xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 
289 /*
290  * This function is called in real mode. Strictly no printk's please.
291  *
292  * regs->nip and regs->msr contains srr0 and ssr1.
293  */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 	long handled = 0;
297 
298 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
299 		handled = cur_cpu_spec->machine_check_early(regs);
300 	return handled;
301 }
302 
303 #endif
304 
305 /*
306  * I/O accesses can cause machine checks on powermacs.
307  * Check if the NIP corresponds to the address of a sync
308  * instruction for which there is an entry in the exception
309  * table.
310  * Note that the 601 only takes a machine check on TEA
311  * (transfer error ack) signal assertion, and does not
312  * set any of the top 16 bits of SRR1.
313  *  -- paulus.
314  */
315 static inline int check_io_access(struct pt_regs *regs)
316 {
317 #ifdef CONFIG_PPC32
318 	unsigned long msr = regs->msr;
319 	const struct exception_table_entry *entry;
320 	unsigned int *nip = (unsigned int *)regs->nip;
321 
322 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
323 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
324 		/*
325 		 * Check that it's a sync instruction, or somewhere
326 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
327 		 * As the address is in the exception table
328 		 * we should be able to read the instr there.
329 		 * For the debug message, we look at the preceding
330 		 * load or store.
331 		 */
332 		if (*nip == 0x60000000)		/* nop */
333 			nip -= 2;
334 		else if (*nip == 0x4c00012c)	/* isync */
335 			--nip;
336 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
337 			/* sync or twi */
338 			unsigned int rb;
339 
340 			--nip;
341 			rb = (*nip >> 11) & 0x1f;
342 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
343 			       (*nip & 0x100)? "OUT to": "IN from",
344 			       regs->gpr[rb] - _IO_BASE, nip);
345 			regs->msr |= MSR_RI;
346 			regs->nip = entry->fixup;
347 			return 1;
348 		}
349 	}
350 #endif /* CONFIG_PPC32 */
351 	return 0;
352 }
353 
354 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 /* On 4xx, the reason for the machine check or program exception
356    is in the ESR. */
357 #define get_reason(regs)	((regs)->dsisr)
358 #ifndef CONFIG_FSL_BOOKE
359 #define get_mc_reason(regs)	((regs)->dsisr)
360 #else
361 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
362 #endif
363 #define REASON_FP		ESR_FP
364 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
365 #define REASON_PRIVILEGED	ESR_PPR
366 #define REASON_TRAP		ESR_PTR
367 
368 /* single-step stuff */
369 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
370 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
371 
372 #else
373 /* On non-4xx, the reason for the machine check or program
374    exception is in the MSR. */
375 #define get_reason(regs)	((regs)->msr)
376 #define get_mc_reason(regs)	((regs)->msr)
377 #define REASON_TM		0x200000
378 #define REASON_FP		0x100000
379 #define REASON_ILLEGAL		0x80000
380 #define REASON_PRIVILEGED	0x40000
381 #define REASON_TRAP		0x20000
382 
383 #define single_stepping(regs)	((regs)->msr & MSR_SE)
384 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
385 #endif
386 
387 #if defined(CONFIG_4xx)
388 int machine_check_4xx(struct pt_regs *regs)
389 {
390 	unsigned long reason = get_mc_reason(regs);
391 
392 	if (reason & ESR_IMCP) {
393 		printk("Instruction");
394 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 	} else
396 		printk("Data");
397 	printk(" machine check in kernel mode.\n");
398 
399 	return 0;
400 }
401 
402 int machine_check_440A(struct pt_regs *regs)
403 {
404 	unsigned long reason = get_mc_reason(regs);
405 
406 	printk("Machine check in kernel mode.\n");
407 	if (reason & ESR_IMCP){
408 		printk("Instruction Synchronous Machine Check exception\n");
409 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
410 	}
411 	else {
412 		u32 mcsr = mfspr(SPRN_MCSR);
413 		if (mcsr & MCSR_IB)
414 			printk("Instruction Read PLB Error\n");
415 		if (mcsr & MCSR_DRB)
416 			printk("Data Read PLB Error\n");
417 		if (mcsr & MCSR_DWB)
418 			printk("Data Write PLB Error\n");
419 		if (mcsr & MCSR_TLBP)
420 			printk("TLB Parity Error\n");
421 		if (mcsr & MCSR_ICP){
422 			flush_instruction_cache();
423 			printk("I-Cache Parity Error\n");
424 		}
425 		if (mcsr & MCSR_DCSP)
426 			printk("D-Cache Search Parity Error\n");
427 		if (mcsr & MCSR_DCFP)
428 			printk("D-Cache Flush Parity Error\n");
429 		if (mcsr & MCSR_IMPE)
430 			printk("Machine Check exception is imprecise\n");
431 
432 		/* Clear MCSR */
433 		mtspr(SPRN_MCSR, mcsr);
434 	}
435 	return 0;
436 }
437 
438 int machine_check_47x(struct pt_regs *regs)
439 {
440 	unsigned long reason = get_mc_reason(regs);
441 	u32 mcsr;
442 
443 	printk(KERN_ERR "Machine check in kernel mode.\n");
444 	if (reason & ESR_IMCP) {
445 		printk(KERN_ERR
446 		       "Instruction Synchronous Machine Check exception\n");
447 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
448 		return 0;
449 	}
450 	mcsr = mfspr(SPRN_MCSR);
451 	if (mcsr & MCSR_IB)
452 		printk(KERN_ERR "Instruction Read PLB Error\n");
453 	if (mcsr & MCSR_DRB)
454 		printk(KERN_ERR "Data Read PLB Error\n");
455 	if (mcsr & MCSR_DWB)
456 		printk(KERN_ERR "Data Write PLB Error\n");
457 	if (mcsr & MCSR_TLBP)
458 		printk(KERN_ERR "TLB Parity Error\n");
