exception_exit(prev_state);
1288 }
1289 NOKPROBE_SYMBOL(program_check_exception);
1290 
1291 /*
1292  * This occurs when running in hypervisor mode on POWER6 or later
1293  * and an illegal instruction is encountered.
1294  */
1295 void emulation_assist_interrupt(struct pt_regs *regs)
1296 {
1297 	regs->msr |= REASON_ILLEGAL;
1298 	program_check_exception(regs);
1299 }
1300 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1301 
1302 void alignment_exception(struct pt_regs *regs)
1303 {
1304 	enum ctx_state prev_state = exception_enter();
1305 	int sig, code, fixed = 0;
1306 
1307 	/* We restore the interrupt state now */
1308 	if (!arch_irq_disabled_regs(regs))
1309 		local_irq_enable();
1310 
1311 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1312 		goto bail;
1313 
1314 	/* we don't implement logging of alignment exceptions */
1315 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1316 		fixed = fix_alignment(regs);
1317 
1318 	if (fixed == 1) {
1319 		regs->nip += 4;	/* skip over emulated instruction */
1320 		emulate_single_step(regs);
1321 		goto bail;
1322 	}
1323 
1324 	/* Operand address was bad */
1325 	if (fixed == -EFAULT) {
1326 		sig = SIGSEGV;
1327 		code = SEGV_ACCERR;
1328 	} else {
1329 		sig = SIGBUS;
1330 		code = BUS_ADRALN;
1331 	}
1332 	if (user_mode(regs))
1333 		_exception(sig, regs, code, regs->dar);
1334 	else
1335 		bad_page_fault(regs, regs->dar, sig);
1336 
1337 bail:
1338 	exception_exit(prev_state);
1339 }
1340 
1341 void slb_miss_bad_addr(struct pt_regs *regs)
1342 {
1343 	enum ctx_state prev_state = exception_enter();
1344 
1345 	if (user_mode(regs))
1346 		_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1347 	else
1348 		bad_page_fault(regs, regs->dar, SIGSEGV);
1349 
1350 	exception_exit(prev_state);
1351 }
1352 
1353 void StackOverflow(struct pt_regs *regs)
1354 {
1355 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1356 	       current, regs->gpr[1]);
1357 	debugger(regs);
1358 	show_regs(regs);
1359 	panic("kernel stack overflow");
1360 }
1361 
1362 void nonrecoverable_exception(struct pt_regs *regs)
1363 {
1364 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1365 	       regs->nip, regs->msr);
1366 	debugger(regs);
1367 	die("nonrecoverable exception", regs, SIGKILL);
1368 }
1369 
1370 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1371 {
1372 	enum ctx_state prev_state = exception_enter();
1373 
1374 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1375 			  "%lx at %lx\n", regs->trap, regs->nip);
1376 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1377 
1378 	exception_exit(prev_state);
1379 }
1380 
1381 void altivec_unavailable_exception(struct pt_regs *regs)
1382 {
1383 	enum ctx_state prev_state = exception_enter();
1384 
1385 	if (user_mode(regs)) {
1386 		/* A user program has executed an altivec instruction,
1387 		   but this kernel doesn't support altivec. */
1388 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1389 		goto bail;
1390 	}
1391 
1392 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1393 			"%lx at %lx\n", regs->trap, regs->nip);
1394 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1395 
1396 bail:
1397 	exception_exit(prev_state);
1398 }
1399 
1400 void vsx_unavailable_exception(struct pt_regs *regs)
1401 {
1402 	if (user_mode(regs)) {
1403 		/* A user program has executed an vsx instruction,
1404 		   but this kernel doesn't support vsx. */
1405 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1406 		return;
1407 	}
1408 
1409 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1410 			"%lx at %lx\n", regs->trap, regs->nip);
