xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 7587eb18)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 	if (debug_pagealloc_enabled())
207 		printk("DEBUG_PAGEALLOC ");
208 #ifdef CONFIG_NUMA
209 	printk("NUMA ");
210 #endif
211 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
212 
213 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 		return 1;
215 
216 	print_modules();
217 	show_regs(regs);
218 
219 	return 0;
220 }
221 
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 	unsigned long flags = oops_begin(regs);
225 
226 	if (__die(str, regs, err))
227 		err = 0;
228 	oops_end(flags, regs, err);
229 }
230 
231 void user_single_step_siginfo(struct task_struct *tsk,
232 				struct pt_regs *regs, siginfo_t *info)
233 {
234 	memset(info, 0, sizeof(*info));
235 	info->si_signo = SIGTRAP;
236 	info->si_code = TRAP_TRACE;
237 	info->si_addr = (void __user *)regs->nip;
238 }
239 
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 	siginfo_t info;
243 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 			"at %08lx nip %08lx lr %08lx code %x\n";
245 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %016lx nip %016lx lr %016lx code %x\n";
247 
248 	if (!user_mode(regs)) {
249 		die("Exception in kernel mode", regs, signr);
250 		return;
251 	}
252 
253 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 				   current->comm, current->pid, signr,
256 				   addr, regs->nip, regs->link, code);
257 	}
258 
259 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 		local_irq_enable();
261 
262 	current->thread.trap_nr = code;
263 	memset(&info, 0, sizeof(info));
264 	info.si_signo = signr;
265 	info.si_code = code;
266 	info.si_addr = (void __user *) addr;
267 	force_sig_info(signr, &info, current);
268 }
269 
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 	/* See if any machine dependent calls */
274 	if (ppc_md.system_reset_exception) {
275 		if (ppc_md.system_reset_exception(regs))
276 			return;
277 	}
278 
279 	die("System Reset", regs, SIGABRT);
280 
281 	/* Must die if the interrupt is not recoverable */
282 	if (!(regs->msr & MSR_RI))
283 		panic("Unrecoverable System Reset");
284 
285 	/* What should we do here? We could issue a shutdown or hard reset. */
286 }
287 
288 /*
289  * This function is called in real mode. Strictly no printk's please.
290  *
291  * regs->nip and regs->msr contains srr0 and ssr1.
292  */
293 long machine_check_early(struct pt_regs *regs)
294 {
295 	long handled = 0;
296 
297 	__this_cpu_inc(irq_stat.mce_exceptions);
298 
299 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
300 
301 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
302 		handled = cur_cpu_spec->machine_check_early(regs);
303 	return handled;
304 }
305 
306 long hmi_exception_realmode(struct pt_regs *regs)
307 {
308 	__this_cpu_inc(irq_stat.hmi_exceptions);
309 
310 	if (ppc_md.hmi_exception_early)
311 		ppc_md.hmi_exception_early(regs);
312 
313 	return 0;
314 }
315 
316 #endif
317 
318 /*
319  * I/O accesses can cause machine checks on powermacs.
320  * Check if the NIP corresponds to the address of a sync
321  * instruction for which there is an entry in the exception
322  * table.
323  * Note that the 601 only takes a machine check on TEA
324  * (transfer error ack) signal assertion, and does not
325  * set any of the top 16 bits of SRR1.
326  *  -- paulus.
327  */
328 static inline int check_io_access(struct pt_regs *regs)
329 {
330 #ifdef CONFIG_PPC32
331 	unsigned long msr = regs->msr;
332 	const struct exception_table_entry *entry;
333 	unsigned int *nip = (unsigned int *)regs->nip;
334 
335 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
336 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
337 		/*
338 		 * Check that it's a sync instruction, or somewhere
339 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
340 		 * As the address is in the exception table
341 		 * we should be able to read the instr there.
342 		 * For the debug message, we look at the preceding
343 		 * load or store.
344 		 */
345 		if (*nip == 0x60000000)		/* nop */
346 			nip -= 2;
347 		else if (*nip == 0x4c00012c)	/* isync */
348 			--nip;
349 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
350 			/* sync or twi */
351 			unsigned int rb;
352 
353 			--nip;
354 			rb = (*nip >> 11) & 0x1f;
355 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
356 			       (*nip & 0x100)? "OUT to": "IN from",
357 			       regs->gpr[rb] - _IO_BASE, nip);
358 			regs->msr |= MSR_RI;
359 			regs->nip = entry->fixup;
360 			return 1;
361 		}
362 	}
363 #endif /* CONFIG_PPC32 */
364 	return 0;
365 }
366 
367 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
368 /* On 4xx, the reason for the machine check or program exception
369    is in the ESR. */
370 #define get_reason(regs)	((regs)->dsisr)
371 #ifndef CONFIG_FSL_BOOKE
372 #define get_mc_reason(regs)	((regs)->dsisr)
373 #else
374 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
375 #endif
376 #define REASON_FP		ESR_FP
377 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
378 #define REASON_PRIVILEGED	ESR_PPR
379 #define REASON_TRAP		ESR_PTR
380 
381 /* single-step stuff */
382 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
383 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
384 
385 #else
386 /* On non-4xx, the reason for the machine check or program
387    exception is in the MSR. */
388 #define get_reason(regs)	((regs)->msr)
389 #define get_mc_reason(regs)	((regs)->msr)
390 #define REASON_TM		0x200000
391 #define REASON_FP		0x100000
392 #define REASON_ILLEGAL		0x80000
393 #define REASON_PRIVILEGED	0x40000
394 #define REASON_TRAP		0x20000
395 
396 #define single_stepping(regs)	((regs)->msr & MSR_SE)
397 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
398 #endif
399 
400 #if defined(CONFIG_4xx)
401 int machine_check_4xx(struct pt_regs *regs)
402 {
403 	unsigned long reason = get_mc_reason(regs);
404 
405 	if (reason & ESR_IMCP) {
406 		printk("Instruction");
407 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
408 	} else
409 		printk("Data");
410 	printk(" machine check in kernel mode.\n");
411 
412 	return 0;
413 }
414 
415 int machine_check_440A(struct pt_regs *regs)
416 {
417 	unsigned long reason = get_mc_reason(regs);
418 
419 	printk("Machine check in kernel mode.\n");
420 	if (reason & ESR_IMCP){
