xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 711aab1d)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>	/* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69 
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78 
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87 
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94 
95 /*
96  * Trap & Exception support
97  */
98 
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 	mutex_lock(&pmac_backlight_mutex);
103 	if (pmac_backlight) {
104 		struct backlight_properties *props;
105 
106 		props = &pmac_backlight->props;
107 		props->brightness = props->max_brightness;
108 		props->power = FB_BLANK_UNBLANK;
109 		backlight_update_status(pmac_backlight);
110 	}
111 	mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116 
117 /*
118  * If oops/die is expected to crash the machine, return true here.
119  *
120  * This should not be expected to be 100% accurate, there may be
121  * notifiers registered or other unexpected conditions that may bring
122  * down the kernel. Or if the current process in the kernel is holding
123  * locks or has other critical state, the kernel may become effectively
124  * unusable anyway.
125  */
126 bool die_will_crash(void)
127 {
128 	if (should_fadump_crash())
129 		return true;
130 	if (kexec_should_crash(current))
131 		return true;
132 	if (in_interrupt() || panic_on_oops ||
133 			!current->pid || is_global_init(current))
134 		return true;
135 
136 	return false;
137 }
138 
139 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
140 static int die_owner = -1;
141 static unsigned int die_nest_count;
142 static int die_counter;
143 
144 static unsigned long oops_begin(struct pt_regs *regs)
145 {
146 	int cpu;
147 	unsigned long flags;
148 
149 	oops_enter();
150 
151 	/* racy, but better than risking deadlock. */
152 	raw_local_irq_save(flags);
153 	cpu = smp_processor_id();
154 	if (!arch_spin_trylock(&die_lock)) {
155 		if (cpu == die_owner)
156 			/* nested oops. should stop eventually */;
157 		else
158 			arch_spin_lock(&die_lock);
159 	}
160 	die_nest_count++;
161 	die_owner = cpu;
162 	console_verbose();
163 	bust_spinlocks(1);
164 	if (machine_is(powermac))
165 		pmac_backlight_unblank();
166 	return flags;
167 }
168 NOKPROBE_SYMBOL(oops_begin);
169 
170 static void oops_end(unsigned long flags, struct pt_regs *regs,
171 			       int signr)
172 {
173 	bust_spinlocks(0);
174 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
175 	die_nest_count--;
176 	oops_exit();
177 	printk("\n");
178 	if (!die_nest_count) {
179 		/* Nest count reaches zero, release the lock. */
180 		die_owner = -1;
181 		arch_spin_unlock(&die_lock);
182 	}
183 	raw_local_irq_restore(flags);
184 
185 	crash_fadump(regs, "die oops");
186 
187 	if (kexec_should_crash(current))
188 		crash_kexec(regs);
189 
190 	if (!signr)
191 		return;
192 
193 	/*
194 	 * While our oops output is serialised by a spinlock, output
195 	 * from panic() called below can race and corrupt it. If we
196 	 * know we are going to panic, delay for 1 second so we have a
197 	 * chance to get clean backtraces from all CPUs that are oopsing.
198 	 */
199 	if (in_interrupt() || panic_on_oops || !current->pid ||
200 	    is_global_init(current)) {
201 		mdelay(MSEC_PER_SEC);
202 	}
203 
204 	if (in_interrupt())
205 		panic("Fatal exception in interrupt");
206 	if (panic_on_oops)
207 		panic("Fatal exception");
208 	do_exit(signr);
209 }
210 NOKPROBE_SYMBOL(oops_end);
211 
212 static int __die(const char *str, struct pt_regs *regs, long err)
213 {
214 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
215 
216 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
217 		printk("LE ");
218 	else
219 		printk("BE ");
220 
221 	if (IS_ENABLED(CONFIG_PREEMPT))
222 		pr_cont("PREEMPT ");
223 
224 	if (IS_ENABLED(CONFIG_SMP))
225 		pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
226 
227 	if (debug_pagealloc_enabled())
228 		pr_cont("DEBUG_PAGEALLOC ");
229 
230 	if (IS_ENABLED(CONFIG_NUMA))
231 		pr_cont("NUMA ");
232 
233 	pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
234 
235 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
236 		return 1;
237 
238 	print_modules();
239 	show_regs(regs);
240 
241 	return 0;
242 }
243 NOKPROBE_SYMBOL(__die);
244 
245 void die(const char *str, struct pt_regs *regs, long err)
246 {
247 	unsigned long flags;
248 
249 	if (debugger(regs))
250 		return;
251 
252 	flags = oops_begin(regs);
253 	if (__die(str, regs, err))
254 		err = 0;
255 	oops_end(flags, regs, err);
256 }
257 NOKPROBE_SYMBOL(die);
258 
259 void user_single_step_siginfo(struct task_struct *tsk,
260 				struct pt_regs *regs, siginfo_t *info)
261 {
262 	memset(info, 0, sizeof(*info));
263 	info->si_signo = SIGTRAP;
264 	info->si_code = TRAP_TRACE;
265 	info->si_addr = (void __user *)regs->nip;
266 }
267 
268 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
269 {
270 	siginfo_t info;
271 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
272 			"at %08lx nip %08lx lr %08lx code %x\n";
273 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
274 			"at %016lx nip %016lx lr %016lx code %x\n";
275 
276 	if (!user_mode(regs)) {
277 		die("Exception in kernel mode", regs, signr);
278 		return;
279 	}
280 
281 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
282 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
283 				   current->comm, current->pid, signr,
284 				   addr, regs->nip, regs->link, code);
285 	}
286 
287 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
288 		local_irq_enable();
289 
290 	current->thread.trap_nr = code;
291 	memset(&info, 0, sizeof(info));
292 	info.si_signo = signr;
293 	info.si_code = code;
294 	info.si_addr = (void __user *) addr;
295 	force_sig_info(signr, &info, current);
296 }
297 
298 void system_reset_exception(struct pt_regs *regs)
299 {
300 	/*
301 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
302 	 * is determined by RI and in_nmi
303 	 */
304 	bool nested = in_nmi();
305 	if (!nested)
306 		nmi_enter();
307 
308 	__this_cpu_inc(irq_stat.sreset_irqs);
309 
310 	/* See if any machine dependent calls */
311 	if (ppc_md.system_reset_exception) {
312 		if (ppc_md.system_reset_exception(regs))
313 			goto out;
314 	}
315 
316 	if (debugger(regs))
317 		goto out;
318 
319 	/*
320 	 * A system reset is a request to dump, so we always send
321 	 * it through the crashdump code (if fadump or kdump are
322 	 * registered).
323 	 */
324 	crash_fadump(regs, "System Reset");
325 
326 	crash_kexec(regs);
327 
328 	/*
329 	 * We aren't the primary crash CPU. We need to send it
330 	 * to a holding pattern to avoid it ending up in the panic
331 	 * code.
332 	 */
333 	crash_kexec_secondary(regs);
334 
335 	/*
336 	 * No debugger or crash dump registered, print logs then
337 	 * panic.