1411 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1412 }
1413 
1414 #ifdef CONFIG_PPC64
1415 static void tm_unavailable(struct pt_regs *regs)
1416 {
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418 	if (user_mode(regs)) {
1419 		current->thread.load_tm++;
1420 		regs->msr |= MSR_TM;
1421 		tm_enable();
1422 		tm_restore_sprs(&current->thread);
1423 		return;
1424 	}
1425 #endif
1426 	pr_emerg("Unrecoverable TM Unavailable Exception "
1427 			"%lx at %lx\n", regs->trap, regs->nip);
1428 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1429 }
1430 
1431 void facility_unavailable_exception(struct pt_regs *regs)
1432 {
1433 	static char *facility_strings[] = {
1434 		[FSCR_FP_LG] = "FPU",
1435 		[FSCR_VECVSX_LG] = "VMX/VSX",
1436 		[FSCR_DSCR_LG] = "DSCR",
1437 		[FSCR_PM_LG] = "PMU SPRs",
1438 		[FSCR_BHRB_LG] = "BHRB",
1439 		[FSCR_TM_LG] = "TM",
1440 		[FSCR_EBB_LG] = "EBB",
1441 		[FSCR_TAR_LG] = "TAR",
1442 	};
1443 	char *facility = "unknown";
1444 	u64 value;
1445 	u32 instword, rd;
1446 	u8 status;
1447 	bool hv;
1448 
1449 	hv = (regs->trap == 0xf80);
1450 	if (hv)
1451 		value = mfspr(SPRN_HFSCR);
1452 	else
1453 		value = mfspr(SPRN_FSCR);
1454 
1455 	status = value >> 56;
1456 	if (status == FSCR_DSCR_LG) {
1457 		/*
1458 		 * User is accessing the DSCR register using the problem
1459 		 * state only SPR number (0x03) either through a mfspr or
1460 		 * a mtspr instruction. If it is a write attempt through
1461 		 * a mtspr, then we set the inherit bit. This also allows
1462 		 * the user to write or read the register directly in the
1463 		 * future by setting via the FSCR DSCR bit. But in case it
1464 		 * is a read DSCR attempt through a mfspr instruction, we
1465 		 * just emulate the instruction instead. This code path will
1466 		 * always emulate all the mfspr instructions till the user
1467 		 * has attempted at least one mtspr instruction. This way it
1468 		 * preserves the same behaviour when the user is accessing
1469 		 * the DSCR through privilege level only SPR number (0x11)
1470 		 * which is emulated through illegal instruction exception.
1471 		 * We always leave HFSCR DSCR set.
1472 		 */
1473 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1474 			pr_err("Failed to fetch the user instruction\n");
1475 			return;
1476 		}
1477 
1478 		/* Write into DSCR (mtspr 0x03, RS) */
1479 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1480 				== PPC_INST_MTSPR_DSCR_USER) {
1481 			rd = (instword >> 21) & 0x1f;
1482 			current->thread.dscr = regs->gpr[rd];
1483 			current->thread.dscr_inherit = 1;
1484 			current->thread.fscr |= FSCR_DSCR;
1485 			mtspr(SPRN_FSCR, current->thread.fscr);
1486 		}
1487 
1488 		/* Read from DSCR (mfspr RT, 0x03) */
1489 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1490 				== PPC_INST_MFSPR_DSCR_USER) {
1491 			if (emulate_instruction(regs)) {
1492 				pr_err("DSCR based mfspr emulation failed\n");
1493 				return;
1494 			}
1495 			regs->nip += 4;
1496 			emulate_single_step(regs);
1497 		}
1498 		return;
1499 	}
1500 
1501 	if (status == FSCR_TM_LG) {
1502 		/*
1503 		 * If we're here then the hardware is TM aware because it
1504 		 * generated an exception with FSRM_TM set.
1505 		 *
1506 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1507 		 * told us not to do TM, or the kernel is not built with TM
1508 		 * support.
1509 		 *
1510 		 * If both of those things are true, then userspace can spam the
1511 		 * console by triggering the printk() below just by continually
1512 		 * doing tbegin (or any TM instruction). So in that case just
1513 		 * send the process a SIGILL immediately.