421 		printk("Instruction Synchronous Machine Check exception\n");
422 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
423 	}
424 	else {
425 		u32 mcsr = mfspr(SPRN_MCSR);
426 		if (mcsr & MCSR_IB)
427 			printk("Instruction Read PLB Error\n");
428 		if (mcsr & MCSR_DRB)
429 			printk("Data Read PLB Error\n");
430 		if (mcsr & MCSR_DWB)
431 			printk("Data Write PLB Error\n");
432 		if (mcsr & MCSR_TLBP)
433 			printk("TLB Parity Error\n");
434 		if (mcsr & MCSR_ICP){
435 			flush_instruction_cache();
436 			printk("I-Cache Parity Error\n");
437 		}
438 		if (mcsr & MCSR_DCSP)
439 			printk("D-Cache Search Parity Error\n");
440 		if (mcsr & MCSR_DCFP)
441 			printk("D-Cache Flush Parity Error\n");
442 		if (mcsr & MCSR_IMPE)
443 			printk("Machine Check exception is imprecise\n");
444 
445 		/* Clear MCSR */
446 		mtspr(SPRN_MCSR, mcsr);
447 	}
448 	return 0;
449 }
450 
451 int machine_check_47x(struct pt_regs *regs)
452 {
453 	unsigned long reason = get_mc_reason(regs);
454 	u32 mcsr;
455 
456 	printk(KERN_ERR "Machine check in kernel mode.\n");
457 	if (reason & ESR_IMCP) {
458 		printk(KERN_ERR
459 		       "Instruction Synchronous Machine Check exception\n");
460 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
461 		return 0;
462 	}
463 	mcsr = mfspr(SPRN_MCSR);
464 	if (mcsr & MCSR_IB)
465 		printk(KERN_ERR "Instruction Read PLB Error\n");
466 	if (mcsr & MCSR_DRB)
467 		printk(KERN_ERR "Data Read PLB Error\n");
468 	if (mcsr & MCSR_DWB)
469 		printk(KERN_ERR "Data Write PLB Error\n");
470 	if (mcsr & MCSR_TLBP)
471 		printk(KERN_ERR "TLB Parity Error\n");
472 	if (mcsr & MCSR_ICP) {
473 		flush_instruction_cache();
474 		printk(KERN_ERR "I-Cache Parity Error\n");
475 	}
476 	if (mcsr & MCSR_DCSP)
477 		printk(KERN_ERR "D-Cache Search Parity Error\n");
478 	if (mcsr & PPC47x_MCSR_GPR)
479 		printk(KERN_ERR "GPR Parity Error\n");
480 	if (mcsr & PPC47x_MCSR_FPR)
481 		printk(KERN_ERR "FPR Parity Error\n");
482 	if (mcsr & PPC47x_MCSR_IPR)
483 		printk(KERN_ERR "Machine Check exception is imprecise\n");
484 
485 	/* Clear MCSR */
486 	mtspr(SPRN_MCSR, mcsr);
487 
488 	return 0;
489 }
490 #elif defined(CONFIG_E500)
491 int machine_check_e500mc(struct pt_regs *regs)
492 {
493 	unsigned long mcsr = mfspr(SPRN_MCSR);
494 	unsigned long reason = mcsr;
495 	int recoverable = 1;
496 
497 	if (reason & MCSR_LD) {
498 		recoverable = fsl_rio_mcheck_exception(regs);
499 		if (recoverable == 1)
500 			goto silent_out;
501 	}
502 
503 	printk("Machine check in kernel mode.\n");
504 	printk("Caused by (from MCSR=%lx): ", reason);
505 
506 	if (reason & MCSR_MCP)
507 		printk("Machine Check Signal\n");
508 
509 	if (reason & MCSR_ICPERR) {
510 		printk("Instruction Cache Parity Error\n");
511 
512 		/*
513 		 * This is recoverable by invalidating the i-cache.
514 		 */
515 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
516 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
517 			;
518 
519 		/*
520 		 * This will generally be accompanied by an instruction
521 		 * fetch error report -- only treat MCSR_IF as fatal
522 		 * if it wasn't due to an L1 parity error.
523 		 */
524 		reason &= ~MCSR_IF;
525 	}
526 
527 	if (reason & MCSR_DCPERR_MC) {
528 		printk("Data Cache Parity Error\n");
529 
530 		/*
531 		 * In write shadow mode we auto-recover from the error, but it
532 		 * may still get logged and cause a machine check.  We should
533 		 * only treat the non-write shadow case as non-recoverable.
534 		 */
535 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
536 			recoverable = 0;
537 	}
538 
539 	if (reason & MCSR_L2MMU_MHIT) {
540 		printk("Hit on multiple TLB entries\n");
541 		recoverable = 0;
542 	}
543 
544 	if (reason & MCSR_NMI)
545 		printk("Non-maskable interrupt\n");
546 
547 	if (reason & MCSR_IF) {
548 		printk("Instruction Fetch Error Report\n");
549 		recoverable = 0;
550 	}
551 
552 	if (reason & MCSR_LD) {
553 		printk("Load Error Report\n");
554 		recoverable = 0;
555 	}
556 
557 	if (reason & MCSR_ST) {
558 		printk("Store Error Report\n");
559 		recoverable = 0;
560 	}
561 
562 	if (reason & MCSR_LDG) {
563 		printk("Guarded Load Error Report\n");
564 		recoverable = 0;
565 	}
566 
567 	if (reason & MCSR_TLBSYNC)
568 		printk("Simultaneous tlbsync operations\n");
569 
570 	if (reason & MCSR_BSL2_ERR) {
571 		printk("Level 2 Cache Error\n");
572 		recoverable = 0;
573 	}
574 
575 	if (reason & MCSR_MAV) {
576 		u64 addr;
577 
578 		addr = mfspr(SPRN_MCAR);
579 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
580 
581 		printk("Machine Check %s Address: %#llx\n",
582 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
583 	}
584 
585 silent_out:
586 	mtspr(SPRN_MCSR, mcsr);
587 	return mfspr(SPRN_MCSR) == 0 && recoverable;
588 }
589 
590 int machine_check_e500(struct pt_regs *regs)
591 {
592 	unsigned long reason = get_mc_reason(regs);
593 
594 	if (reason & MCSR_BUS_RBERR) {
595 		if (fsl_rio_mcheck_exception(regs))
596 			return 1;
597 		if (fsl_pci_mcheck_exception(regs))
598 			return 1;
599 	}
600 
601 	printk("Machine check in kernel mode.\n");
602 	printk("Caused by (from MCSR=%lx): ", reason);
603 
604 	if (reason & MCSR_MCP)
605 		printk("Machine Check Signal\n");
606 	if (reason & MCSR_ICPERR)
607 		printk("Instruction Cache Parity Error\n");
608 	if (reason & MCSR_DCP_PERR)
609 		printk("Data Cache Push Parity Error\n");
610 	if (reason & MCSR_DCPERR)
611 		printk("Data Cache Parity Error\n");
612 	if (reason & MCSR_BUS_IAERR)
613 		printk("Bus - Instruction Address Error\n");
614 	if (reason & MCSR_BUS_RAERR)
615 		printk("Bus - Read Address Error\n");
616 	if (reason & MCSR_BUS_WAERR)
617 		printk("Bus - Write Address Error\n");
618 	if (reason & MCSR_BUS_IBERR)
619 		printk("Bus - Instruction Data Error\n");
620 	if (reason & MCSR_BUS_RBERR)
621 		printk("Bus - Read Data Bus Error\n");
622 	if (reason & MCSR_BUS_WBERR)
623 		printk("Bus - Write Data Bus Error\n");
624 	if (reason & MCSR_BUS_IPERR)
625 		printk("Bus - Instruction Parity Error\n");
626 	if (reason & MCSR_BUS_RPERR)
627 		printk("Bus - Read Parity Error\n");
628 
629 	return 0;
630 }
631 
632 int machine_check_generic(struct pt_regs *regs)
633 {
634 	return 0;
635 }
636 #elif defined(CONFIG_E200)
637 int machine_check_e200(struct pt_regs *regs)
638 {
639 	unsigned long reason = get_mc_reason(regs);