338 	 */
339 	__die("System Reset", regs, SIGABRT);
340 
341 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
342 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
343 	nmi_panic(regs, "System Reset");
344 
345 out:
346 #ifdef CONFIG_PPC_BOOK3S_64
347 	BUG_ON(get_paca()->in_nmi == 0);
348 	if (get_paca()->in_nmi > 1)
349 		nmi_panic(regs, "Unrecoverable nested System Reset");
350 #endif
351 	/* Must die if the interrupt is not recoverable */
352 	if (!(regs->msr & MSR_RI))
353 		nmi_panic(regs, "Unrecoverable System Reset");
354 
355 	if (!nested)
356 		nmi_exit();
357 
358 	/* What should we do here? We could issue a shutdown or hard reset. */
359 }
360 
361 /*
362  * I/O accesses can cause machine checks on powermacs.
363  * Check if the NIP corresponds to the address of a sync
364  * instruction for which there is an entry in the exception
365  * table.
366  * Note that the 601 only takes a machine check on TEA
367  * (transfer error ack) signal assertion, and does not
368  * set any of the top 16 bits of SRR1.
369  *  -- paulus.
370  */
371 static inline int check_io_access(struct pt_regs *regs)
372 {
373 #ifdef CONFIG_PPC32
374 	unsigned long msr = regs->msr;
375 	const struct exception_table_entry *entry;
376 	unsigned int *nip = (unsigned int *)regs->nip;
377 
378 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
379 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
380 		/*
381 		 * Check that it's a sync instruction, or somewhere
382 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
383 		 * As the address is in the exception table
384 		 * we should be able to read the instr there.
385 		 * For the debug message, we look at the preceding
386 		 * load or store.
387 		 */
388 		if (*nip == PPC_INST_NOP)
389 			nip -= 2;
390 		else if (*nip == PPC_INST_ISYNC)
391 			--nip;
392 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
393 			unsigned int rb;
394 
395 			--nip;
396 			rb = (*nip >> 11) & 0x1f;
397 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
398 			       (*nip & 0x100)? "OUT to": "IN from",
399 			       regs->gpr[rb] - _IO_BASE, nip);
400 			regs->msr |= MSR_RI;
401 			regs->nip = extable_fixup(entry);
402 			return 1;
403 		}
404 	}
405 #endif /* CONFIG_PPC32 */
406 	return 0;
407 }
408 
409 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
410 /* On 4xx, the reason for the machine check or program exception
411    is in the ESR. */
412 #define get_reason(regs)	((regs)->dsisr)
413 #define REASON_FP		ESR_FP
414 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
415 #define REASON_PRIVILEGED	ESR_PPR
416 #define REASON_TRAP		ESR_PTR
417 
418 /* single-step stuff */
419 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
420 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
421 
422 #else
423 /* On non-4xx, the reason for the machine check or program
424    exception is in the MSR. */
425 #define get_reason(regs)	((regs)->msr)
426 #define REASON_TM		SRR1_PROGTM
427 #define REASON_FP		SRR1_PROGFPE
428 #define REASON_ILLEGAL		SRR1_PROGILL
429 #define REASON_PRIVILEGED	SRR1_PROGPRIV
430 #define REASON_TRAP		SRR1_PROGTRAP
431 
432 #define single_stepping(regs)	((regs)->msr & MSR_SE)
433 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
434 #endif
435 
436 #if defined(CONFIG_E500)
437 int machine_check_e500mc(struct pt_regs *regs)
438 {
439 	unsigned long mcsr = mfspr(SPRN_MCSR);
440 	unsigned long reason = mcsr;
441 	int recoverable = 1;
442 
443 	if (reason & MCSR_LD) {
444 		recoverable = fsl_rio_mcheck_exception(regs);
445 		if (recoverable == 1)
446 			goto silent_out;
447 	}
448 
449 	printk("Machine check in kernel mode.\n");
450 	printk("Caused by (from MCSR=%lx): ", reason);
451 
452 	if (reason & MCSR_MCP)
453 		printk("Machine Check Signal\n");
454 
455 	if (reason & MCSR_ICPERR) {
456 		printk("Instruction Cache Parity Error\n");
457 
458 		/*
459 		 * This is recoverable by invalidating the i-cache.
460 		 */
461 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
462 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
463 			;
464 
465 		/*
466 		 * This will generally be accompanied by an instruction
467 		 * fetch error report -- only treat MCSR_IF as fatal
468 		 * if it wasn't due to an L1 parity error.
469 		 */
470 		reason &= ~MCSR_IF;
471 	}
472 
473 	if (reason & MCSR_DCPERR_MC) {
474 		printk("Data Cache Parity Error\n");
475 
476 		/*
477 		 * In write shadow mode we auto-recover from the error, but it
478 		 * may still get logged and cause a machine check.  We should
479 		 * only treat the non-write shadow case as non-recoverable.
480 		 */
481 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
482 			recoverable = 0;
483 	}
484 
485 	if (reason & MCSR_L2MMU_MHIT) {
486 		printk("Hit on multiple TLB entries\n");
487 		recoverable = 0;
488 	}
489 
490 	if (reason & MCSR_NMI)
491 		printk("Non-maskable interrupt\n");
492 
493 	if (reason & MCSR_IF) {
494 		printk("Instruction Fetch Error Report\n");
495 		recoverable = 0;
496 	}
497 
498 	if (reason & MCSR_LD) {
499 		printk("Load Error Report\n");
500 		recoverable = 0;
501 	}
502 
503 	if (reason & MCSR_ST) {
504 		printk("Store Error Report\n");
505 		recoverable = 0;
506 	}
507 
508 	if (reason & MCSR_LDG) {
509 		printk("Guarded Load Error Report\n");
510 		recoverable = 0;
511 	}
512 
513 	if (reason & MCSR_TLBSYNC)
514 		printk("Simultaneous tlbsync operations\n");
515 
516 	if (reason & MCSR_BSL2_ERR) {
517 		printk("Level 2 Cache Error\n");
518 		recoverable = 0;
519 	}
520 
521 	if (reason & MCSR_MAV) {
522 		u64 addr;
523 
524 		addr = mfspr(SPRN_MCAR);
525 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
526 
527 		printk("Machine Check %s Address: %#llx\n",
528 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
529 	}
530 
531 silent_out:
532 	mtspr(SPRN_MCSR, mcsr);
533 	return mfspr(SPRN_MCSR) == 0 && recoverable;
534 }
535 
536 int machine_check_e500(struct pt_regs *regs)
537 {
538 	unsigned long reason = mfspr(SPRN_MCSR);
539 
540 	if (reason & MCSR_BUS_RBERR) {
541 		if (fsl_rio_mcheck_exception(regs))
542 			return 1;
543 		if (fsl_pci_mcheck_exception(regs))
544 			return 1;
545 	}
546 
547 	printk("Machine check in kernel mode.\n");
548 	printk("Caused by (from MCSR=%lx): ", reason);
549 
550 	if (reason & MCSR_MCP)
551 		printk("Machine Check Signal\n");
552 	if (reason & MCSR_ICPERR)
553 		printk("Instruction Cache Parity Error\n");
554 	if (reason & MCSR_DCP_PERR)
555 		printk("Data Cache Push Parity Error\n");
556 	if (reason & MCSR_DCPERR)
557 		printk("Data Cache Parity Error\n");
558 	if (reason & MCSR_BUS_IAERR)
559 		printk("Bus - Instruction Address Error\n");
560 	if (reason & MCSR_BUS_RAERR)
561 		printk("Bus - Read Address Error\n");
562 	if (reason & MCSR_BUS_WAERR)
563 		printk("Bus - Write Address Error\n");
564 	if (reason & MCSR_BUS_IBERR)