459 	if (mcsr & MCSR_ICP) {
460 		flush_instruction_cache();
461 		printk(KERN_ERR "I-Cache Parity Error\n");
462 	}
463 	if (mcsr & MCSR_DCSP)
464 		printk(KERN_ERR "D-Cache Search Parity Error\n");
465 	if (mcsr & PPC47x_MCSR_GPR)
466 		printk(KERN_ERR "GPR Parity Error\n");
467 	if (mcsr & PPC47x_MCSR_FPR)
468 		printk(KERN_ERR "FPR Parity Error\n");
469 	if (mcsr & PPC47x_MCSR_IPR)
470 		printk(KERN_ERR "Machine Check exception is imprecise\n");
471 
472 	/* Clear MCSR */
473 	mtspr(SPRN_MCSR, mcsr);
474 
475 	return 0;
476 }
477 #elif defined(CONFIG_E500)
478 int machine_check_e500mc(struct pt_regs *regs)
479 {
480 	unsigned long mcsr = mfspr(SPRN_MCSR);
481 	unsigned long reason = mcsr;
482 	int recoverable = 1;
483 
484 	if (reason & MCSR_LD) {
485 		recoverable = fsl_rio_mcheck_exception(regs);
486 		if (recoverable == 1)
487 			goto silent_out;
488 	}
489 
490 	printk("Machine check in kernel mode.\n");
491 	printk("Caused by (from MCSR=%lx): ", reason);
492 
493 	if (reason & MCSR_MCP)
494 		printk("Machine Check Signal\n");
495 
496 	if (reason & MCSR_ICPERR) {
497 		printk("Instruction Cache Parity Error\n");
498 
499 		/*
500 		 * This is recoverable by invalidating the i-cache.
501 		 */
502 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
503 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
504 			;
505 
506 		/*
507 		 * This will generally be accompanied by an instruction
508 		 * fetch error report -- only treat MCSR_IF as fatal
509 		 * if it wasn't due to an L1 parity error.
510 		 */
511 		reason &= ~MCSR_IF;
512 	}
513 
514 	if (reason & MCSR_DCPERR_MC) {
515 		printk("Data Cache Parity Error\n");
516 
517 		/*
518 		 * In write shadow mode we auto-recover from the error, but it
519 		 * may still get logged and cause a machine check.  We should
520 		 * only treat the non-write shadow case as non-recoverable.
521 		 */
522 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
523 			recoverable = 0;
524 	}
525 
526 	if (reason & MCSR_L2MMU_MHIT) {
527 		printk("Hit on multiple TLB entries\n");
528 		recoverable = 0;
529 	}
530 
531 	if (reason & MCSR_NMI)
532 		printk("Non-maskable interrupt\n");
533 
534 	if (reason & MCSR_IF) {
535 		printk("Instruction Fetch Error Report\n");
536 		recoverable = 0;
537 	}
538 
539 	if (reason & MCSR_LD) {
540 		printk("Load Error Report\n");
541 		recoverable = 0;
542 	}
543 
544 	if (reason & MCSR_ST) {
545 		printk("Store Error Report\n");
546 		recoverable = 0;
547 	}
548 
549 	if (reason & MCSR_LDG) {
550 		printk("Guarded Load Error Report\n");
551 		recoverable = 0;
552 	}
553 
554 	if (reason & MCSR_TLBSYNC)
555 		printk("Simultaneous tlbsync operations\n");
556 
557 	if (reason & MCSR_BSL2_ERR) {
558 		printk("Level 2 Cache Error\n");
559 		recoverable = 0;
560 	}
561 
562 	if (reason & MCSR_MAV) {
563 		u64 addr;
564 
565 		addr = mfspr(SPRN_MCAR);
566 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
567 
568 		printk("Machine Check %s Address: %#llx\n",
569 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
570 	}
571 
572 silent_out:
573 	mtspr(SPRN_MCSR, mcsr);
574 	return mfspr(SPRN_MCSR) == 0 && recoverable;
575 }
576 
577 int machine_check_e500(struct pt_regs *regs)
578 {
579 	unsigned long reason = get_mc_reason(regs);
580 
581 	if (reason & MCSR_BUS_RBERR) {
582 		if (fsl_rio_mcheck_exception(regs))
583 			return 1;
584 		if (fsl_pci_mcheck_exception(regs))
585 			return 1;
586 	}
587 
588 	printk("Machine check in kernel mode.\n");
589 	printk("Caused by (from MCSR=%lx): ", reason);
590 
591 	if (reason & MCSR_MCP)
592 		printk("Machine Check Signal\n");
593 	if (reason & MCSR_ICPERR)
594 		printk("Instruction Cache Parity Error\n");
595 	if (reason & MCSR_DCP_PERR)
596 		printk("Data Cache Push Parity Error\n");
597 	if (reason & MCSR_DCPERR)
598 		printk("Data Cache Parity Error\n");
599 	if (reason & MCSR_BUS_IAERR)
600 		printk("Bus - Instruction Address Error\n");
601 	if (reason & MCSR_BUS_RAERR)
602 		printk("Bus - Read Address Error\n");
603 	if (reason & MCSR_BUS_WAERR)
604 		printk("Bus - Write Address Error\n");
605 	if (reason & MCSR_BUS_IBERR)
606 		printk("Bus - Instruction Data Error\n");
607 	if (reason & MCSR_BUS_RBERR)
608 		printk("Bus - Read Data Bus Error\n");
609 	if (reason & MCSR_BUS_WBERR)
610 		printk("Bus - Read Data Bus Error\n");
611 	if (reason & MCSR_BUS_IPERR)
612 		printk("Bus - Instruction Parity Error\n");
613 	if (reason & MCSR_BUS_RPERR)
614 		printk("Bus - Read Parity Error\n");
615 
616 	return 0;
617 }
618 
619 int machine_check_generic(struct pt_regs *regs)
620 {
621 	return 0;
622 }
623 #elif defined(CONFIG_E200)
624 int machine_check_e200(struct pt_regs *regs)
625 {
626 	unsigned long reason = get_mc_reason(regs);
627 
628 	printk("Machine check in kernel mode.\n");
629 	printk("Caused by (from MCSR=%lx): ", reason);
630 
631 	if (reason & MCSR_MCP)
632 		printk("Machine Check Signal\n");
633 	if (reason & MCSR_CP_PERR)
634 		printk("Cache Push Parity Error\n");
635 	if (reason & MCSR_CPERR)
636 		printk("Cache Parity Error\n");
637 	if (reason & MCSR_EXCP_ERR)
638 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
639 	if (reason & MCSR_BUS_IRERR)
640 		printk("Bus - Read Bus Error on instruction fetch\n");
641 	if (reason & MCSR_BUS_DRERR)
642 		printk("Bus - Read Bus Error on data load\n");
643 	if (reason & MCSR_BUS_WRERR)