640 
641 	printk("Machine check in kernel mode.\n");
642 	printk("Caused by (from MCSR=%lx): ", reason);
643 
644 	if (reason & MCSR_MCP)
645 		printk("Machine Check Signal\n");
646 	if (reason & MCSR_CP_PERR)
647 		printk("Cache Push Parity Error\n");
648 	if (reason & MCSR_CPERR)
649 		printk("Cache Parity Error\n");
650 	if (reason & MCSR_EXCP_ERR)
651 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
652 	if (reason & MCSR_BUS_IRERR)
653 		printk("Bus - Read Bus Error on instruction fetch\n");
654 	if (reason & MCSR_BUS_DRERR)
655 		printk("Bus - Read Bus Error on data load\n");
656 	if (reason & MCSR_BUS_WRERR)
657 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
658 
659 	return 0;
660 }
661 #else
662 int machine_check_generic(struct pt_regs *regs)
663 {
664 	unsigned long reason = get_mc_reason(regs);
665 
666 	printk("Machine check in kernel mode.\n");
667 	printk("Caused by (from SRR1=%lx): ", reason);
668 	switch (reason & 0x601F0000) {
669 	case 0x80000:
670 		printk("Machine check signal\n");
671 		break;
672 	case 0:		/* for 601 */
673 	case 0x40000:
674 	case 0x140000:	/* 7450 MSS error and TEA */
675 		printk("Transfer error ack signal\n");
676 		break;
677 	case 0x20000:
678 		printk("Data parity error signal\n");
679 		break;
680 	case 0x10000:
681 		printk("Address parity error signal\n");
682 		break;
683 	case 0x20000000:
684 		printk("L1 Data Cache error\n");
685 		break;
686 	case 0x40000000:
687 		printk("L1 Instruction Cache error\n");
688 		break;
689 	case 0x00100000:
690 		printk("L2 data cache parity error\n");
691 		break;
692 	default:
693 		printk("Unknown values in msr\n");
694 	}
695 	return 0;
696 }
697 #endif /* everything else */
698 
699 void machine_check_exception(struct pt_regs *regs)
700 {
701 	enum ctx_state prev_state = exception_enter();
702 	int recover = 0;
703 
704 	__this_cpu_inc(irq_stat.mce_exceptions);
705 
706 	/* See if any machine dependent calls. In theory, we would want
707 	 * to call the CPU first, and call the ppc_md. one if the CPU
708 	 * one returns a positive number. However there is existing code
709 	 * that assumes the board gets a first chance, so let's keep it
710 	 * that way for now and fix things later. --BenH.
711 	 */
712 	if (ppc_md.machine_check_exception)
713 		recover = ppc_md.machine_check_exception(regs);
714 	else if (cur_cpu_spec->machine_check)
715 		recover = cur_cpu_spec->machine_check(regs);
716 
717 	if (recover > 0)
718 		goto bail;
719 
720 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
721 	/* the qspan pci read routines can cause machine checks -- Cort
722 	 *
723 	 * yuck !!! that totally needs to go away ! There are better ways
724 	 * to deal with that than having a wart in the mcheck handler.
725 	 * -- BenH
726 	 */
727 	bad_page_fault(regs, regs->dar, SIGBUS);
728 	goto bail;
729 #endif
730 
731 	if (debugger_fault_handler(regs))
732 		goto bail;
733 
734 	if (check_io_access(regs))
735 		goto bail;
736 
737 	die("Machine check", regs, SIGBUS);
738 
739 	/* Must die if the interrupt is not recoverable */
740 	if (!(regs->msr & MSR_RI))
741 		panic("Unrecoverable Machine check");
742 
743 bail:
744 	exception_exit(prev_state);
745 }
746 
747 void SMIException(struct pt_regs *regs)
748 {
749 	die("System Management Interrupt", regs, SIGABRT);
750 }
751 
752 void handle_hmi_exception(struct pt_regs *regs)
753 {
754 	struct pt_regs *old_regs;
755 
756 	old_regs = set_irq_regs(regs);
757 	irq_enter();
758 
759 	if (ppc_md.handle_hmi_exception)
760 		ppc_md.handle_hmi_exception(regs);
761 
762 	irq_exit();
763 	set_irq_regs(old_regs);
764 }
765 
766 void unknown_exception(struct pt_regs *regs)
767 {
768 	enum ctx_state prev_state = exception_enter();
769 
770 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
771 	       regs->nip, regs->msr, regs->trap);
772 
773 	_exception(SIGTRAP, regs, 0, 0);
774 
775 	exception_exit(prev_state);
776 }
777 
778 void instruction_breakpoint_exception(struct pt_regs *regs)
779 {
780 	enum ctx_state prev_state = exception_enter();
781 
782 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
783 					5, SIGTRAP) == NOTIFY_STOP)
784 		goto bail;
785 	if (debugger_iabr_match(regs))
786 		goto bail;
787 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
788 
789 bail:
790 	exception_exit(prev_state);
791 }
792 
793 void RunModeException(struct pt_regs *regs)
794 {
795 	_exception(SIGTRAP, regs, 0, 0);
796 }
797 
798 void __kprobes single_step_exception(struct pt_regs *regs)
799 {
800 	enum ctx_state prev_state = exception_enter();
801 
802 	clear_single_step(regs);
803 
804 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
805 					5, SIGTRAP) == NOTIFY_STOP)
806 		goto bail;
807 	if (debugger_sstep(regs))
808 		goto bail;
809 
810 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
811 
812 bail:
813 	exception_exit(prev_state);
814 }
815 
816 /*
817  * After we have successfully emulated an instruction, we have to
818  * check if the instruction was being single-stepped, and if so,
819  * pretend we got a single-step exception.  This was pointed out
820  * by Kumar Gala.  -- paulus
821  */
822 static void emulate_single_step(struct pt_regs *regs)
823 {
824 	if (single_stepping(regs))
825 		single_step_exception(regs);
826 }
827 
828 static inline int __parse_fpscr(unsigned long fpscr)
829 {
830 	int ret = 0;
831 
832 	/* Invalid operation */
833 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
834 		ret = FPE_FLTINV;
835 
836 	/* Overflow */
837 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
838 		ret = FPE_FLTOVF;
839 
840 	/* Underflow */
841 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
842 		ret = FPE_FLTUND;
843 
844 	/* Divide by zero */
845 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
846 		ret = FPE_FLTDIV;
847 
848 	/* Inexact result */
849 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
850 		ret = FPE_FLTRES;
851 
852 	return ret;
853 }
854 
855 static void parse_fpe(struct pt_regs *regs)
856 {
857 	int code = 0;
858 
859 	flush_fp_to_thread(current);
860 
861 	code = __parse_fpscr(current->thread.fp_state.fpscr);
862 
863 	_exception(SIGFPE, regs, code, regs->nip);
864 }
865 
866 /*
867  * Illegal instruction emulation support.  Originally written to
868  * provide the PVR to user applications using the mfspr rd, PVR.