565 		printk("Bus - Instruction Data Error\n");
566 	if (reason & MCSR_BUS_RBERR)
567 		printk("Bus - Read Data Bus Error\n");
568 	if (reason & MCSR_BUS_WBERR)
569 		printk("Bus - Write Data Bus Error\n");
570 	if (reason & MCSR_BUS_IPERR)
571 		printk("Bus - Instruction Parity Error\n");
572 	if (reason & MCSR_BUS_RPERR)
573 		printk("Bus - Read Parity Error\n");
574 
575 	return 0;
576 }
577 
578 int machine_check_generic(struct pt_regs *regs)
579 {
580 	return 0;
581 }
582 #elif defined(CONFIG_E200)
583 int machine_check_e200(struct pt_regs *regs)
584 {
585 	unsigned long reason = mfspr(SPRN_MCSR);
586 
587 	printk("Machine check in kernel mode.\n");
588 	printk("Caused by (from MCSR=%lx): ", reason);
589 
590 	if (reason & MCSR_MCP)
591 		printk("Machine Check Signal\n");
592 	if (reason & MCSR_CP_PERR)
593 		printk("Cache Push Parity Error\n");
594 	if (reason & MCSR_CPERR)
595 		printk("Cache Parity Error\n");
596 	if (reason & MCSR_EXCP_ERR)
597 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
598 	if (reason & MCSR_BUS_IRERR)
599 		printk("Bus - Read Bus Error on instruction fetch\n");
600 	if (reason & MCSR_BUS_DRERR)
601 		printk("Bus - Read Bus Error on data load\n");
602 	if (reason & MCSR_BUS_WRERR)
603 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
604 
605 	return 0;
606 }
607 #elif defined(CONFIG_PPC32)
608 int machine_check_generic(struct pt_regs *regs)
609 {
610 	unsigned long reason = regs->msr;
611 
612 	printk("Machine check in kernel mode.\n");
613 	printk("Caused by (from SRR1=%lx): ", reason);
614 	switch (reason & 0x601F0000) {
615 	case 0x80000:
616 		printk("Machine check signal\n");
617 		break;
618 	case 0:		/* for 601 */
619 	case 0x40000:
620 	case 0x140000:	/* 7450 MSS error and TEA */
621 		printk("Transfer error ack signal\n");
622 		break;
623 	case 0x20000:
624 		printk("Data parity error signal\n");
625 		break;
626 	case 0x10000:
627 		printk("Address parity error signal\n");
628 		break;
629 	case 0x20000000:
630 		printk("L1 Data Cache error\n");
631 		break;
632 	case 0x40000000:
633 		printk("L1 Instruction Cache error\n");
634 		break;
635 	case 0x00100000:
636 		printk("L2 data cache parity error\n");
637 		break;
638 	default:
639 		printk("Unknown values in msr\n");
640 	}
641 	return 0;
642 }
643 #endif /* everything else */
644 
645 void machine_check_exception(struct pt_regs *regs)
646 {
647 	int recover = 0;
648 	bool nested = in_nmi();
649 	if (!nested)
650 		nmi_enter();
651 
652 	/* 64s accounts the mce in machine_check_early when in HVMODE */
653 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
654 		__this_cpu_inc(irq_stat.mce_exceptions);
655 
656 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
657 
658 	/* See if any machine dependent calls. In theory, we would want
659 	 * to call the CPU first, and call the ppc_md. one if the CPU
660 	 * one returns a positive number. However there is existing code
661 	 * that assumes the board gets a first chance, so let's keep it
662 	 * that way for now and fix things later. --BenH.
663 	 */
664 	if (ppc_md.machine_check_exception)
665 		recover = ppc_md.machine_check_exception(regs);
666 	else if (cur_cpu_spec->machine_check)
667 		recover = cur_cpu_spec->machine_check(regs);
668 
669 	if (recover > 0)
670 		goto bail;
671 
672 	if (debugger_fault_handler(regs))
673 		goto bail;
674 
675 	if (check_io_access(regs))
676 		goto bail;
677 
678 	die("Machine check", regs, SIGBUS);
679 
680 	/* Must die if the interrupt is not recoverable */
681 	if (!(regs->msr & MSR_RI))
682 		nmi_panic(regs, "Unrecoverable Machine check");
683 
684 bail:
685 	if (!nested)
686 		nmi_exit();
687 }
688 
689 void SMIException(struct pt_regs *regs)
690 {
691 	die("System Management Interrupt", regs, SIGABRT);
692 }
693 
694 void handle_hmi_exception(struct pt_regs *regs)
695 {
696 	struct pt_regs *old_regs;
697 
698 	old_regs = set_irq_regs(regs);
699 	irq_enter();
700 
701 	if (ppc_md.handle_hmi_exception)
702 		ppc_md.handle_hmi_exception(regs);
703 
704 	irq_exit();
705 	set_irq_regs(old_regs);
706 }
707 
708 void unknown_exception(struct pt_regs *regs)
709 {
710 	enum ctx_state prev_state = exception_enter();
711 
712 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
713 	       regs->nip, regs->msr, regs->trap);
714 
715 	_exception(SIGTRAP, regs, 0, 0);
716 
717 	exception_exit(prev_state);
718 }
719 
720 void instruction_breakpoint_exception(struct pt_regs *regs)
721 {
722 	enum ctx_state prev_state = exception_enter();
723 
724 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
725 					5, SIGTRAP) == NOTIFY_STOP)
726 		goto bail;
727 	if (debugger_iabr_match(regs))
728 		goto bail;
729 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
730 
731 bail:
732 	exception_exit(prev_state);
733 }
734 
735 void RunModeException(struct pt_regs *regs)
736 {
737 	_exception(SIGTRAP, regs, 0, 0);
738 }
739 
740 void single_step_exception(struct pt_regs *regs)
741 {
742 	enum ctx_state prev_state = exception_enter();
743 
744 	clear_single_step(regs);
745 
746 	if (kprobe_post_handler(regs))
747 		return;
748 
749 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
750 					5, SIGTRAP) == NOTIFY_STOP)
751 		goto bail;
752 	if (debugger_sstep(regs))
753 		goto bail;
754 
755 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
756 
757 bail:
758 	exception_exit(prev_state);
759 }
760 NOKPROBE_SYMBOL(single_step_exception);
761 
762 /*
763  * After we have successfully emulated an instruction, we have to
764  * check if the instruction was being single-stepped, and if so,
765  * pretend we got a single-step exception.  This was pointed out
766  * by Kumar Gala.  -- paulus
767  */
768 static void emulate_single_step(struct pt_regs *regs)
769 {
770 	if (single_stepping(regs))
771 		single_step_exception(regs);
772 }
773 
774 static inline int __parse_fpscr(unsigned long fpscr)
775 {
776 	int ret = 0;
777 
778 	/* Invalid operation */
779 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
780 		ret = FPE_FLTINV;
781 
782 	/* Overflow */
783 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
784 		ret = FPE_FLTOVF;
785 
786 	/* Underflow */
787 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
788 		ret = FPE_FLTUND;
789 
790 	/* Divide by zero */
791 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
792 		ret = FPE_FLTDIV;
793 
794 	/* Inexact result */
795 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
796 		ret = FPE_FLTRES;
797 
798 	return ret;
799 }
800 
801 static void parse_fpe(struct pt_regs *regs)
802 {
803 	int code = 0;
804 
805 	flush_fp_to_thread(current);
806 
807 	code = __parse_fpscr(current->thread.fp_state.fpscr);
808 
809 	_exception(SIGFPE, regs, code, regs->nip);
810 }
811 
812 /*
813  * Illegal instruction emulation support.  Originally written to
814  * provide the PVR to user applications using the mfspr rd, PVR.