644 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
645 
646 	return 0;
647 }
648 #else
649 int machine_check_generic(struct pt_regs *regs)
650 {
651 	unsigned long reason = get_mc_reason(regs);
652 
653 	printk("Machine check in kernel mode.\n");
654 	printk("Caused by (from SRR1=%lx): ", reason);
655 	switch (reason & 0x601F0000) {
656 	case 0x80000:
657 		printk("Machine check signal\n");
658 		break;
659 	case 0:		/* for 601 */
660 	case 0x40000:
661 	case 0x140000:	/* 7450 MSS error and TEA */
662 		printk("Transfer error ack signal\n");
663 		break;
664 	case 0x20000:
665 		printk("Data parity error signal\n");
666 		break;
667 	case 0x10000:
668 		printk("Address parity error signal\n");
669 		break;
670 	case 0x20000000:
671 		printk("L1 Data Cache error\n");
672 		break;
673 	case 0x40000000:
674 		printk("L1 Instruction Cache error\n");
675 		break;
676 	case 0x00100000:
677 		printk("L2 data cache parity error\n");
678 		break;
679 	default:
680 		printk("Unknown values in msr\n");
681 	}
682 	return 0;
683 }
684 #endif /* everything else */
685 
686 void machine_check_exception(struct pt_regs *regs)
687 {
688 	enum ctx_state prev_state = exception_enter();
689 	int recover = 0;
690 
691 	__get_cpu_var(irq_stat).mce_exceptions++;
692 
693 	/* See if any machine dependent calls. In theory, we would want
694 	 * to call the CPU first, and call the ppc_md. one if the CPU
695 	 * one returns a positive number. However there is existing code
696 	 * that assumes the board gets a first chance, so let's keep it
697 	 * that way for now and fix things later. --BenH.
698 	 */
699 	if (ppc_md.machine_check_exception)
700 		recover = ppc_md.machine_check_exception(regs);
701 	else if (cur_cpu_spec->machine_check)
702 		recover = cur_cpu_spec->machine_check(regs);
703 
704 	if (recover > 0)
705 		goto bail;
706 
707 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
708 	/* the qspan pci read routines can cause machine checks -- Cort
709 	 *
710 	 * yuck !!! that totally needs to go away ! There are better ways
711 	 * to deal with that than having a wart in the mcheck handler.
712 	 * -- BenH
713 	 */
714 	bad_page_fault(regs, regs->dar, SIGBUS);
715 	goto bail;
716 #endif
717 
718 	if (debugger_fault_handler(regs))
719 		goto bail;
720 
721 	if (check_io_access(regs))
722 		goto bail;
723 
724 	die("Machine check", regs, SIGBUS);
725 
726 	/* Must die if the interrupt is not recoverable */
727 	if (!(regs->msr & MSR_RI))
728 		panic("Unrecoverable Machine check");
729 
730 bail:
731 	exception_exit(prev_state);
732 }
733 
734 void SMIException(struct pt_regs *regs)
735 {
736 	die("System Management Interrupt", regs, SIGABRT);
737 }
738 
739 void unknown_exception(struct pt_regs *regs)
740 {
741 	enum ctx_state prev_state = exception_enter();
742 
743 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
744 	       regs->nip, regs->msr, regs->trap);
745 
746 	_exception(SIGTRAP, regs, 0, 0);
747 
748 	exception_exit(prev_state);
749 }
750 
751 void instruction_breakpoint_exception(struct pt_regs *regs)
752 {
753 	enum ctx_state prev_state = exception_enter();
754 
755 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
756 					5, SIGTRAP) == NOTIFY_STOP)
757 		goto bail;
758 	if (debugger_iabr_match(regs))
759 		goto bail;
760 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
761 
762 bail:
763 	exception_exit(prev_state);
764 }
765 
766 void RunModeException(struct pt_regs *regs)
767 {
768 	_exception(SIGTRAP, regs, 0, 0);
769 }
770 
771 void __kprobes single_step_exception(struct pt_regs *regs)
772 {
773 	enum ctx_state prev_state = exception_enter();
774 
775 	clear_single_step(regs);
776 
777 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
778 					5, SIGTRAP) == NOTIFY_STOP)
779 		goto bail;
780 	if (debugger_sstep(regs))
781 		goto bail;
782 
783 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
784 
785 bail:
786 	exception_exit(prev_state);
787 }
788 
789 /*
790  * After we have successfully emulated an instruction, we have to
791  * check if the instruction was being single-stepped, and if so,
792  * pretend we got a single-step exception.  This was pointed out
793  * by Kumar Gala.  -- paulus
794  */
795 static void emulate_single_step(struct pt_regs *regs)
796 {
797 	if (single_stepping(regs))
798 		single_step_exception(regs);
799 }
800 
801 static inline int __parse_fpscr(unsigned long fpscr)
802 {
803 	int ret = 0;
804 
805 	/* Invalid operation */
806 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
807 		ret = FPE_FLTINV;
808 
809 	/* Overflow */
810 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
811 		ret = FPE_FLTOVF;
812 
813 	/* Underflow */
814 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
815 		ret = FPE_FLTUND;
816 
817 	/* Divide by zero */
818 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
819 		ret = FPE_FLTDIV;
820 
821 	/* Inexact result */
822 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
823 		ret = FPE_FLTRES;
824 
825 	return ret;
826 }
827 
828 static void parse_fpe(struct pt_regs *regs)
829 {
830 	int code = 0;
831 
832 	flush_fp_to_thread(current);
833 
834 	code = __parse_fpscr(current->thread.fp_state.fpscr);
835 
836 	_exception(SIGFPE, regs, code, regs->nip);
837 }
838 
839 /*
840  * Illegal instruction emulation support.  Originally written to
841  * provide the PVR to user applications using the mfspr rd, PVR.