869  * Return non-zero if we can't emulate, or -EFAULT if the associated
870  * memory access caused an access fault.  Return zero on success.
871  *
872  * There are a couple of ways to do this, either "decode" the instruction
873  * or directly match lots of bits.  In this case, matching lots of
874  * bits is faster and easier.
875  *
876  */
877 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
878 {
879 	u8 rT = (instword >> 21) & 0x1f;
880 	u8 rA = (instword >> 16) & 0x1f;
881 	u8 NB_RB = (instword >> 11) & 0x1f;
882 	u32 num_bytes;
883 	unsigned long EA;
884 	int pos = 0;
885 
886 	/* Early out if we are an invalid form of lswx */
887 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
888 		if ((rT == rA) || (rT == NB_RB))
889 			return -EINVAL;
890 
891 	EA = (rA == 0) ? 0 : regs->gpr[rA];
892 
893 	switch (instword & PPC_INST_STRING_MASK) {
894 		case PPC_INST_LSWX:
895 		case PPC_INST_STSWX:
896 			EA += NB_RB;
897 			num_bytes = regs->xer & 0x7f;
898 			break;
899 		case PPC_INST_LSWI:
900 		case PPC_INST_STSWI:
901 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
902 			break;
903 		default:
904 			return -EINVAL;
905 	}
906 
907 	while (num_bytes != 0)
908 	{
909 		u8 val;
910 		u32 shift = 8 * (3 - (pos & 0x3));
911 
912 		/* if process is 32-bit, clear upper 32 bits of EA */
913 		if ((regs->msr & MSR_64BIT) == 0)
914 			EA &= 0xFFFFFFFF;
915 
916 		switch ((instword & PPC_INST_STRING_MASK)) {
917 			case PPC_INST_LSWX:
918 			case PPC_INST_LSWI:
919 				if (get_user(val, (u8 __user *)EA))
920 					return -EFAULT;
921 				/* first time updating this reg,
922 				 * zero it out */
923 				if (pos == 0)
924 					regs->gpr[rT] = 0;
925 				regs->gpr[rT] |= val << shift;
926 				break;
927 			case PPC_INST_STSWI:
928 			case PPC_INST_STSWX:
929 				val = regs->gpr[rT] >> shift;
930 				if (put_user(val, (u8 __user *)EA))
931 					return -EFAULT;
932 				break;
933 		}
934 		/* move EA to next address */
935 		EA += 1;
936 		num_bytes--;
937 
938 		/* manage our position within the register */
939 		if (++pos == 4) {
940 			pos = 0;
941 			if (++rT == 32)
942 				rT = 0;
943 		}
944 	}
945 
946 	return 0;
947 }
948 
949 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
950 {
951 	u32 ra,rs;
952 	unsigned long tmp;
953 
954 	ra = (instword >> 16) & 0x1f;
955 	rs = (instword >> 21) & 0x1f;
956 
957 	tmp = regs->gpr[rs];
958 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
959 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
960 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
961 	regs->gpr[ra] = tmp;
962 
963 	return 0;
964 }
965 
966 static int emulate_isel(struct pt_regs *regs, u32 instword)
967 {
968 	u8 rT = (instword >> 21) & 0x1f;
969 	u8 rA = (instword >> 16) & 0x1f;
970 	u8 rB = (instword >> 11) & 0x1f;
971 	u8 BC = (instword >> 6) & 0x1f;
972 	u8 bit;
973 	unsigned long tmp;
974 
975 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
976 	bit = (regs->ccr >> (31 - BC)) & 0x1;
977 
978 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
979 
980 	return 0;
981 }
982 
983 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
984 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
985 {
986         /* If we're emulating a load/store in an active transaction, we cannot
987          * emulate it as the kernel operates in transaction suspended context.
988          * We need to abort the transaction.  This creates a persistent TM
989          * abort so tell the user what caused it with a new code.
990 	 */
991 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
992 		tm_enable();
993 		tm_abort(cause);
994 		return true;
995 	}
996 	return false;
997 }
998 #else
999 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1000 {
1001 	return false;
1002 }
1003 #endif
1004 
1005 static int emulate_instruction(struct pt_regs *regs)
1006 {
1007 	u32 instword;
1008 	u32 rd;
1009 
1010 	if (!user_mode(regs))
1011 		return -EINVAL;
1012 	CHECK_FULL_REGS(regs);
1013 
1014 	if (get_user(instword, (u32 __user *)(regs->nip)))
1015 		return -EFAULT;
1016 
1017 	/* Emulate the mfspr rD, PVR. */
1018 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1019 		PPC_WARN_EMULATED(mfpvr, regs);
1020 		rd = (instword >> 21) & 0x1f;
1021 		regs->gpr[rd] = mfspr(SPRN_PVR);
1022 		return 0;
1023 	}
1024 
1025 	/* Emulating the dcba insn is just a no-op.  */
1026 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1027 		PPC_WARN_EMULATED(dcba, regs);
1028 		return 0;
1029 	}
1030 
1031 	/* Emulate the mcrxr insn.  */
1032 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1033 		int shift = (instword >> 21) & 0x1c;
1034 		unsigned long msk = 0xf0000000UL >> shift;
1035 
1036 		PPC_WARN_EMULATED(mcrxr, regs);
1037 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1038 		regs->xer &= ~0xf0000000UL;
1039 		return 0;
1040 	}
1041 
1042 	/* Emulate load/store string insn. */
1043 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1044 		if (tm_abort_check(regs,
1045 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1046 			return -EINVAL;
1047 		PPC_WARN_EMULATED(string, regs);
1048 		return emulate_string_inst(regs, instword);
1049 	}
1050 
1051 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1052 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1053 		PPC_WARN_EMULATED(popcntb, regs);
1054 		return emulate_popcntb_inst(regs, instword);
1055 	}
1056 
1057 	/* Emulate isel (Integer Select) instruction */
1058 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1059 		PPC_WARN_EMULATED(isel, regs);
1060 		return emulate_isel(regs, instword);
1061 	}
1062 
1063 	/* Emulate sync instruction variants */
1064 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1065 		PPC_WARN_EMULATED(sync, regs);
1066 		asm volatile("sync");
1067 		return 0;
1068 	}
1069 
1070 #ifdef CONFIG_PPC64
1071 	/* Emulate the mfspr rD, DSCR. */
1072 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1073 		PPC_INST_MFSPR_DSCR_USER) ||