815  * Return non-zero if we can't emulate, or -EFAULT if the associated
816  * memory access caused an access fault.  Return zero on success.
817  *
818  * There are a couple of ways to do this, either "decode" the instruction
819  * or directly match lots of bits.  In this case, matching lots of
820  * bits is faster and easier.
821  *
822  */
823 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
824 {
825 	u8 rT = (instword >> 21) & 0x1f;
826 	u8 rA = (instword >> 16) & 0x1f;
827 	u8 NB_RB = (instword >> 11) & 0x1f;
828 	u32 num_bytes;
829 	unsigned long EA;
830 	int pos = 0;
831 
832 	/* Early out if we are an invalid form of lswx */
833 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
834 		if ((rT == rA) || (rT == NB_RB))
835 			return -EINVAL;
836 
837 	EA = (rA == 0) ? 0 : regs->gpr[rA];
838 
839 	switch (instword & PPC_INST_STRING_MASK) {
840 		case PPC_INST_LSWX:
841 		case PPC_INST_STSWX:
842 			EA += NB_RB;
843 			num_bytes = regs->xer & 0x7f;
844 			break;
845 		case PPC_INST_LSWI:
846 		case PPC_INST_STSWI:
847 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
848 			break;
849 		default:
850 			return -EINVAL;
851 	}
852 
853 	while (num_bytes != 0)
854 	{
855 		u8 val;
856 		u32 shift = 8 * (3 - (pos & 0x3));
857 
858 		/* if process is 32-bit, clear upper 32 bits of EA */
859 		if ((regs->msr & MSR_64BIT) == 0)
860 			EA &= 0xFFFFFFFF;
861 
862 		switch ((instword & PPC_INST_STRING_MASK)) {
863 			case PPC_INST_LSWX:
864 			case PPC_INST_LSWI:
865 				if (get_user(val, (u8 __user *)EA))
866 					return -EFAULT;
867 				/* first time updating this reg,
868 				 * zero it out */
869 				if (pos == 0)
870 					regs->gpr[rT] = 0;
871 				regs->gpr[rT] |= val << shift;
872 				break;
873 			case PPC_INST_STSWI:
874 			case PPC_INST_STSWX:
875 				val = regs->gpr[rT] >> shift;
876 				if (put_user(val, (u8 __user *)EA))
877 					return -EFAULT;
878 				break;
879 		}
880 		/* move EA to next address */
881 		EA += 1;
882 		num_bytes--;
883 
884 		/* manage our position within the register */
885 		if (++pos == 4) {
886 			pos = 0;
887 			if (++rT == 32)
888 				rT = 0;
889 		}
890 	}
891 
892 	return 0;
893 }
894 
895 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
896 {
897 	u32 ra,rs;
898 	unsigned long tmp;
899 
900 	ra = (instword >> 16) & 0x1f;
901 	rs = (instword >> 21) & 0x1f;
902 
903 	tmp = regs->gpr[rs];
904 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
905 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
906 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
907 	regs->gpr[ra] = tmp;
908 
909 	return 0;
910 }
911 
912 static int emulate_isel(struct pt_regs *regs, u32 instword)
913 {
914 	u8 rT = (instword >> 21) & 0x1f;
915 	u8 rA = (instword >> 16) & 0x1f;
916 	u8 rB = (instword >> 11) & 0x1f;
917 	u8 BC = (instword >> 6) & 0x1f;
918 	u8 bit;
919 	unsigned long tmp;
920 
921 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
922 	bit = (regs->ccr >> (31 - BC)) & 0x1;
923 
924 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
925 
926 	return 0;
927 }
928 
929 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
930 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
931 {
932         /* If we're emulating a load/store in an active transaction, we cannot
933          * emulate it as the kernel operates in transaction suspended context.
934          * We need to abort the transaction.  This creates a persistent TM
935          * abort so tell the user what caused it with a new code.
936 	 */
937 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
938 		tm_enable();
939 		tm_abort(cause);
940 		return true;
941 	}
942 	return false;
943 }
944 #else
945 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
946 {
947 	return false;
948 }
949 #endif
950 
951 static int emulate_instruction(struct pt_regs *regs)
952 {
953 	u32 instword;
954 	u32 rd;
955 
956 	if (!user_mode(regs))
957 		return -EINVAL;
958 	CHECK_FULL_REGS(regs);
959 
960 	if (get_user(instword, (u32 __user *)(regs->nip)))
961 		return -EFAULT;
962 
963 	/* Emulate the mfspr rD, PVR. */
964 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
965 		PPC_WARN_EMULATED(mfpvr, regs);
966 		rd = (instword >> 21) & 0x1f;
967 		regs->gpr[rd] = mfspr(SPRN_PVR);
968 		return 0;
969 	}
970 
971 	/* Emulating the dcba insn is just a no-op.  */
972 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
973 		PPC_WARN_EMULATED(dcba, regs);
974 		return 0;
975 	}
976 
977 	/* Emulate the mcrxr insn.  */
978 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
979 		int shift = (instword >> 21) & 0x1c;
980 		unsigned long msk = 0xf0000000UL >> shift;
981 
982 		PPC_WARN_EMULATED(mcrxr, regs);
983 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
984 		regs->xer &= ~0xf0000000UL;
985 		return 0;
986 	}
987 
988 	/* Emulate load/store string insn. */
989 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
990 		if (tm_abort_check(regs,
991 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
992 			return -EINVAL;
993 		PPC_WARN_EMULATED(string, regs);
994 		return emulate_string_inst(regs, instword);
995 	}
996 
997 	/* Emulate the popcntb (Population Count Bytes) instruction. */
998 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
999 		PPC_WARN_EMULATED(popcntb, regs);
1000 		return emulate_popcntb_inst(regs, instword);
1001 	}
1002 
1003 	/* Emulate isel (Integer Select) instruction */
1004 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1005 		PPC_WARN_EMULATED(isel, regs);
1006 		return emulate_isel(regs, instword);
1007 	}
1008 
1009 	/* Emulate sync instruction variants */
1010 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1011 		PPC_WARN_EMULATED(sync, regs);
1012 		asm volatile("sync");
1013 		return 0;
1014 	}
1015 
1016 #ifdef CONFIG_PPC64
1017 	/* Emulate the mfspr rD, DSCR. */
1018 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1019 		PPC_INST_MFSPR_DSCR_USER) ||
1020 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1021 		PPC_INST_MFSPR_DSCR)) &&