842  * Return non-zero if we can't emulate, or -EFAULT if the associated
843  * memory access caused an access fault.  Return zero on success.
844  *
845  * There are a couple of ways to do this, either "decode" the instruction
846  * or directly match lots of bits.  In this case, matching lots of
847  * bits is faster and easier.
848  *
849  */
850 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
851 {
852 	u8 rT = (instword >> 21) & 0x1f;
853 	u8 rA = (instword >> 16) & 0x1f;
854 	u8 NB_RB = (instword >> 11) & 0x1f;
855 	u32 num_bytes;
856 	unsigned long EA;
857 	int pos = 0;
858 
859 	/* Early out if we are an invalid form of lswx */
860 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
861 		if ((rT == rA) || (rT == NB_RB))
862 			return -EINVAL;
863 
864 	EA = (rA == 0) ? 0 : regs->gpr[rA];
865 
866 	switch (instword & PPC_INST_STRING_MASK) {
867 		case PPC_INST_LSWX:
868 		case PPC_INST_STSWX:
869 			EA += NB_RB;
870 			num_bytes = regs->xer & 0x7f;
871 			break;
872 		case PPC_INST_LSWI:
873 		case PPC_INST_STSWI:
874 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
875 			break;
876 		default:
877 			return -EINVAL;
878 	}
879 
880 	while (num_bytes != 0)
881 	{
882 		u8 val;
883 		u32 shift = 8 * (3 - (pos & 0x3));
884 
885 		/* if process is 32-bit, clear upper 32 bits of EA */
886 		if ((regs->msr & MSR_64BIT) == 0)
887 			EA &= 0xFFFFFFFF;
888 
889 		switch ((instword & PPC_INST_STRING_MASK)) {
890 			case PPC_INST_LSWX:
891 			case PPC_INST_LSWI:
892 				if (get_user(val, (u8 __user *)EA))
893 					return -EFAULT;
894 				/* first time updating this reg,
895 				 * zero it out */
896 				if (pos == 0)
897 					regs->gpr[rT] = 0;
898 				regs->gpr[rT] |= val << shift;
899 				break;
900 			case PPC_INST_STSWI:
901 			case PPC_INST_STSWX:
902 				val = regs->gpr[rT] >> shift;
903 				if (put_user(val, (u8 __user *)EA))
904 					return -EFAULT;
905 				break;
906 		}
907 		/* move EA to next address */
908 		EA += 1;
909 		num_bytes--;
910 
911 		/* manage our position within the register */
912 		if (++pos == 4) {
913 			pos = 0;
914 			if (++rT == 32)
915 				rT = 0;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
923 {
924 	u32 ra,rs;
925 	unsigned long tmp;
926 
927 	ra = (instword >> 16) & 0x1f;
928 	rs = (instword >> 21) & 0x1f;
929 
930 	tmp = regs->gpr[rs];
931 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
932 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
933 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
934 	regs->gpr[ra] = tmp;
935 
936 	return 0;
937 }
938 
939 static int emulate_isel(struct pt_regs *regs, u32 instword)
940 {
941 	u8 rT = (instword >> 21) & 0x1f;
942 	u8 rA = (instword >> 16) & 0x1f;
943 	u8 rB = (instword >> 11) & 0x1f;
944 	u8 BC = (instword >> 6) & 0x1f;
945 	u8 bit;
946 	unsigned long tmp;
947 
948 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
949 	bit = (regs->ccr >> (31 - BC)) & 0x1;
950 
951 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
952 
953 	return 0;
954 }
955 
956 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
957 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
958 {
959         /* If we're emulating a load/store in an active transaction, we cannot
960          * emulate it as the kernel operates in transaction suspended context.
961          * We need to abort the transaction.  This creates a persistent TM
962          * abort so tell the user what caused it with a new code.