1074 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1075 		PPC_INST_MFSPR_DSCR)) &&
1076 			cpu_has_feature(CPU_FTR_DSCR)) {
1077 		PPC_WARN_EMULATED(mfdscr, regs);
1078 		rd = (instword >> 21) & 0x1f;
1079 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1080 		return 0;
1081 	}
1082 	/* Emulate the mtspr DSCR, rD. */
1083 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1084 		PPC_INST_MTSPR_DSCR_USER) ||
1085 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1086 		PPC_INST_MTSPR_DSCR)) &&
1087 			cpu_has_feature(CPU_FTR_DSCR)) {
1088 		PPC_WARN_EMULATED(mtdscr, regs);
1089 		rd = (instword >> 21) & 0x1f;
1090 		current->thread.dscr = regs->gpr[rd];
1091 		current->thread.dscr_inherit = 1;
1092 		mtspr(SPRN_DSCR, current->thread.dscr);
1093 		return 0;
1094 	}
1095 #endif
1096 
1097 	return -EINVAL;
1098 }
1099 
1100 int is_valid_bugaddr(unsigned long addr)
1101 {
1102 	return is_kernel_addr(addr);
1103 }
1104 
1105 #ifdef CONFIG_MATH_EMULATION
1106 static int emulate_math(struct pt_regs *regs)
1107 {
1108 	int ret;
1109 	extern int do_mathemu(struct pt_regs *regs);
1110 
1111 	ret = do_mathemu(regs);
1112 	if (ret >= 0)
1113 		PPC_WARN_EMULATED(math, regs);
1114 
1115 	switch (ret) {
1116 	case 0:
1117 		emulate_single_step(regs);
1118 		return 0;
1119 	case 1: {
1120 			int code = 0;
1121 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1122 			_exception(SIGFPE, regs, code, regs->nip);
1123 			return 0;
1124 		}
1125 	case -EFAULT:
1126 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1127 		return 0;
1128 	}
1129 
1130 	return -1;
1131 }
1132 #else
1133 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1134 #endif
1135 
1136 void __kprobes program_check_exception(struct pt_regs *regs)
1137 {
1138 	enum ctx_state prev_state = exception_enter();
1139 	unsigned int reason = get_reason(regs);
1140 
1141 	/* We can now get here via a FP Unavailable exception if the core
1142 	 * has no FPU, in that case the reason flags will be 0 */
1143 
1144 	if (reason & REASON_FP) {
1145 		/* IEEE FP exception */
1146 		parse_fpe(regs);
1147 		goto bail;
1148 	}
1149 	if (reason & REASON_TRAP) {
1150 		unsigned long bugaddr;
1151 		/* Debugger is first in line to stop recursive faults in
1152 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153 		if (debugger_bpt(regs))
1154 			goto bail;
1155 
1156 		/* trap exception */
1157 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1158 				== NOTIFY_STOP)
1159 			goto bail;
1160 
1161 		bugaddr = regs->nip;
1162 		/*
1163 		 * Fixup bugaddr for BUG_ON() in real mode
1164 		 */
1165 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1166 			bugaddr += PAGE_OFFSET;
1167 
1168 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1169 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1170 			regs->nip += 4;
1171 			goto bail;
1172 		}
1173 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1174 		goto bail;
1175 	}
1176 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1177 	if (reason & REASON_TM) {
1178 		/* This is a TM "Bad Thing Exception" program check.
1179 		 * This occurs when:
1180 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1181 		 *    transition in TM states.
1182 		 * -  A trechkpt is attempted when transactional.
1183 		 * -  A treclaim is attempted when non transactional.
1184 		 * -  A tend is illegally attempted.
1185 		 * -  writing a TM SPR when transactional.
1186 		 */
1187 		if (!user_mode(regs) &&
1188 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1189 			regs->nip += 4;
1190 			goto bail;
1191 		}
1192 		/* If usermode caused this, it's done something illegal and
1193 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1194 		 * operand to distinguish from the instruction just being bad
1195 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1196 		 * illegal /placement/ of a valid instruction.
1197 		 */
1198 		if (user_mode(regs)) {
1199 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1200 			goto bail;
1201 		} else {
1202 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1203 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1204 			die("Unrecoverable exception", regs, SIGABRT);
1205 		}
1206 	}
1207 #endif
1208 
1209 	/*
1210 	 * If we took the program check in the kernel skip down to sending a
1211 	 * SIGILL. The subsequent cases all relate to emulating instructions
1212 	 * which we should only do for userspace. We also do not want to enable
1213 	 * interrupts for kernel faults because that might lead to further
1214 	 * faults, and loose the context of the original exception.
1215 	 */
1216 	if (!user_mode(regs))
1217 		goto sigill;
1218 
1219 	/* We restore the interrupt state now */
1220 	if (!arch_irq_disabled_regs(regs))
1221 		local_irq_enable();
1222 
1223 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1224 	 * but there seems to be a hardware bug on the 405GP (RevD)
1225 	 * that means ESR is sometimes set incorrectly - either to
1226 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1227 	 * hardware people - not sure if it can happen on any illegal
1228 	 * instruction or only on FP instructions, whether there is a
1229 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1230 	 */
1231 	if (!emulate_math(regs))
1232 		goto bail;
1233 
1234 	/* Try to emulate it if we should. */
1235 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1236 		switch (emulate_instruction(regs)) {
1237 		case 0:
1238 			regs->nip += 4;
1239 			emulate_single_step(regs);
1240 			goto bail;
1241 		case -EFAULT:
1242 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1243 			goto bail;
1244 		}
1245 	}
1246 
1247 sigill:
1248 	if (reason & REASON_PRIVILEGED)
1249 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1250 	else
1251 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1252 
1253 bail:
1254 	exception_exit(prev_state);
1255 }
1256 
1257 /*
1258  * This occurs when running in hypervisor mode on POWER6 or later
1259  * and an illegal instruction is encountered.