1022 			cpu_has_feature(CPU_FTR_DSCR)) {
1023 		PPC_WARN_EMULATED(mfdscr, regs);
1024 		rd = (instword >> 21) & 0x1f;
1025 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1026 		return 0;
1027 	}
1028 	/* Emulate the mtspr DSCR, rD. */
1029 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1030 		PPC_INST_MTSPR_DSCR_USER) ||
1031 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1032 		PPC_INST_MTSPR_DSCR)) &&
1033 			cpu_has_feature(CPU_FTR_DSCR)) {
1034 		PPC_WARN_EMULATED(mtdscr, regs);
1035 		rd = (instword >> 21) & 0x1f;
1036 		current->thread.dscr = regs->gpr[rd];
1037 		current->thread.dscr_inherit = 1;
1038 		mtspr(SPRN_DSCR, current->thread.dscr);
1039 		return 0;
1040 	}
1041 #endif
1042 
1043 	return -EINVAL;
1044 }
1045 
1046 int is_valid_bugaddr(unsigned long addr)
1047 {
1048 	return is_kernel_addr(addr);
1049 }
1050 
1051 #ifdef CONFIG_MATH_EMULATION
1052 static int emulate_math(struct pt_regs *regs)
1053 {
1054 	int ret;
1055 	extern int do_mathemu(struct pt_regs *regs);
1056 
1057 	ret = do_mathemu(regs);
1058 	if (ret >= 0)
1059 		PPC_WARN_EMULATED(math, regs);
1060 
1061 	switch (ret) {
1062 	case 0:
1063 		emulate_single_step(regs);
1064 		return 0;
1065 	case 1: {
1066 			int code = 0;
1067 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1068 			_exception(SIGFPE, regs, code, regs->nip);
1069 			return 0;
1070 		}
1071 	case -EFAULT:
1072 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1073 		return 0;
1074 	}
1075 
1076 	return -1;
1077 }
1078 #else
1079 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1080 #endif
1081 
1082 void program_check_exception(struct pt_regs *regs)
1083 {
1084 	enum ctx_state prev_state = exception_enter();
1085 	unsigned int reason = get_reason(regs);
1086 
1087 	/* We can now get here via a FP Unavailable exception if the core
1088 	 * has no FPU, in that case the reason flags will be 0 */
1089 
1090 	if (reason & REASON_FP) {
1091 		/* IEEE FP exception */
1092 		parse_fpe(regs);
1093 		goto bail;
1094 	}
1095 	if (reason & REASON_TRAP) {
1096 		unsigned long bugaddr;
1097 		/* Debugger is first in line to stop recursive faults in
1098 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1099 		if (debugger_bpt(regs))
1100 			goto bail;
1101 
1102 		if (kprobe_handler(regs))
1103 			goto bail;
1104 
1105 		/* trap exception */
1106 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1107 				== NOTIFY_STOP)
1108 			goto bail;
1109 
1110 		bugaddr = regs->nip;
1111 		/*
1112 		 * Fixup bugaddr for BUG_ON() in real mode
1113 		 */
1114 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1115 			bugaddr += PAGE_OFFSET;
1116 
1117 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1118 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1119 			regs->nip += 4;
1120 			goto bail;
1121 		}
1122 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1123 		goto bail;
1124 	}
1125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1126 	if (reason & REASON_TM) {
1127 		/* This is a TM "Bad Thing Exception" program check.
1128 		 * This occurs when:
1129 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1130 		 *    transition in TM states.
1131 		 * -  A trechkpt is attempted when transactional.
1132 		 * -  A treclaim is attempted when non transactional.
1133 		 * -  A tend is illegally attempted.
1134 		 * -  writing a TM SPR when transactional.
1135 		 */
1136 		if (!user_mode(regs) &&
1137 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1138 			regs->nip += 4;
1139 			goto bail;
1140 		}
1141 		/* If usermode caused this, it's done something illegal and
1142 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1143 		 * operand to distinguish from the instruction just being bad
1144 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1145 		 * illegal /placement/ of a valid instruction.
1146 		 */
1147 		if (user_mode(regs)) {
1148 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1149 			goto bail;
1150 		} else {
1151 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1152 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1153 			die("Unrecoverable exception", regs, SIGABRT);
1154 		}
1155 	}
1156 #endif
1157 
1158 	/*
1159 	 * If we took the program check in the kernel skip down to sending a
1160 	 * SIGILL. The subsequent cases all relate to emulating instructions
1161 	 * which we should only do for userspace. We also do not want to enable
1162 	 * interrupts for kernel faults because that might lead to further
1163 	 * faults, and loose the context of the original exception.
1164 	 */
1165 	if (!user_mode(regs))
1166 		goto sigill;
1167 
1168 	/* We restore the interrupt state now */
1169 	if (!arch_irq_disabled_regs(regs))
1170 		local_irq_enable();
1171 
1172 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1173 	 * but there seems to be a hardware bug on the 405GP (RevD)
1174 	 * that means ESR is sometimes set incorrectly - either to
1175 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1176 	 * hardware people - not sure if it can happen on any illegal
1177 	 * instruction or only on FP instructions, whether there is a
1178 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1179 	 */
1180 	if (!emulate_math(regs))
1181 		goto bail;
1182 
1183 	/* Try to emulate it if we should. */
1184 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1185 		switch (emulate_instruction(regs)) {
1186 		case 0:
1187 			regs->nip += 4;
1188 			emulate_single_step(regs);
1189 			goto bail;
1190 		case -EFAULT:
1191 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1192 			goto bail;
1193 		}
1194 	}
1195 
1196 sigill:
1197 	if (reason & REASON_PRIVILEGED)
1198 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1199 	else
1200 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1201 
1202 bail:
1203 	exception_exit(prev_state);
1204 }
1205 NOKPROBE_SYMBOL(program_check_exception);
1206 
1207 /*
1208  * This occurs when running in hypervisor mode on POWER6 or later
1209  * and an illegal instruction is encountered.