963 	 */
964 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
965 		tm_enable();
966 		tm_abort(cause);
967 		return true;
968 	}
969 	return false;
970 }
971 #else
972 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
973 {
974 	return false;
975 }
976 #endif
977 
978 static int emulate_instruction(struct pt_regs *regs)
979 {
980 	u32 instword;
981 	u32 rd;
982 
983 	if (!user_mode(regs))
984 		return -EINVAL;
985 	CHECK_FULL_REGS(regs);
986 
987 	if (get_user(instword, (u32 __user *)(regs->nip)))
988 		return -EFAULT;
989 
990 	/* Emulate the mfspr rD, PVR. */
991 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
992 		PPC_WARN_EMULATED(mfpvr, regs);
993 		rd = (instword >> 21) & 0x1f;
994 		regs->gpr[rd] = mfspr(SPRN_PVR);
995 		return 0;
996 	}
997 
998 	/* Emulating the dcba insn is just a no-op.  */
999 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1000 		PPC_WARN_EMULATED(dcba, regs);
1001 		return 0;
1002 	}
1003 
1004 	/* Emulate the mcrxr insn.  */
1005 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1006 		int shift = (instword >> 21) & 0x1c;
1007 		unsigned long msk = 0xf0000000UL >> shift;
1008 
1009 		PPC_WARN_EMULATED(mcrxr, regs);
1010 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1011 		regs->xer &= ~0xf0000000UL;
1012 		return 0;
1013 	}
1014 
1015 	/* Emulate load/store string insn. */
1016 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1017 		if (tm_abort_check(regs,
1018 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1019 			return -EINVAL;
1020 		PPC_WARN_EMULATED(string, regs);
1021 		return emulate_string_inst(regs, instword);
1022 	}
1023 
1024 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1025 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1026 		PPC_WARN_EMULATED(popcntb, regs);
1027 		return emulate_popcntb_inst(regs, instword);
1028 	}
1029 
1030 	/* Emulate isel (Integer Select) instruction */
1031 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1032 		PPC_WARN_EMULATED(isel, regs);
1033 		return emulate_isel(regs, instword);
1034 	}
1035 
1036 	/* Emulate sync instruction variants */
1037 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1038 		PPC_WARN_EMULATED(sync, regs);
1039 		asm volatile("sync");
1040 		return 0;
1041 	}
1042 
1043 #ifdef CONFIG_PPC64
1044 	/* Emulate the mfspr rD, DSCR. */
1045 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1046 		PPC_INST_MFSPR_DSCR_USER) ||
1047 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1048 		PPC_INST_MFSPR_DSCR)) &&
1049 			cpu_has_feature(CPU_FTR_DSCR)) {
1050 		PPC_WARN_EMULATED(mfdscr, regs);
1051 		rd = (instword >> 21) & 0x1f;
1052 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1053 		return 0;
1054 	}
1055 	/* Emulate the mtspr DSCR, rD. */
1056 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1057 		PPC_INST_MTSPR_DSCR_USER) ||
1058 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1059 		PPC_INST_MTSPR_DSCR)) &&
1060 			cpu_has_feature(CPU_FTR_DSCR)) {
1061 		PPC_WARN_EMULATED(mtdscr, regs);
1062 		rd = (instword >> 21) & 0x1f;
1063 		current->thread.dscr = regs->gpr[rd];
1064 		current->thread.dscr_inherit = 1;
1065 		mtspr(SPRN_DSCR, current->thread.dscr);
1066 		return 0;
1067 	}
1068 #endif
1069 
1070 	return -EINVAL;
1071 }
1072 
1073 int is_valid_bugaddr(unsigned long addr)
1074 {
1075 	return is_kernel_addr(addr);
1076 }
1077 
1078 #ifdef CONFIG_MATH_EMULATION
1079 static int emulate_math(struct pt_regs *regs)
1080 {
1081 	int ret;
1082 	extern int do_mathemu(struct pt_regs *regs);
1083 
1084 	ret = do_mathemu(regs);
1085 	if (ret >= 0)
1086 		PPC_WARN_EMULATED(math, regs);
1087 
1088 	switch (ret) {
1089 	case 0:
1090 		emulate_single_step(regs);
1091 		return 0;
1092 	case 1: {
1093 			int code = 0;
1094 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1095 			_exception(SIGFPE, regs, code, regs->nip);
1096 			return 0;
1097 		}
1098 	case -EFAULT:
1099 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1100 		return 0;
1101 	}
1102 
1103 	return -1;
1104 }
1105 #else
1106 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1107 #endif
1108 
1109 void __kprobes program_check_exception(struct pt_regs *regs)
1110 {
1111 	enum ctx_state prev_state = exception_enter();
1112 	unsigned int reason = get_reason(regs);
1113 
1114 	/* We can now get here via a FP Unavailable exception if the core
1115 	 * has no FPU, in that case the reason flags will be 0 */
1116 
1117 	if (reason & REASON_FP) {
1118 		/* IEEE FP exception */
1119 		parse_fpe(regs);
1120 		goto bail;
1121 	}
1122 	if (reason & REASON_TRAP) {
1123 		/* Debugger is first in line to stop recursive faults in
1124 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1125 		if (debugger_bpt(regs))
1126 			goto bail;
1127 
1128 		/* trap exception */
1129 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1130 				== NOTIFY_STOP)
1131 			goto bail;
1132 
1133 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1134 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1135 			regs->nip += 4;
1136 			goto bail;
1137 		}
1138 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1139 		goto bail;
1140 	}
1141 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1142 	if (reason & REASON_TM) {
1143 		/* This is a TM "Bad Thing Exception" program check.
1144 		 * This occurs when:
1145 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1146 		 *    transition in TM states.
1147 		 * -  A trechkpt is attempted when transactional.
1148 		 * -  A treclaim is attempted when non transactional.
1149 		 * -  A tend is illegally attempted.
1150 		 * -  writing a TM SPR when transactional.
1151 		 */
1152 		if (!user_mode(regs) &&
1153 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1154 			regs->nip += 4;
1155 			goto bail;
1156 		}
1157 		/* If usermode caused this, it's done something illegal and
1158 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1159 		 * operand to distinguish from the instruction just being bad
1160 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1161 		 * illegal /placement/ of a valid instruction.