1260  */
1261 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1262 {
1263 	regs->msr |= REASON_ILLEGAL;
1264 	program_check_exception(regs);
1265 }
1266 
1267 void alignment_exception(struct pt_regs *regs)
1268 {
1269 	enum ctx_state prev_state = exception_enter();
1270 	int sig, code, fixed = 0;
1271 
1272 	/* We restore the interrupt state now */
1273 	if (!arch_irq_disabled_regs(regs))
1274 		local_irq_enable();
1275 
1276 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1277 		goto bail;
1278 
1279 	/* we don't implement logging of alignment exceptions */
1280 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1281 		fixed = fix_alignment(regs);
1282 
1283 	if (fixed == 1) {
1284 		regs->nip += 4;	/* skip over emulated instruction */
1285 		emulate_single_step(regs);
1286 		goto bail;
1287 	}
1288 
1289 	/* Operand address was bad */
1290 	if (fixed == -EFAULT) {
1291 		sig = SIGSEGV;
1292 		code = SEGV_ACCERR;
1293 	} else {
1294 		sig = SIGBUS;
1295 		code = BUS_ADRALN;
1296 	}
1297 	if (user_mode(regs))
1298 		_exception(sig, regs, code, regs->dar);
1299 	else
1300 		bad_page_fault(regs, regs->dar, sig);
1301 
1302 bail:
1303 	exception_exit(prev_state);
1304 }
1305 
1306 void StackOverflow(struct pt_regs *regs)
1307 {
1308 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1309 	       current, regs->gpr[1]);
1310 	debugger(regs);
1311 	show_regs(regs);
1312 	panic("kernel stack overflow");
1313 }
1314 
1315 void nonrecoverable_exception(struct pt_regs *regs)
1316 {
1317 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1318 	       regs->nip, regs->msr);
1319 	debugger(regs);
1320 	die("nonrecoverable exception", regs, SIGKILL);
1321 }
1322 
1323 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1324 {
1325 	enum ctx_state prev_state = exception_enter();
1326 
1327 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1328 			  "%lx at %lx\n", regs->trap, regs->nip);
1329 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1330 
1331 	exception_exit(prev_state);
1332 }
1333 
1334 void altivec_unavailable_exception(struct pt_regs *regs)
1335 {
1336 	enum ctx_state prev_state = exception_enter();
1337 
1338 	if (user_mode(regs)) {
1339 		/* A user program has executed an altivec instruction,
1340 		   but this kernel doesn't support altivec. */
1341 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1342 		goto bail;
1343 	}
1344 
1345 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1346 			"%lx at %lx\n", regs->trap, regs->nip);
1347 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1348 
1349 bail:
1350 	exception_exit(prev_state);
1351 }
1352 
1353 void vsx_unavailable_exception(struct pt_regs *regs)
1354 {
1355 	if (user_mode(regs)) {
1356 		/* A user program has executed an vsx instruction,
1357 		   but this kernel doesn't support vsx. */
1358 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1359 		return;
1360 	}
1361 
1362 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1363 			"%lx at %lx\n", regs->trap, regs->nip);
1364 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1365 }
1366 
1367 #ifdef CONFIG_PPC64
1368 void facility_unavailable_exception(struct pt_regs *regs)
1369 {
1370 	static char *facility_strings[] = {
1371 		[FSCR_FP_LG] = "FPU",
1372 		[FSCR_VECVSX_LG] = "VMX/VSX",
1373 		[FSCR_DSCR_LG] = "DSCR",
1374 		[FSCR_PM_LG] = "PMU SPRs",
1375 		[FSCR_BHRB_LG] = "BHRB",
1376 		[FSCR_TM_LG] = "TM",
1377 		[FSCR_EBB_LG] = "EBB",
1378 		[FSCR_TAR_LG] = "TAR",
1379 	};
1380 	char *facility = "unknown";
1381 	u64 value;
1382 	u32 instword, rd;
1383 	u8 status;
1384 	bool hv;
1385 
1386 	hv = (regs->trap == 0xf80);
1387 	if (hv)
1388 		value = mfspr(SPRN_HFSCR);
1389 	else
1390 		value = mfspr(SPRN_FSCR);
1391 
1392 	status = value >> 56;
1393 	if (status == FSCR_DSCR_LG) {
1394 		/*
1395 		 * User is accessing the DSCR register using the problem
1396 		 * state only SPR number (0x03) either through a mfspr or
1397 		 * a mtspr instruction. If it is a write attempt through
1398 		 * a mtspr, then we set the inherit bit. This also allows
1399 		 * the user to write or read the register directly in the
1400 		 * future by setting via the FSCR DSCR bit. But in case it
1401 		 * is a read DSCR attempt through a mfspr instruction, we
1402 		 * just emulate the instruction instead. This code path will
1403 		 * always emulate all the mfspr instructions till the user
1404 		 * has attempted at least one mtspr instruction. This way it
1405 		 * preserves the same behaviour when the user is accessing
1406 		 * the DSCR through privilege level only SPR number (0x11)
1407 		 * which is emulated through illegal instruction exception.
1408 		 * We always leave HFSCR DSCR set.
1409 		 */
1410 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1411 			pr_err("Failed to fetch the user instruction\n");
1412 			return;
1413 		}
1414 
1415 		/* Write into DSCR (mtspr 0x03, RS) */
1416 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1417 				== PPC_INST_MTSPR_DSCR_USER) {
1418 			rd = (instword >> 21) & 0x1f;
1419 			current->thread.dscr = regs->gpr[rd];
1420 			current->thread.dscr_inherit = 1;
1421 			mtspr(SPRN_FSCR, value | FSCR_DSCR);
1422 		}
1423 
1424 		/* Read from DSCR (mfspr RT, 0x03) */
1425 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1426 				== PPC_INST_MFSPR_DSCR_USER) {
1427 			if (emulate_instruction(regs)) {
1428 				pr_err("DSCR based mfspr emulation failed\n");
1429 				return;
1430 			}
1431 			regs->nip += 4;
1432 			emulate_single_step(regs);
1433 		}
1434 		return;
1435 	}
1436 
1437 	if ((status < ARRAY_SIZE(facility_strings)) &&
1438 	    facility_strings[status])
1439 		facility = facility_strings[status];
1440 
1441 	/* We restore the interrupt state now */
1442 	if (!arch_irq_disabled_regs(regs))
1443 		local_irq_enable();
1444 
1445 	pr_err_ratelimited(
1446 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1447 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1448 
1449 	if (user_mode(regs)) {
1450 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1451 		return;
1452 	}
1453 
1454 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1455 }
1456 #endif
1457 
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 
1460 void fp_unavailable_tm(struct pt_regs *regs)
1461 {
1462 	/* Note:  This does not handle any kind of FP laziness. */
1463 
1464 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1465 		 regs->nip, regs->msr);
1466 
1467         /* We can only have got here if the task started using FP after
1468          * beginning the transaction.  So, the transactional regs are just a
1469          * copy of the checkpointed ones.  But, we still need to recheckpoint
1470          * as we're enabling FP for the process; it will return, abort the
1471          * transaction, and probably retry but now with FP enabled.  So the
1472          * checkpointed FP registers need to be loaded.
1473 	 */
1474 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1475 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1476 
1477 	/* Enable FP for the task: */
1478 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1479 
1480 	/* This loads and recheckpoints the FP registers from
1481 	 * thread.fpr[].  They will remain in registers after the
1482 	 * checkpoint so we don't need to reload them after.
1483 	 * If VMX is in use, the VRs now hold checkpointed values,
1484 	 * so we don't want to load the VRs from the thread_struct.
1485 	 */
1486 	tm_recheckpoint(&current->thread, MSR_FP);
1487 
1488 	/* If VMX is in use, get the transactional values back */
1489 	if (regs->msr & MSR_VEC) {
1490 		do_load_up_transact_altivec(&current->thread);
1491 		/* At this point all the VSX state is loaded, so enable it */
1492 		regs->msr |= MSR_VSX;
1493 	}
1494 }
1495 
1496 void altivec_unavailable_tm(struct pt_regs *regs)
1497 {
1498 	/* See the comments in fp_unavailable_tm().  This function operates
1499 	 * the same way.