1210  */
1211 void emulation_assist_interrupt(struct pt_regs *regs)
1212 {
1213 	regs->msr |= REASON_ILLEGAL;
1214 	program_check_exception(regs);
1215 }
1216 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1217 
1218 void alignment_exception(struct pt_regs *regs)
1219 {
1220 	enum ctx_state prev_state = exception_enter();
1221 	int sig, code, fixed = 0;
1222 
1223 	/* We restore the interrupt state now */
1224 	if (!arch_irq_disabled_regs(regs))
1225 		local_irq_enable();
1226 
1227 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1228 		goto bail;
1229 
1230 	/* we don't implement logging of alignment exceptions */
1231 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1232 		fixed = fix_alignment(regs);
1233 
1234 	if (fixed == 1) {
1235 		regs->nip += 4;	/* skip over emulated instruction */
1236 		emulate_single_step(regs);
1237 		goto bail;
1238 	}
1239 
1240 	/* Operand address was bad */
1241 	if (fixed == -EFAULT) {
1242 		sig = SIGSEGV;
1243 		code = SEGV_ACCERR;
1244 	} else {
1245 		sig = SIGBUS;
1246 		code = BUS_ADRALN;
1247 	}
1248 	if (user_mode(regs))
1249 		_exception(sig, regs, code, regs->dar);
1250 	else
1251 		bad_page_fault(regs, regs->dar, sig);
1252 
1253 bail:
1254 	exception_exit(prev_state);
1255 }
1256 
1257 void slb_miss_bad_addr(struct pt_regs *regs)
1258 {
1259 	enum ctx_state prev_state = exception_enter();
1260 
1261 	if (user_mode(regs))
1262 		_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1263 	else
1264 		bad_page_fault(regs, regs->dar, SIGSEGV);
1265 
1266 	exception_exit(prev_state);
1267 }
1268 
1269 void StackOverflow(struct pt_regs *regs)
1270 {
1271 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1272 	       current, regs->gpr[1]);
1273 	debugger(regs);
1274 	show_regs(regs);
1275 	panic("kernel stack overflow");
1276 }
1277 
1278 void nonrecoverable_exception(struct pt_regs *regs)
1279 {
1280 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1281 	       regs->nip, regs->msr);
1282 	debugger(regs);
1283 	die("nonrecoverable exception", regs, SIGKILL);
1284 }
1285 
1286 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1287 {
1288 	enum ctx_state prev_state = exception_enter();
1289 
1290 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1291 			  "%lx at %lx\n", regs->trap, regs->nip);
1292 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1293 
1294 	exception_exit(prev_state);
1295 }
1296 
1297 void altivec_unavailable_exception(struct pt_regs *regs)
1298 {
1299 	enum ctx_state prev_state = exception_enter();
1300 
1301 	if (user_mode(regs)) {
1302 		/* A user program has executed an altivec instruction,
1303 		   but this kernel doesn't support altivec. */
1304 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1305 		goto bail;
1306 	}
1307 
1308 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1309 			"%lx at %lx\n", regs->trap, regs->nip);
1310 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1311 
1312 bail:
1313 	exception_exit(prev_state);
1314 }
1315 
1316 void vsx_unavailable_exception(struct pt_regs *regs)
1317 {
1318 	if (user_mode(regs)) {
1319 		/* A user program has executed an vsx instruction,
1320 		   but this kernel doesn't support vsx. */
1321 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1322 		return;
1323 	}
1324 
1325 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1326 			"%lx at %lx\n", regs->trap, regs->nip);
1327 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1328 }
1329 
1330 #ifdef CONFIG_PPC64
1331 static void tm_unavailable(struct pt_regs *regs)
1332 {
1333 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1334 	if (user_mode(regs)) {
1335 		current->thread.load_tm++;
1336 		regs->msr |= MSR_TM;
1337 		tm_enable();
1338 		tm_restore_sprs(&current->thread);
1339 		return;
1340 	}
1341 #endif
1342 	pr_emerg("Unrecoverable TM Unavailable Exception "
1343 			"%lx at %lx\n", regs->trap, regs->nip);
1344 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1345 }
1346 
1347 void facility_unavailable_exception(struct pt_regs *regs)
1348 {
1349 	static char *facility_strings[] = {
1350 		[FSCR_FP_LG] = "FPU",
1351 		[FSCR_VECVSX_LG] = "VMX/VSX",
1352 		[FSCR_DSCR_LG] = "DSCR",
1353 		[FSCR_PM_LG] = "PMU SPRs",
1354 		[FSCR_BHRB_LG] = "BHRB",
1355 		[FSCR_TM_LG] = "TM",
1356 		[FSCR_EBB_LG] = "EBB",
1357 		[FSCR_TAR_LG] = "TAR",
1358 		[FSCR_MSGP_LG] = "MSGP",
1359 		[FSCR_SCV_LG] = "SCV",
1360 	};
1361 	char *facility = "unknown";
1362 	u64 value;
1363 	u32 instword, rd;
1364 	u8 status;
1365 	bool hv;
1366 
1367 	hv = (regs->trap == 0xf80);
1368 	if (hv)
1369 		value = mfspr(SPRN_HFSCR);
1370 	else
1371 		value = mfspr(SPRN_FSCR);
1372 
1373 	status = value >> 56;
1374 	if (status == FSCR_DSCR_LG) {
1375 		/*
1376 		 * User is accessing the DSCR register using the problem
1377 		 * state only SPR number (0x03) either through a mfspr or
1378 		 * a mtspr instruction. If it is a write attempt through
1379 		 * a mtspr, then we set the inherit bit. This also allows
1380 		 * the user to write or read the register directly in the
1381 		 * future by setting via the FSCR DSCR bit. But in case it
1382 		 * is a read DSCR attempt through a mfspr instruction, we
1383 		 * just emulate the instruction instead. This code path will
1384 		 * always emulate all the mfspr instructions till the user
1385 		 * has attempted at least one mtspr instruction. This way it
1386 		 * preserves the same behaviour when the user is accessing
1387 		 * the DSCR through privilege level only SPR number (0x11)
1388 		 * which is emulated through illegal instruction exception.
1389 		 * We always leave HFSCR DSCR set.
1390 		 */
1391 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1392 			pr_err("Failed to fetch the user instruction\n");
1393 			return;
1394 		}
1395 
1396 		/* Write into DSCR (mtspr 0x03, RS) */
1397 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1398 				== PPC_INST_MTSPR_DSCR_USER) {
1399 			rd = (instword >> 21) & 0x1f;
1400 			current->thread.dscr = regs->gpr[rd];
1401 			current->thread.dscr_inherit = 1;
1402 			current->thread.fscr |= FSCR_DSCR;
1403 			mtspr(SPRN_FSCR, current->thread.fscr);
1404 		}
1405 
1406 		/* Read from DSCR (mfspr RT, 0x03) */
1407 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1408 				== PPC_INST_MFSPR_DSCR_USER) {
1409 			if (emulate_instruction(regs)) {
1410 				pr_err("DSCR based mfspr emulation failed\n");
1411 				return;
1412 			}
1413 			regs->nip += 4;
1414 			emulate_single_step(regs);
1415 		}
1416 		return;
1417 	}
1418 
1419 	if (status == FSCR_TM_LG) {
1420 		/*
1421 		 * If we're here then the hardware is TM aware because it
1422 		 * generated an exception with FSRM_TM set.
1423 		 *
1424 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1425 		 * told us not to do TM, or the kernel is not built with TM
1426 		 * support.
1427 		 *
1428 		 * If both of those things are true, then userspace can spam the
1429 		 * console by triggering the printk() below just by continually
1430 		 * doing tbegin (or any TM instruction). So in that case just
1431 		 * send the process a SIGILL immediately.
1432 		 */
1433 		if (!cpu_has_feature(CPU_FTR_TM))
1434 			goto out;
1435 
1436 		tm_unavailable(regs);
1437 		return;
1438 	}
1439 
1440 	if ((hv || status >= 2) &&
1441 	    (status < ARRAY_SIZE(facility_strings)) &&
1442 	    facility_strings[status])
1443 		facility = facility_strings[status];
1444 
1445 	/* We restore the interrupt state now */
1446 	if (!arch_irq_disabled_regs(regs))
1447 		local_irq_enable();
1448 
1449 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1450 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1451 
1452 out:
1453 	if (user_mode(regs)) {
1454 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1455 		return;
1456 	}
1457 
1458 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1459 }
1460 #endif
1461 
1462 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1463 
1464 void fp_unavailable_tm(struct pt_regs *regs)
1465 {
1466 	/* Note:  This does not handle any kind of FP laziness. */
1467 
1468 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1469 		 regs->nip, regs->msr);
1470 
1471         /* We can only have got here if the task started using FP after
1472          * beginning the transaction.  So, the transactional regs are just a
1473          * copy of the checkpointed ones.  But, we still need to recheckpoint
1474          * as we're enabling FP for the process; it will return, abort the
1475          * transaction, and probably retry but now with FP enabled.  So the
1476          * checkpointed FP registers need to be loaded.
1477 	 */
1478 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1479 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1480 
1481 	/* Enable FP for the task: */
1482 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1483 
1484 	/* This loads and recheckpoints the FP registers from
1485 	 * thread.fpr[].  They will remain in registers after the
1486 	 * checkpoint so we don't need to reload them after.
1487 	 * If VMX is in use, the VRs now hold checkpointed values,
1488 	 * so we don't want to load the VRs from the thread_struct.