1162 		 */
1163 		if (user_mode(regs)) {
1164 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1165 			goto bail;
1166 		} else {
1167 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1168 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1169 			die("Unrecoverable exception", regs, SIGABRT);
1170 		}
1171 	}
1172 #endif
1173 
1174 	/*
1175 	 * If we took the program check in the kernel skip down to sending a
1176 	 * SIGILL. The subsequent cases all relate to emulating instructions
1177 	 * which we should only do for userspace. We also do not want to enable
1178 	 * interrupts for kernel faults because that might lead to further
1179 	 * faults, and loose the context of the original exception.
1180 	 */
1181 	if (!user_mode(regs))
1182 		goto sigill;
1183 
1184 	/* We restore the interrupt state now */
1185 	if (!arch_irq_disabled_regs(regs))
1186 		local_irq_enable();
1187 
1188 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1189 	 * but there seems to be a hardware bug on the 405GP (RevD)
1190 	 * that means ESR is sometimes set incorrectly - either to
1191 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1192 	 * hardware people - not sure if it can happen on any illegal
1193 	 * instruction or only on FP instructions, whether there is a
1194 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1195 	 */
1196 	if (!emulate_math(regs))
1197 		goto bail;
1198 
1199 	/* Try to emulate it if we should. */
1200 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1201 		switch (emulate_instruction(regs)) {
1202 		case 0:
1203 			regs->nip += 4;
1204 			emulate_single_step(regs);
1205 			goto bail;
1206 		case -EFAULT:
1207 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1208 			goto bail;
1209 		}
1210 	}
1211 
1212 sigill:
1213 	if (reason & REASON_PRIVILEGED)
1214 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1215 	else
1216 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1217 
1218 bail:
1219 	exception_exit(prev_state);
1220 }
1221 
1222 /*
1223  * This occurs when running in hypervisor mode on POWER6 or later
1224  * and an illegal instruction is encountered.
1225  */
1226 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1227 {
1228 	regs->msr |= REASON_ILLEGAL;
1229 	program_check_exception(regs);
1230 }
1231 
1232 void alignment_exception(struct pt_regs *regs)
1233 {
1234 	enum ctx_state prev_state = exception_enter();
1235 	int sig, code, fixed = 0;
1236 
1237 	/* We restore the interrupt state now */
1238 	if (!arch_irq_disabled_regs(regs))
1239 		local_irq_enable();
1240 
1241 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1242 		goto bail;
1243 
1244 	/* we don't implement logging of alignment exceptions */
1245 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1246 		fixed = fix_alignment(regs);
1247 
1248 	if (fixed == 1) {
1249 		regs->nip += 4;	/* skip over emulated instruction */
1250 		emulate_single_step(regs);
1251 		goto bail;
1252 	}
1253 
1254 	/* Operand address was bad */
1255 	if (fixed == -EFAULT) {
1256 		sig = SIGSEGV;
1257 		code = SEGV_ACCERR;
1258 	} else {
1259 		sig = SIGBUS;
1260 		code = BUS_ADRALN;
1261 	}
1262 	if (user_mode(regs))
1263 		_exception(sig, regs, code, regs->dar);
1264 	else
1265 		bad_page_fault(regs, regs->dar, sig);
1266 
1267 bail:
1268 	exception_exit(prev_state);
1269 }
1270 
1271 void StackOverflow(struct pt_regs *regs)
1272 {
1273 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1274 	       current, regs->gpr[1]);
1275 	debugger(regs);
1276 	show_regs(regs);
1277 	panic("kernel stack overflow");
1278 }
1279 
1280 void nonrecoverable_exception(struct pt_regs *regs)
1281 {
1282 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1283 	       regs->nip, regs->msr);
1284 	debugger(regs);
1285 	die("nonrecoverable exception", regs, SIGKILL);
1286 }
1287 
1288 void trace_syscall(struct pt_regs *regs)
1289 {
1290 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1291 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1292 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1293 }
1294 
1295 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1296 {
1297 	enum ctx_state prev_state = exception_enter();
1298 
1299 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1300 			  "%lx at %lx\n", regs->trap, regs->nip);
1301 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1302 
1303 	exception_exit(prev_state);
1304 }
1305 
1306 void altivec_unavailable_exception(struct pt_regs *regs)
1307 {
1308 	enum ctx_state prev_state = exception_enter();
1309 
1310 	if (user_mode(regs)) {
1311 		/* A user program has executed an altivec instruction,
1312 		   but this kernel doesn't support altivec. */
1313 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1314 		goto bail;
1315 	}
1316 
1317 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1318 			"%lx at %lx\n", regs->trap, regs->nip);
1319 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1320 
1321 bail:
1322 	exception_exit(prev_state);
1323 }
1324 
1325 void vsx_unavailable_exception(struct pt_regs *regs)
1326 {
1327 	if (user_mode(regs)) {
1328 		/* A user program has executed an vsx instruction,
1329 		   but this kernel doesn't support vsx. */
1330 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1331 		return;
1332 	}
1333 
1334 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1335 			"%lx at %lx\n", regs->trap, regs->nip);
1336 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1337 }
1338 
1339 #ifdef CONFIG_PPC64
1340 void facility_unavailable_exception(struct pt_regs *regs)
1341 {
1342 	static char *facility_strings[] = {
1343 		[FSCR_FP_LG] = "FPU",
1344 		[FSCR_VECVSX_LG] = "VMX/VSX",
1345 		[FSCR_DSCR_LG] = "DSCR",
1346 		[FSCR_PM_LG] = "PMU SPRs",
1347 		[FSCR_BHRB_LG] = "BHRB",
1348 		[FSCR_TM_LG] = "TM",
1349 		[FSCR_EBB_LG] = "EBB",
1350 		[FSCR_TAR_LG] = "TAR",
1351 	};
1352 	char *facility = "unknown";
1353 	u64 value;
1354 	u8 status;
1355 	bool hv;
1356 
1357 	hv = (regs->trap == 0xf80);
1358 	if (hv)
1359 		value = mfspr(SPRN_HFSCR);
1360 	else
1361 		value = mfspr(SPRN_FSCR);
1362 
1363 	status = value >> 56;
1364 	if (status == FSCR_DSCR_LG) {
1365 		/* User is acessing the DSCR.  Set the inherit bit and allow
1366 		 * the user to set it directly in future by setting via the
1367 		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1368 		 */
1369 		current->thread.dscr_inherit = 1;
1370 		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1371 		return;
1372 	}
1373 
1374 	if ((status < ARRAY_SIZE(facility_strings)) &&