1500 	 */
1501 
1502 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1503 		 "MSR=%lx\n",
1504 		 regs->nip, regs->msr);
1505 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1506 	regs->msr |= MSR_VEC;
1507 	tm_recheckpoint(&current->thread, MSR_VEC);
1508 	current->thread.used_vr = 1;
1509 
1510 	if (regs->msr & MSR_FP) {
1511 		do_load_up_transact_fpu(&current->thread);
1512 		regs->msr |= MSR_VSX;
1513 	}
1514 }
1515 
1516 void vsx_unavailable_tm(struct pt_regs *regs)
1517 {
1518 	unsigned long orig_msr = regs->msr;
1519 
1520 	/* See the comments in fp_unavailable_tm().  This works similarly,
1521 	 * though we're loading both FP and VEC registers in here.
1522 	 *
1523 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1524 	 * regs.  Either way, set MSR_VSX.
1525 	 */
1526 
1527 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1528 		 "MSR=%lx\n",
1529 		 regs->nip, regs->msr);
1530 
1531 	current->thread.used_vsr = 1;
1532 
1533 	/* If FP and VMX are already loaded, we have all the state we need */
1534 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1535 		regs->msr |= MSR_VSX;
1536 		return;
1537 	}
1538 
1539 	/* This reclaims FP and/or VR regs if they're already enabled */
1540 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1541 
1542 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1543 		MSR_VSX;
1544 
1545 	/* This loads & recheckpoints FP and VRs; but we have
1546 	 * to be sure not to overwrite previously-valid state.
1547 	 */
1548 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1549 
1550 	if (orig_msr & MSR_FP)
1551 		do_load_up_transact_fpu(&current->thread);
1552 	if (orig_msr & MSR_VEC)
1553 		do_load_up_transact_altivec(&current->thread);
1554 }
1555 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1556 
1557 void performance_monitor_exception(struct pt_regs *regs)
1558 {
1559 	__this_cpu_inc(irq_stat.pmu_irqs);
1560 
1561 	perf_irq(regs);
1562 }
1563 
1564 #ifdef CONFIG_8xx
1565 void SoftwareEmulation(struct pt_regs *regs)
1566 {
1567 	CHECK_FULL_REGS(regs);
1568 
1569 	if (!user_mode(regs)) {
1570 		debugger(regs);
1571 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1572 			regs, SIGFPE);
1573 	}
1574 
1575 	if (!emulate_math(regs))
1576 		return;
1577 
1578 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1579 }
1580 #endif /* CONFIG_8xx */
1581 
1582 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1583 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1584 {
1585 	int changed = 0;
1586 	/*
1587 	 * Determine the cause of the debug event, clear the
1588 	 * event flags and send a trap to the handler. Torez
1589 	 */
1590 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1591 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1592 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1593 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1594 #endif
1595 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1596 			     5);
1597 		changed |= 0x01;
1598 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1599 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1600 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1601 			     6);
1602 		changed |= 0x01;
1603 	}  else if (debug_status & DBSR_IAC1) {
1604 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1605 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1606 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1607 			     1);
1608 		changed |= 0x01;
1609 	}  else if (debug_status & DBSR_IAC2) {
1610 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1611 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1612 			     2);
1613 		changed |= 0x01;
1614 	}  else if (debug_status & DBSR_IAC3) {
1615 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1616 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1617 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1618 			     3);
1619 		changed |= 0x01;
1620 	}  else if (debug_status & DBSR_IAC4) {
1621 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1622 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1623 			     4);
1624 		changed |= 0x01;
1625 	}
1626 	/*
1627 	 * At the point this routine was called, the MSR(DE) was turned off.
1628 	 * Check all other debug flags and see if that bit needs to be turned
1629 	 * back on or not.
1630 	 */
1631 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1632 			       current->thread.debug.dbcr1))
1633 		regs->msr |= MSR_DE;
1634 	else
1635 		/* Make sure the IDM flag is off */
1636 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1637 
1638 	if (changed & 0x01)
1639 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1640 }
1641 
1642 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1643 {
1644 	current->thread.debug.dbsr = debug_status;
1645 
1646 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1647 	 * on server, it stops on the target of the branch. In order to simulate
1648 	 * the server behaviour, we thus restart right away with a single step
1649 	 * instead of stopping here when hitting a BT
1650 	 */
1651 	if (debug_status & DBSR_BT) {
1652 		regs->msr &= ~MSR_DE;
1653 
1654 		/* Disable BT */
1655 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1656 		/* Clear the BT event */
1657 		mtspr(SPRN_DBSR, DBSR_BT);
1658 
1659 		/* Do the single step trick only when coming from userspace */
1660 		if (user_mode(regs)) {
1661 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1662 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1663 			regs->msr |= MSR_DE;
1664 			return;
1665 		}
1666 
1667 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1668 			       5, SIGTRAP) == NOTIFY_STOP) {
1669 			return;
1670 		}
1671 		if (debugger_sstep(regs))
1672 			return;
1673 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1674 		regs->msr &= ~MSR_DE;
1675 
1676 		/* Disable instruction completion */
1677 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1678 		/* Clear the instruction completion event */
1679 		mtspr(SPRN_DBSR, DBSR_IC);
1680 
1681 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1682 			       5, SIGTRAP) == NOTIFY_STOP) {
1683 			return;
1684 		}
1685 
1686 		if (debugger_sstep(regs))
1687 			return;
1688 
1689 		if (user_mode(regs)) {
1690 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1691 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1692 					       current->thread.debug.dbcr1))
1693 				regs->msr |= MSR_DE;
1694 			else
1695 				/* Make sure the IDM bit is off */
1696 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1697 		}
1698 
1699 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1700 	} else
1701 		handle_debug(regs, debug_status);
1702 }
1703 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1704 
1705 #if !defined(CONFIG_TAU_INT)
1706 void TAUException(struct pt_regs *regs)
1707 {
1708 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1709 	       regs->nip, regs->msr, regs->trap, print_tainted());
1710 }
1711 #endif /* CONFIG_INT_TAU */
1712 
1713 #ifdef CONFIG_ALTIVEC
1714 void altivec_assist_exception(struct pt_regs *regs)
1715 {
1716 	int err;
1717 
1718 	if (!user_mode(regs)) {