1489 	 */
1490 	tm_recheckpoint(&current->thread, MSR_FP);
1491 
1492 	/* If VMX is in use, get the transactional values back */
1493 	if (regs->msr & MSR_VEC) {
1494 		msr_check_and_set(MSR_VEC);
1495 		load_vr_state(&current->thread.vr_state);
1496 		/* At this point all the VSX state is loaded, so enable it */
1497 		regs->msr |= MSR_VSX;
1498 	}
1499 }
1500 
1501 void altivec_unavailable_tm(struct pt_regs *regs)
1502 {
1503 	/* See the comments in fp_unavailable_tm().  This function operates
1504 	 * the same way.
1505 	 */
1506 
1507 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1508 		 "MSR=%lx\n",
1509 		 regs->nip, regs->msr);
1510 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1511 	regs->msr |= MSR_VEC;
1512 	tm_recheckpoint(&current->thread, MSR_VEC);
1513 	current->thread.used_vr = 1;
1514 
1515 	if (regs->msr & MSR_FP) {
1516 		msr_check_and_set(MSR_FP);
1517 		load_fp_state(&current->thread.fp_state);
1518 		regs->msr |= MSR_VSX;
1519 	}
1520 }
1521 
1522 void vsx_unavailable_tm(struct pt_regs *regs)
1523 {
1524 	unsigned long orig_msr = regs->msr;
1525 
1526 	/* See the comments in fp_unavailable_tm().  This works similarly,
1527 	 * though we're loading both FP and VEC registers in here.
1528 	 *
1529 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1530 	 * regs.  Either way, set MSR_VSX.
1531 	 */
1532 
1533 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1534 		 "MSR=%lx\n",
1535 		 regs->nip, regs->msr);
1536 
1537 	current->thread.used_vsr = 1;
1538 
1539 	/* If FP and VMX are already loaded, we have all the state we need */
1540 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1541 		regs->msr |= MSR_VSX;
1542 		return;
1543 	}
1544 
1545 	/* This reclaims FP and/or VR regs if they're already enabled */
1546 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1547 
1548 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1549 		MSR_VSX;
1550 
1551 	/* This loads & recheckpoints FP and VRs; but we have
1552 	 * to be sure not to overwrite previously-valid state.
1553 	 */
1554 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1555 
1556 	msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1557 
1558 	if (orig_msr & MSR_FP)
1559 		load_fp_state(&current->thread.fp_state);
1560 	if (orig_msr & MSR_VEC)
1561 		load_vr_state(&current->thread.vr_state);
1562 }
1563 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1564 
1565 void performance_monitor_exception(struct pt_regs *regs)
1566 {
1567 	__this_cpu_inc(irq_stat.pmu_irqs);
1568 
1569 	perf_irq(regs);
1570 }
1571 
1572 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1573 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1574 {
1575 	int changed = 0;
1576 	/*
1577 	 * Determine the cause of the debug event, clear the
1578 	 * event flags and send a trap to the handler. Torez
1579 	 */
1580 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1581 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1582 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1583 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1584 #endif
1585 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1586 			     5);
1587 		changed |= 0x01;
1588 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1589 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1590 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1591 			     6);
1592 		changed |= 0x01;
1593 	}  else if (debug_status & DBSR_IAC1) {
1594 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1595 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1596 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1597 			     1);
1598 		changed |= 0x01;
1599 	}  else if (debug_status & DBSR_IAC2) {
1600 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1601 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1602 			     2);
1603 		changed |= 0x01;
1604 	}  else if (debug_status & DBSR_IAC3) {
1605 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1606 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1607 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1608 			     3);
1609 		changed |= 0x01;
1610 	}  else if (debug_status & DBSR_IAC4) {
1611 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1612 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1613 			     4);
1614 		changed |= 0x01;
1615 	}
1616 	/*
1617 	 * At the point this routine was called, the MSR(DE) was turned off.
1618 	 * Check all other debug flags and see if that bit needs to be turned
1619 	 * back on or not.
1620 	 */
1621 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1622 			       current->thread.debug.dbcr1))
1623 		regs->msr |= MSR_DE;
1624 	else
1625 		/* Make sure the IDM flag is off */
1626 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1627 
1628 	if (changed & 0x01)
1629 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1630 }
1631 
1632 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1633 {
1634 	current->thread.debug.dbsr = debug_status;
1635 
1636 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1637 	 * on server, it stops on the target of the branch. In order to simulate
1638 	 * the server behaviour, we thus restart right away with a single step
1639 	 * instead of stopping here when hitting a BT
1640 	 */
1641 	if (debug_status & DBSR_BT) {
1642 		regs->msr &= ~MSR_DE;
1643 
1644 		/* Disable BT */
1645 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1646 		/* Clear the BT event */
1647 		mtspr(SPRN_DBSR, DBSR_BT);
1648 
1649 		/* Do the single step trick only when coming from userspace */
1650 		if (user_mode(regs)) {
1651 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1652 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1653 			regs->msr |= MSR_DE;
1654 			return;
1655 		}
1656 
1657 		if (kprobe_post_handler(regs))
1658 			return;
1659 
1660 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1661 			       5, SIGTRAP) == NOTIFY_STOP) {
1662 			return;
1663 		}
1664 		if (debugger_sstep(regs))
1665 			return;
1666 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1667 		regs->msr &= ~MSR_DE;
1668 
1669 		/* Disable instruction completion */
1670 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1671 		/* Clear the instruction completion event */
1672 		mtspr(SPRN_DBSR, DBSR_IC);
1673 
1674 		if (kprobe_post_handler(regs))
1675 			return;
1676 
1677 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1678 			       5, SIGTRAP) == NOTIFY_STOP) {
1679 			return;
1680 		}
1681 
1682 		if (debugger_sstep(regs))
1683 			return;
1684 
1685 		if (user_mode(regs)) {
1686 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1687 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1688 					       current->thread.debug.dbcr1))
1689 				regs->msr |= MSR_DE;
1690 			else
1691 				/* Make sure the IDM bit is off */
1692 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1693 		}
1694 
1695 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1696 	} else
1697 		handle_debug(regs, debug_status);
1698 }
1699 NOKPROBE_SYMBOL(DebugException);
1700 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1701 
1702 #if !defined(CONFIG_TAU_INT)
1703 void TAUException(struct pt_regs *regs)
1704 {
1705 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1706 	       regs->nip, regs->msr, regs->trap, print_tainted());
1707 }
1708 #endif /* CONFIG_INT_TAU */
1709 
1710 #ifdef CONFIG_ALTIVEC