1514 		 */
1515 		if (!cpu_has_feature(CPU_FTR_TM))
1516 			goto out;
1517 
1518 		tm_unavailable(regs);
1519 		return;
1520 	}
1521 
1522 	if ((hv || status >= 2) &&
1523 	    (status < ARRAY_SIZE(facility_strings)) &&
1524 	    facility_strings[status])
1525 		facility = facility_strings[status];
1526 
1527 	/* We restore the interrupt state now */
1528 	if (!arch_irq_disabled_regs(regs))
1529 		local_irq_enable();
1530 
1531 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1532 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1533 
1534 out:
1535 	if (user_mode(regs)) {
1536 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1537 		return;
1538 	}
1539 
1540 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1541 }
1542 #endif
1543 
1544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1545 
1546 void fp_unavailable_tm(struct pt_regs *regs)
1547 {
1548 	/* Note:  This does not handle any kind of FP laziness. */
1549 
1550 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1551 		 regs->nip, regs->msr);
1552 
1553         /* We can only have got here if the task started using FP after
1554          * beginning the transaction.  So, the transactional regs are just a
1555          * copy of the checkpointed ones.  But, we still need to recheckpoint
1556          * as we're enabling FP for the process; it will return, abort the
1557          * transaction, and probably retry but now with FP enabled.  So the
1558          * checkpointed FP registers need to be loaded.
1559 	 */
1560 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1561 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1562 
1563 	/* Enable FP for the task: */
1564 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1565 
1566 	/* This loads and recheckpoints the FP registers from
1567 	 * thread.fpr[].  They will remain in registers after the
1568 	 * checkpoint so we don't need to reload them after.
1569 	 * If VMX is in use, the VRs now hold checkpointed values,
1570 	 * so we don't want to load the VRs from the thread_struct.
1571 	 */
1572 	tm_recheckpoint(&current->thread, MSR_FP);
1573 
1574 	/* If VMX is in use, get the transactional values back */
1575 	if (regs->msr & MSR_VEC) {
1576 		msr_check_and_set(MSR_VEC);
1577 		load_vr_state(&current->thread.vr_state);
1578 		/* At this point all the VSX state is loaded, so enable it */
1579 		regs->msr |= MSR_VSX;
1580 	}
1581 }
1582 
1583 void altivec_unavailable_tm(struct pt_regs *regs)
1584 {
1585 	/* See the comments in fp_unavailable_tm().  This function operates
1586 	 * the same way.
1587 	 */
1588 
1589 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1590 		 "MSR=%lx\n",
1591 		 regs->nip, regs->msr);
1592 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1593 	regs->msr |= MSR_VEC;
1594 	tm_recheckpoint(&current->thread, MSR_VEC);
1595 	current->thread.used_vr = 1;
1596 
1597 	if (regs->msr & MSR_FP) {
1598 		msr_check_and_set(MSR_FP);
1599 		load_fp_state(&current->thread.fp_state);
1600 		regs->msr |= MSR_VSX;
1601 	}
1602 }
1603 
1604 void vsx_unavailable_tm(struct pt_regs *regs)
1605 {
1606 	unsigned long orig_msr = regs->msr;
1607 
1608 	/* See the comments in fp_unavailable_tm().  This works similarly,
1609 	 * though we're loading both FP and VEC registers in here.
1610 	 *
1611 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1612 	 * regs.  Either way, set MSR_VSX.
1613 	 */
1614 
1615 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1616 		 "MSR=%lx\n",
1617 		 regs->nip, regs->msr);
1618 
1619 	current->thread.used_vsr = 1;
1620 
1621 	/* If FP and VMX are already loaded, we have all the state we need */
1622 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1623 		regs->msr |= MSR_VSX;
1624 		return;
1625 	}
1626 
1627 	/* This reclaims FP and/or VR regs if they're already enabled */
1628 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1629 
1630 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1631 		MSR_VSX;
1632 
1633 	/* This loads & recheckpoints FP and VRs; but we have
1634 	 * to be sure not to overwrite previously-valid state.