1719 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1720 		       " at %lx\n", regs->nip);
1721 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1722 	}
1723 
1724 	flush_altivec_to_thread(current);
1725 
1726 	PPC_WARN_EMULATED(altivec, regs);
1727 	err = emulate_altivec(regs);
1728 	if (err == 0) {
1729 		regs->nip += 4;		/* skip emulated instruction */
1730 		emulate_single_step(regs);
1731 		return;
1732 	}
1733 
1734 	if (err == -EFAULT) {
1735 		/* got an error reading the instruction */
1736 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1737 	} else {
1738 		/* didn't recognize the instruction */
1739 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1740 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1741 				   "in %s at %lx\n", current->comm, regs->nip);
1742 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1743 	}
1744 }
1745 #endif /* CONFIG_ALTIVEC */
1746 
1747 #ifdef CONFIG_FSL_BOOKE
1748 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1749 			   unsigned long error_code)
1750 {
1751 	/* We treat cache locking instructions from the user
1752 	 * as priv ops, in the future we could try to do
1753 	 * something smarter
1754 	 */
1755 	if (error_code & (ESR_DLK|ESR_ILK))
1756 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1757 	return;
1758 }
1759 #endif /* CONFIG_FSL_BOOKE */
1760 
1761 #ifdef CONFIG_SPE
1762 void SPEFloatingPointException(struct pt_regs *regs)
1763 {
1764 	extern int do_spe_mathemu(struct pt_regs *regs);
1765 	unsigned long spefscr;
1766 	int fpexc_mode;
1767 	int code = 0;
1768 	int err;
1769 
1770 	flush_spe_to_thread(current);
1771 
1772 	spefscr = current->thread.spefscr;
1773 	fpexc_mode = current->thread.fpexc_mode;
1774 
1775 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1776 		code = FPE_FLTOVF;
1777 	}
1778 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1779 		code = FPE_FLTUND;
1780 	}
1781 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1782 		code = FPE_FLTDIV;
1783 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1784 		code = FPE_FLTINV;
1785 	}
1786 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1787 		code = FPE_FLTRES;
1788 
1789 	err = do_spe_mathemu(regs);
1790 	if (err == 0) {
1791 		regs->nip += 4;		/* skip emulated instruction */
1792 		emulate_single_step(regs);
1793 		return;
1794 	}
1795 
1796 	if (err == -EFAULT) {
1797 		/* got an error reading the instruction */
1798 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1799 	} else if (err == -EINVAL) {
1800 		/* didn't recognize the instruction */
1801 		printk(KERN_ERR "unrecognized spe instruction "
1802 		       "in %s at %lx\n", current->comm, regs->nip);
1803 	} else {
1804 		_exception(SIGFPE, regs, code, regs->nip);
1805 	}
1806 
1807 	return;
1808 }
1809 
1810 void SPEFloatingPointRoundException(struct pt_regs *regs)
1811 {
1812 	extern int speround_handler(struct pt_regs *regs);
1813 	int err;
1814 
1815 	preempt_disable();
1816 	if (regs->msr & MSR_SPE)
1817 		giveup_spe(current);
1818 	preempt_enable();
1819 
1820 	regs->nip -= 4;
1821 	err = speround_handler(regs);
1822 	if (err == 0) {
1823 		regs->nip += 4;		/* skip emulated instruction */
1824 		emulate_single_step(regs);
1825 		return;
1826 	}
1827 
1828 	if (err == -EFAULT) {
1829 		/* got an error reading the instruction */
1830 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1831 	} else if (err == -EINVAL) {
1832 		/* didn't recognize the instruction */
1833 		printk(KERN_ERR "unrecognized spe instruction "
1834 		       "in %s at %lx\n", current->comm, regs->nip);
1835 	} else {
1836 		_exception(SIGFPE, regs, 0, regs->nip);
1837 		return;
1838 	}
1839 }
1840 #endif
1841 
1842 /*
1843  * We enter here if we get an unrecoverable exception, that is, one
1844  * that happened at a point where the RI (recoverable interrupt) bit
1845  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1846  * we therefore lost state by taking this exception.
1847  */
1848 void unrecoverable_exception(struct pt_regs *regs)
1849 {
1850 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1851 	       regs->trap, regs->nip);
1852 	die("Unrecoverable exception", regs, SIGABRT);
1853 }
1854 
1855 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1856 /*
1857  * Default handler for a Watchdog exception,
1858  * spins until a reboot occurs
1859  */
1860 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1861 {
1862 	/* Generic WatchdogHandler, implement your own */
1863 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1864 	return;
1865 }
1866 
1867 void WatchdogException(struct pt_regs *regs)
1868 {
1869 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1870 	WatchdogHandler(regs);
1871 }
1872 #endif
1873 
1874 /*
1875  * We enter here if we discover during exception entry that we are
1876  * running in supervisor mode with a userspace value in the stack pointer.
1877  */
1878 void kernel_bad_stack(struct pt_regs *regs)
1879 {
1880 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1881 	       regs->gpr[1], regs->nip);
1882 	die("Bad kernel stack pointer", regs, SIGABRT);
1883 }
1884 
1885 void __init trap_init(void)
1886 {
1887 }
1888 
1889 
1890 #ifdef CONFIG_PPC_EMULATED_STATS
1891 
1892 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1893 
1894 struct ppc_emulated ppc_emulated = {
1895 #ifdef CONFIG_ALTIVEC
1896 	WARN_EMULATED_SETUP(altivec),
1897 #endif
1898 	WARN_EMULATED_SETUP(dcba),
1899 	WARN_EMULATED_SETUP(dcbz),
1900 	WARN_EMULATED_SETUP(fp_pair),
1901 	WARN_EMULATED_SETUP(isel),
1902 	WARN_EMULATED_SETUP(mcrxr),
1903 	WARN_EMULATED_SETUP(mfpvr),
1904 	WARN_EMULATED_SETUP(multiple),
1905 	WARN_EMULATED_SETUP(popcntb),
1906 	WARN_EMULATED_SETUP(spe),
1907 	WARN_EMULATED_SETUP(string),
1908 	WARN_EMULATED_SETUP(sync),
1909 	WARN_EMULATED_SETUP(unaligned),
1910 #ifdef CONFIG_MATH_EMULATION
1911 	WARN_EMULATED_SETUP(math),
1912 #endif
1913 #ifdef CONFIG_VSX
1914 	WARN_EMULATED_SETUP(vsx),
1915 #endif
1916 #ifdef CONFIG_PPC64
1917 	WARN_EMULATED_SETUP(mfdscr),
1918 	WARN_EMULATED_SETUP(mtdscr),
1919 	WARN_EMULATED_SETUP(lq_stq),
1920 #endif
1921 };
1922 
1923 u32 ppc_warn_emulated;
1924 
1925 void ppc_warn_emulated_print(const char *type)
1926 {
1927 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1928 			    type);
1929 }
1930 
1931 static int __init ppc_warn_emulated_init(void)
1932 {
1933 	struct dentry *dir, *d;
1934 	unsigned int i;
1935 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1936 
1937 	if (!powerpc_debugfs_root)
1938 		return -ENODEV;
1939 
1940 	dir = debugfs_create_dir("emulated_instructions",
1941 				 powerpc_debugfs_root);
1942 	if (!dir)
1943 		return -ENOMEM;
1944 
1945 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1946 			       &ppc_warn_emulated);
1947 	if (!d)
1948 		goto fail;
1949 
1950 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1951 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1952 				       (u32 *)&entries[i].val.counter);
1953 		if (!d)
1954 			goto fail;
1955 	}
1956 
1957 	return 0;
1958 
1959 fail:
1960 	debugfs_remove_recursive(dir);
1961 	return -ENOMEM;
1962 }
1963 
1964 device_initcall(ppc_warn_emulated_init);
1965 
1966 #endif /* CONFIG_PPC_EMULATED_STATS */
1967