1711 void altivec_assist_exception(struct pt_regs *regs)
1712 {
1713 	int err;
1714 
1715 	if (!user_mode(regs)) {
1716 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1717 		       " at %lx\n", regs->nip);
1718 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1719 	}
1720 
1721 	flush_altivec_to_thread(current);
1722 
1723 	PPC_WARN_EMULATED(altivec, regs);
1724 	err = emulate_altivec(regs);
1725 	if (err == 0) {
1726 		regs->nip += 4;		/* skip emulated instruction */
1727 		emulate_single_step(regs);
1728 		return;
1729 	}
1730 
1731 	if (err == -EFAULT) {
1732 		/* got an error reading the instruction */
1733 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1734 	} else {
1735 		/* didn't recognize the instruction */
1736 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1737 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1738 				   "in %s at %lx\n", current->comm, regs->nip);
1739 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1740 	}
1741 }
1742 #endif /* CONFIG_ALTIVEC */
1743 
1744 #ifdef CONFIG_FSL_BOOKE
1745 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1746 			   unsigned long error_code)
1747 {
1748 	/* We treat cache locking instructions from the user
1749 	 * as priv ops, in the future we could try to do
1750 	 * something smarter
1751 	 */
1752 	if (error_code & (ESR_DLK|ESR_ILK))
1753 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1754 	return;
1755 }
1756 #endif /* CONFIG_FSL_BOOKE */
1757 
1758 #ifdef CONFIG_SPE
1759 void SPEFloatingPointException(struct pt_regs *regs)
1760 {
1761 	extern int do_spe_mathemu(struct pt_regs *regs);
1762 	unsigned long spefscr;
1763 	int fpexc_mode;
1764 	int code = 0;
1765 	int err;
1766 
1767 	flush_spe_to_thread(current);
1768 
1769 	spefscr = current->thread.spefscr;
1770 	fpexc_mode = current->thread.fpexc_mode;
1771 
1772 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1773 		code = FPE_FLTOVF;
1774 	}
1775 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1776 		code = FPE_FLTUND;
1777 	}
1778 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1779 		code = FPE_FLTDIV;
1780 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1781 		code = FPE_FLTINV;
1782 	}
1783 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1784 		code = FPE_FLTRES;
1785 
1786 	err = do_spe_mathemu(regs);
1787 	if (err == 0) {
1788 		regs->nip += 4;		/* skip emulated instruction */
1789 		emulate_single_step(regs);
1790 		return;
1791 	}
1792 
1793 	if (err == -EFAULT) {
1794 		/* got an error reading the instruction */
1795 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1796 	} else if (err == -EINVAL) {
1797 		/* didn't recognize the instruction */
1798 		printk(KERN_ERR "unrecognized spe instruction "
1799 		       "in %s at %lx\n", current->comm, regs->nip);
1800 	} else {
1801 		_exception(SIGFPE, regs, code, regs->nip);
1802 	}
1803 
1804 	return;
1805 }
1806 
1807 void SPEFloatingPointRoundException(struct pt_regs *regs)
1808 {
1809 	extern int speround_handler(struct pt_regs *regs);
1810 	int err;
1811 
1812 	preempt_disable();
1813 	if (regs->msr & MSR_SPE)
1814 		giveup_spe(current);
1815 	preempt_enable();
1816 
1817 	regs->nip -= 4;
1818 	err = speround_handler(regs);
1819 	if (err == 0) {
1820 		regs->nip += 4;		/* skip emulated instruction */
1821 		emulate_single_step(regs);
1822 		return;
1823 	}
1824 
1825 	if (err == -EFAULT) {
1826 		/* got an error reading the instruction */
1827 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1828 	} else if (err == -EINVAL) {
1829 		/* didn't recognize the instruction */
1830 		printk(KERN_ERR "unrecognized spe instruction "
1831 		       "in %s at %lx\n", current->comm, regs->nip);
1832 	} else {
1833 		_exception(SIGFPE, regs, 0, regs->nip);
1834 		return;
1835 	}
1836 }
1837 #endif
1838 
1839 /*
1840  * We enter here if we get an unrecoverable exception, that is, one
1841  * that happened at a point where the RI (recoverable interrupt) bit
1842  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1843  * we therefore lost state by taking this exception.
1844  */
1845 void unrecoverable_exception(struct pt_regs *regs)
1846 {
1847 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1848 	       regs->trap, regs->nip);
1849 	die("Unrecoverable exception", regs, SIGABRT);
1850 }
1851 NOKPROBE_SYMBOL(unrecoverable_exception);
1852 
1853 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1854 /*
1855  * Default handler for a Watchdog exception,
1856  * spins until a reboot occurs
1857  */
1858 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1859 {
1860 	/* Generic WatchdogHandler, implement your own */
1861 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1862 	return;
1863 }
1864 
1865 void WatchdogException(struct pt_regs *regs)
1866 {
1867 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1868 	WatchdogHandler(regs);
1869 }
1870 #endif
1871 
1872 /*
1873  * We enter here if we discover during exception entry that we are
1874  * running in supervisor mode with a userspace value in the stack pointer.
1875  */
1876 void kernel_bad_stack(struct pt_regs *regs)
1877 {
1878 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1879 	       regs->gpr[1], regs->nip);
1880 	die("Bad kernel stack pointer", regs, SIGABRT);
1881 }
1882 NOKPROBE_SYMBOL(kernel_bad_stack);
1883 
1884 void __init trap_init(void)
1885 {
1886 }
1887 
1888 
1889 #ifdef CONFIG_PPC_EMULATED_STATS
1890 
1891 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1892 
1893 struct ppc_emulated ppc_emulated = {
1894 #ifdef CONFIG_ALTIVEC
1895 	WARN_EMULATED_SETUP(altivec),
1896 #endif
1897 	WARN_EMULATED_SETUP(dcba),
1898 	WARN_EMULATED_SETUP(dcbz),
1899 	WARN_EMULATED_SETUP(fp_pair),
1900 	WARN_EMULATED_SETUP(isel),
1901 	WARN_EMULATED_SETUP(mcrxr),
1902 	WARN_EMULATED_SETUP(mfpvr),
1903 	WARN_EMULATED_SETUP(multiple),
1904 	WARN_EMULATED_SETUP(popcntb),
1905 	WARN_EMULATED_SETUP(spe),
1906 	WARN_EMULATED_SETUP(string),
1907 	WARN_EMULATED_SETUP(sync),
1908 	WARN_EMULATED_SETUP(unaligned),
1909 #ifdef CONFIG_MATH_EMULATION
1910 	WARN_EMULATED_SETUP(math),
1911 #endif
1912 #ifdef CONFIG_VSX
1913 	WARN_EMULATED_SETUP(vsx),
1914 #endif
1915 #ifdef CONFIG_PPC64
1916 	WARN_EMULATED_SETUP(mfdscr),
1917 	WARN_EMULATED_SETUP(mtdscr),
1918 	WARN_EMULATED_SETUP(lq_stq),
1919 #endif
1920 };
1921 
1922 u32 ppc_warn_emulated;
1923 
1924 void ppc_warn_emulated_print(const char *type)
1925 {
1926 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1927 			    type);
1928 }
1929 
1930 static int __init ppc_warn_emulated_init(void)
1931 {
1932 	struct dentry *dir, *d;
1933 	unsigned int i;
1934 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1935 
1936 	if (!powerpc_debugfs_root)
1937 		return -ENODEV;
1938 
1939 	dir = debugfs_create_dir("emulated_instructions",
1940 				 powerpc_debugfs_root);
1941 	if (!dir)
1942 		return -ENOMEM;
1943 
1944 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1945 			       &ppc_warn_emulated);
1946 	if (!d)
1947 		goto fail;
1948 
1949 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1950 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1951 				       (u32 *)&entries[i].val.counter);
1952 		if (!d)
1953 			goto fail;
1954 	}
1955 
1956 	return 0;
1957 
1958 fail:
1959 	debugfs_remove_recursive(dir);
1960 	return -ENOMEM;
1961 }
1962 
1963 device_initcall(ppc_warn_emulated_init);
1964 
1965 #endif /* CONFIG_PPC_EMULATED_STATS */
1966