1635 	 */
1636 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1637 
1638 	msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1639 
1640 	if (orig_msr & MSR_FP)
1641 		load_fp_state(&current->thread.fp_state);
1642 	if (orig_msr & MSR_VEC)
1643 		load_vr_state(&current->thread.vr_state);
1644 }
1645 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1646 
1647 void performance_monitor_exception(struct pt_regs *regs)
1648 {
1649 	__this_cpu_inc(irq_stat.pmu_irqs);
1650 
1651 	perf_irq(regs);
1652 }
1653 
1654 #ifdef CONFIG_8xx
1655 void SoftwareEmulation(struct pt_regs *regs)
1656 {
1657 	CHECK_FULL_REGS(regs);
1658 
1659 	if (!user_mode(regs)) {
1660 		debugger(regs);
1661 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1662 			regs, SIGFPE);
1663 	}
1664 
1665 	if (!emulate_math(regs))
1666 		return;
1667 
1668 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1669 }
1670 #endif /* CONFIG_8xx */
1671 
1672 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1673 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1674 {
1675 	int changed = 0;
1676 	/*
1677 	 * Determine the cause of the debug event, clear the
1678 	 * event flags and send a trap to the handler. Torez
1679 	 */
1680 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1681 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1682 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1683 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1684 #endif
1685 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1686 			     5);
1687 		changed |= 0x01;
1688 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1689 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1690 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1691 			     6);
1692 		changed |= 0x01;
1693 	}  else if (debug_status & DBSR_IAC1) {
1694 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1695 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1696 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1697 			     1);
1698 		changed |= 0x01;
1699 	}  else if (debug_status & DBSR_IAC2) {
1700 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1701 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1702 			     2);
1703 		changed |= 0x01;
1704 	}  else if (debug_status & DBSR_IAC3) {
1705 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1706 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1707 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1708 			     3);
1709 		changed |= 0x01;
1710 	}  else if (debug_status & DBSR_IAC4) {
1711 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1712 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1713 			     4);
1714 		changed |= 0x01;
1715 	}
1716 	/*
1717 	 * At the point this routine was called, the MSR(DE) was turned off.
1718 	 * Check all other debug flags and see if that bit needs to be turned
1719 	 * back on or not.
1720 	 */
1721 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1722 			       current->thread.debug.dbcr1))
1723 		regs->msr |= MSR_DE;
1724 	else
1725 		/* Make sure the IDM flag is off */
1726 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1727 
1728 	if (changed & 0x01)
1729 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1730 }
1731 
1732 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1733 {
1734 	current->thread.debug.dbsr = debug_status;
1735 
1736 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1737 	 * on server, it stops on the target of the branch. In order to simulate
1738 	 * the server behaviour, we thus restart right away with a single step
1739 	 * instead of stopping here when hitting a BT
1740 	 */
1741 	if (debug_status & DBSR_BT) {
1742 		regs->msr &= ~MSR_DE;
1743 
1744 		/* Disable BT */
1745 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1746 		/* Clear the BT event */
1747 		mtspr(SPRN_DBSR, DBSR_BT);
1748 
1749 		/* Do the single step trick only when coming from userspace */
1750 		if (user_mode(regs)) {
1751 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1752 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1753 			regs->msr |= MSR_DE;
1754 			return;
1755 		}
1756 
1757 		if (kprobe_post_handler(regs))
1758 			return;
1759 
1760 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1761 			       5, SIGTRAP) == NOTIFY_STOP) {
1762 			return;
1763 		}
1764 		if (debugger_sstep(regs))
1765 			return;
1766 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1767 		regs->msr &= ~MSR_DE;
1768 
1769 		/* Disable instruction completion */
1770 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1771 		/* Clear the instruction completion event */
1772 		mtspr(SPRN_DBSR, DBSR_IC);
1773 
1774 		if (kprobe_post_handler(regs))
1775 			return;
1776 
1777 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1778 			       5, SIGTRAP) == NOTIFY_STOP) {
1779 			return;
1780 		}
1781 
1782 		if (debugger_sstep(regs))
1783 			return;
1784 