1375 	    facility_strings[status])
1376 		facility = facility_strings[status];
1377 
1378 	/* We restore the interrupt state now */
1379 	if (!arch_irq_disabled_regs(regs))
1380 		local_irq_enable();
1381 
1382 	pr_err_ratelimited(
1383 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1384 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1385 
1386 	if (user_mode(regs)) {
1387 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1388 		return;
1389 	}
1390 
1391 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1392 }
1393 #endif
1394 
1395 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1396 
1397 void fp_unavailable_tm(struct pt_regs *regs)
1398 {
1399 	/* Note:  This does not handle any kind of FP laziness. */
1400 
1401 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1402 		 regs->nip, regs->msr);
1403 
1404         /* We can only have got here if the task started using FP after
1405          * beginning the transaction.  So, the transactional regs are just a
1406          * copy of the checkpointed ones.  But, we still need to recheckpoint
1407          * as we're enabling FP for the process; it will return, abort the
1408          * transaction, and probably retry but now with FP enabled.  So the
1409          * checkpointed FP registers need to be loaded.
1410 	 */
1411 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1412 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1413 
1414 	/* Enable FP for the task: */
1415 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1416 
1417 	/* This loads and recheckpoints the FP registers from
1418 	 * thread.fpr[].  They will remain in registers after the
1419 	 * checkpoint so we don't need to reload them after.
1420 	 * If VMX is in use, the VRs now hold checkpointed values,
1421 	 * so we don't want to load the VRs from the thread_struct.
1422 	 */
1423 	tm_recheckpoint(&current->thread, MSR_FP);
1424 
1425 	/* If VMX is in use, get the transactional values back */
1426 	if (regs->msr & MSR_VEC) {
1427 		do_load_up_transact_altivec(&current->thread);
1428 		/* At this point all the VSX state is loaded, so enable it */
1429 		regs->msr |= MSR_VSX;
1430 	}
1431 }
1432 
1433 void altivec_unavailable_tm(struct pt_regs *regs)
1434 {
1435 	/* See the comments in fp_unavailable_tm().  This function operates
1436 	 * the same way.
1437 	 */
1438 
1439 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1440 		 "MSR=%lx\n",
1441 		 regs->nip, regs->msr);
1442 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1443 	regs->msr |= MSR_VEC;
1444 	tm_recheckpoint(&current->thread, MSR_VEC);
1445 	current->thread.used_vr = 1;
1446 
1447 	if (regs->msr & MSR_FP) {
1448 		do_load_up_transact_fpu(&current->thread);
1449 		regs->msr |= MSR_VSX;
1450 	}
1451 }
1452 
1453 void vsx_unavailable_tm(struct pt_regs *regs)
1454 {
1455 	unsigned long orig_msr = regs->msr;
1456 
1457 	/* See the comments in fp_unavailable_tm().  This works similarly,
1458 	 * though we're loading both FP and VEC registers in here.
1459 	 *
1460 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1461 	 * regs.  Either way, set MSR_VSX.
1462 	 */
1463 
1464 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1465 		 "MSR=%lx\n",
1466 		 regs->nip, regs->msr);
1467 
1468 	current->thread.used_vsr = 1;
1469 
1470 	/* If FP and VMX are already loaded, we have all the state we need */
1471 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1472 		regs->msr |= MSR_VSX;
1473 		return;
1474 	}
1475 
1476 	/* This reclaims FP and/or VR regs if they're already enabled */
1477 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1478 
1479 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1480 		MSR_VSX;
1481 
1482 	/* This loads & recheckpoints FP and VRs; but we have
1483 	 * to be sure not to overwrite previously-valid state.
1484 	 */
1485 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1486 
1487 	if (orig_msr & MSR_FP)
1488 		do_load_up_transact_fpu(&current->thread);
1489 	if (orig_msr & MSR_VEC)
1490 		do_load_up_transact_altivec(&current->thread);
1491 }
1492 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1493 
1494 void performance_monitor_exception(struct pt_regs *regs)
1495 {
1496 	__get_cpu_var(irq_stat).pmu_irqs++;
1497 
1498 	perf_irq(regs);
1499 }
1500 
1501 #ifdef CONFIG_8xx
1502 void SoftwareEmulation(struct pt_regs *regs)
1503 {
1504 	CHECK_FULL_REGS(regs);
1505 
1506 	if (!user_mode(regs)) {
1507 		debugger(regs);
1508 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1509 			regs, SIGFPE);
1510 	}
1511 
1512 	if (!emulate_math(regs))
1513 		return;
1514 
1515 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1516 }
1517 #endif /* CONFIG_8xx */
1518 
1519 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1520 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1521 {
1522 	int changed = 0;
1523 	/*
1524 	 * Determine the cause of the debug event, clear the
1525 	 * event flags and send a trap to the handler. Torez
1526 	 */
1527 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1528 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1529 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1530 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1531 #endif
1532 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1533 			     5);
1534 		changed |= 0x01;
1535 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1536 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1537 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1538 			     6);
1539 		changed |= 0x01;
1540 	}  else if (debug_status & DBSR_IAC1) {
1541 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1542 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1543 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1544 			     1);
1545 		changed |= 0x01;
1546 	}  else if (debug_status & DBSR_IAC2) {
1547 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1548 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1549 			     2);
1550 		changed |= 0x01;
1551 	}  else if (debug_status & DBSR_IAC3) {
1552 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1553 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1554 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1555 			     3);
1556 		changed |= 0x01;
1557 	}  else if (debug_status & DBSR_IAC4) {
1558 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1559 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1560 			     4);
1561 		changed |= 0x01;
1562 	}
1563 	/*
1564 	 * At the point this routine was called, the MSR(DE) was turned off.