1785 		if (user_mode(regs)) {
1786 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1787 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1788 					       current->thread.debug.dbcr1))
1789 				regs->msr |= MSR_DE;
1790 			else
1791 				/* Make sure the IDM bit is off */
1792 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1793 		}
1794 
1795 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1796 	} else
1797 		handle_debug(regs, debug_status);
1798 }
1799 NOKPROBE_SYMBOL(DebugException);
1800 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1801 
1802 #if !defined(CONFIG_TAU_INT)
1803 void TAUException(struct pt_regs *regs)
1804 {
1805 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1806 	       regs->nip, regs->msr, regs->trap, print_tainted());
1807 }
1808 #endif /* CONFIG_INT_TAU */
1809 
1810 #ifdef CONFIG_ALTIVEC
1811 void altivec_assist_exception(struct pt_regs *regs)
1812 {
1813 	int err;
1814 
1815 	if (!user_mode(regs)) {
1816 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1817 		       " at %lx\n", regs->nip);
1818 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1819 	}
1820 
1821 	flush_altivec_to_thread(current);
1822 
1823 	PPC_WARN_EMULATED(altivec, regs);
1824 	err = emulate_altivec(regs);
1825 	if (err == 0) {
1826 		regs->nip += 4;		/* skip emulated instruction */
1827 		emulate_single_step(regs);
1828 		return;
1829 	}
1830 
1831 	if (err == -EFAULT) {
1832 		/* got an error reading the instruction */
1833 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1834 	} else {
1835 		/* didn't recognize the instruction */
1836 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1837 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1838 				   "in %s at %lx\n", current->comm, regs->nip);
1839 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1840 	}
1841 }
1842 #endif /* CONFIG_ALTIVEC */
1843 
1844 #ifdef CONFIG_FSL_BOOKE
1845 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1846 			   unsigned long error_code)
1847 {
1848 	/* We treat cache locking instructions from the user
1849 	 * as priv ops, in the future we could try to do
1850 	 * something smarter
1851 	 */
1852 	if (error_code & (ESR_DLK|ESR_ILK))
1853 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1854 	return;
1855 }
1856 #endif /* CONFIG_FSL_BOOKE */
1857 
1858 #ifdef CONFIG_SPE
1859 void SPEFloatingPointException(struct pt_regs *regs)
1860 {
1861 	extern int do_spe_mathemu(struct pt_regs *regs);
1862 	unsigned long spefscr;
1863 	int fpexc_mode;
1864 	int code = 0;
1865 	int err;
1866 
1867 	flush_spe_to_thread(current);
1868 
1869 	spefscr = current->thread.spefscr;
1870 	fpexc_mode = current->thread.fpexc_mode;
1871 
1872 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1873 		code = FPE_FLTOVF;
1874 	}
1875 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1876 		code = FPE_FLTUND;
1877 	}
1878 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1879 		code = FPE_FLTDIV;
1880 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1881 		code = FPE_FLTINV;
1882 	}
1883 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1884 		code = FPE_FLTRES;
1885 
1886 	err = do_spe_mathemu(regs);
1887 	if (err == 0) {
1888 		regs->nip += 4;		/* skip emulated instruction */
1889 		emulate_single_step(regs);
1890 		return;
1891 	}
1892 
1893 	if (err == -EFAULT) {
1894 		/* got an error reading the instruction */
1895 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1896 	} else if (err == -EINVAL) {
1897 		/* didn't recognize the instruction */
1898 		printk(KERN_ERR "unrecognized spe instruction "
1899 		       "in %s at %lx\n", current->comm, regs->nip);
1900 	} else {
1901 		_exception(SIGFPE, regs, code, regs->nip);
1902 	}
1903 
1904 	return;
1905 }
1906 
1907 void SPEFloatingPointRoundException(struct pt_regs *regs)
1908 {
1909 	extern int speround_handler(struct pt_regs *regs);
1910 	int err;
1911 
1912 	preempt_disable();
1913 	if (regs->msr & MSR_SPE)
1914 		giveup_spe(current);
1915 	preempt_enable();
1916 
1917 	regs->nip -= 4;
1918 	err = speround_handler(regs);
1919 	if (err == 0) {
1920 		regs->nip += 4;		/* skip emulated instruction */
1921 		emulate_single_step(regs);
1922 		return;
1923 	}
1924 
1925 	if (err == -EFAULT) {
1926 		/* got an error reading the instruction */
1927 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1928 	} else if (err == -EINVAL) {
1929 		/* didn't recognize the instruction */
1930 		printk(KERN_ERR "unrecognized spe instruction "
1931 		       "in %s at %lx\n", current->comm, regs->nip);
1932 	} else {
1933 		_exception(SIGFPE, regs, 0, regs->nip);
1934 		return;
1935 	}
1936 }
1937 #endif
1938 
1939 /*
1940  * We enter here if we get an unrecoverable exception, that is, one
1941  * that happened at a point where the RI (recoverable interrupt) bit
1942  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1943  * we therefore lost state by taking this exception.
1944  */
1945 void unrecoverable_exception(struct pt_regs *regs)
1946 {
1947 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1948 	       regs->trap, regs->nip);
1949 	die("Unrecoverable exception", regs, SIGABRT);
1950 }
1951 
1952 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1953 /*
1954  * Default handler for a Watchdog exception,
1955  * spins until a reboot occurs
1956  */
1957 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1958 {
1959 	/* Generic WatchdogHandler, implement your own */
1960 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1961 	return;
1962 }
1963 
1964 void WatchdogException(struct pt_regs *regs)
1965 {
1966 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1967 	WatchdogHandler(regs);
1968 }
1969 #endif
1970 
1971 /*
1972  * We enter here if we discover during exception entry that we are
1973  * running in supervisor mode with a userspace value in the stack pointer.
1974  */
1975 void kernel_bad_stack(struct pt_regs *regs)
1976 {
1977 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1978 	       regs->gpr[1], regs->nip);
1979 	die("Bad kernel stack pointer", regs, SIGABRT);
1980 }
1981 
1982 void __init trap_init(void)
1983 {
1984 }
1985 
1986 
1987 #ifdef CONFIG_PPC_EMULATED_STATS
1988 
1989 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1990 
1991 struct ppc_emulated ppc_emulated = {
1992 #ifdef CONFIG_ALTIVEC
1993 	WARN_EMULATED_SETUP(altivec),
1994 #endif
1995 	WARN_EMULATED_SETUP(dcba),
1996 	WARN_EMULATED_SETUP(dcbz),
1997 	WARN_EMULATED_SETUP(fp_pair),
1998 	WARN_EMULATED_SETUP(isel),
1999 	WARN_EMULATED_SETUP(mcrxr),
2000 	WARN_EMULATED_SETUP(mfpvr),
2001 	WARN_EMULATED_SETUP(multiple),
2002 	WARN_EMULATED_SETUP(popcntb),
2003 	WARN_EMULATED_SETUP(spe),
2004 	WARN_EMULATED_SETUP(string),
2005 	WARN_EMULATED_SETUP(sync),
2006 	WARN_EMULATED_SETUP(unaligned),
2007 #ifdef CONFIG_MATH_EMULATION
2008 	WARN_EMULATED_SETUP(math),
2009 #endif
2010 #ifdef CONFIG_VSX
2011 	WARN_EMULATED_SETUP(vsx),
2012 #endif
2013 #ifdef CONFIG_PPC64
2014 	WARN_EMULATED_SETUP(mfdscr),
2015 	WARN_EMULATED_SETUP(mtdscr),
2016 	WARN_EMULATED_SETUP(lq_stq),
2017 #endif
2018 };
2019 
2020 u32 ppc_warn_emulated;
2021 
2022 void ppc_warn_emulated_print(const char *type)
2023 {
2024 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2025 			    type);
2026 }
2027 
2028 static int __init ppc_warn_emulated_init(void)
2029 {
2030 	struct dentry *dir, *d;
2031 	unsigned int i;
2032 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2033 
2034 	if (!powerpc_debugfs_root)
2035 		return -ENODEV;
2036 
2037 	dir = debugfs_create_dir("emulated_instructions",
2038 				 powerpc_debugfs_root);
2039 	if (!dir)
2040 		return -ENOMEM;
2041 
2042 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2043 			       &ppc_warn_emulated);
2044 	if (!d)
2045 		goto fail;
2046 
2047 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2048 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2049 				       (u32 *)&entries[i].val.counter);
2050 		if (!d)
2051 			goto fail;
2052 	}
2053 
2054 	return 0;
2055 
2056 fail:
2057 	debugfs_remove_recursive(dir);
2058 	return -ENOMEM;
2059 }
2060 
2061 device_initcall(ppc_warn_emulated_init);
2062 
2063 #endif /* CONFIG_PPC_EMULATED_STATS */
2064