1565 	 * Check all other debug flags and see if that bit needs to be turned
1566 	 * back on or not.
1567 	 */
1568 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1569 			       current->thread.debug.dbcr1))
1570 		regs->msr |= MSR_DE;
1571 	else
1572 		/* Make sure the IDM flag is off */
1573 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1574 
1575 	if (changed & 0x01)
1576 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1577 }
1578 
1579 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1580 {
1581 	current->thread.debug.dbsr = debug_status;
1582 
1583 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1584 	 * on server, it stops on the target of the branch. In order to simulate
1585 	 * the server behaviour, we thus restart right away with a single step
1586 	 * instead of stopping here when hitting a BT
1587 	 */
1588 	if (debug_status & DBSR_BT) {
1589 		regs->msr &= ~MSR_DE;
1590 
1591 		/* Disable BT */
1592 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1593 		/* Clear the BT event */
1594 		mtspr(SPRN_DBSR, DBSR_BT);
1595 
1596 		/* Do the single step trick only when coming from userspace */
1597 		if (user_mode(regs)) {
1598 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1599 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1600 			regs->msr |= MSR_DE;
1601 			return;
1602 		}
1603 
1604 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1605 			       5, SIGTRAP) == NOTIFY_STOP) {
1606 			return;
1607 		}
1608 		if (debugger_sstep(regs))
1609 			return;
1610 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1611 		regs->msr &= ~MSR_DE;
1612 
1613 		/* Disable instruction completion */
1614 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1615 		/* Clear the instruction completion event */
1616 		mtspr(SPRN_DBSR, DBSR_IC);
1617 
1618 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1619 			       5, SIGTRAP) == NOTIFY_STOP) {
1620 			return;
1621 		}
1622 
1623 		if (debugger_sstep(regs))
1624 			return;
1625 
1626 		if (user_mode(regs)) {
1627 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1628 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1629 					       current->thread.debug.dbcr1))
1630 				regs->msr |= MSR_DE;
1631 			else
1632 				/* Make sure the IDM bit is off */
1633 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1634 		}
1635 
1636 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1637 	} else
1638 		handle_debug(regs, debug_status);
1639 }
1640 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1641 
1642 #if !defined(CONFIG_TAU_INT)
1643 void TAUException(struct pt_regs *regs)
1644 {
1645 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1646 	       regs->nip, regs->msr, regs->trap, print_tainted());
1647 }
1648 #endif /* CONFIG_INT_TAU */
1649 
1650 #ifdef CONFIG_ALTIVEC
1651 void altivec_assist_exception(struct pt_regs *regs)
1652 {
1653 	int err;
1654 
1655 	if (!user_mode(regs)) {
1656 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1657 		       " at %lx\n", regs->nip);
1658 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1659 	}
1660 
1661 	flush_altivec_to_thread(current);
1662 
1663 	PPC_WARN_EMULATED(altivec, regs);
1664 	err = emulate_altivec(regs);
1665 	if (err == 0) {
1666 		regs->nip += 4;		/* skip emulated instruction */
1667 		emulate_single_step(regs);
1668 		return;
1669 	}
1670 
1671 	if (err == -EFAULT) {
1672 		/* got an error reading the instruction */
1673 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1674 	} else {
1675 		/* didn't recognize the instruction */
1676 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1677 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1678 				   "in %s at %lx\n", current->comm, regs->nip);
1679 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1680 	}
1681 }
1682 #endif /* CONFIG_ALTIVEC */
1683 
1684 #ifdef CONFIG_VSX
1685 void vsx_assist_exception(struct pt_regs *regs)
1686 {
1687 	if (!user_mode(regs)) {
1688 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1689 		       " at %lx\n", regs->nip);
1690 		die("Kernel VSX assist exception", regs, SIGILL);
1691 	}
1692 
1693 	flush_vsx_to_thread(current);
1694 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1695 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1696 }
1697 #endif /* CONFIG_VSX */
1698 
1699 #ifdef CONFIG_FSL_BOOKE
1700 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1701 			   unsigned long error_code)
1702 {
1703 	/* We treat cache locking instructions from the user
1704 	 * as priv ops, in the future we could try to do
1705 	 * something smarter
1706 	 */
1707 	if (error_code & (ESR_DLK|ESR_ILK))
1708 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1709 	return;
1710 }
1711 #endif /* CONFIG_FSL_BOOKE */
1712 
1713 #ifdef CONFIG_SPE
1714 void SPEFloatingPointException(struct pt_regs *regs)
1715 {
1716 	extern int do_spe_mathemu(struct pt_regs *regs);
1717 	unsigned long spefscr;
1718 	int fpexc_mode;
1719 	int code = 0;
1720 	int err;
1721 
1722 	flush_spe_to_thread(current);
1723 
1724 	spefscr = current->thread.spefscr;
1725 	fpexc_mode = current->thread.fpexc_mode;
1726 
1727 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1728 		code = FPE_FLTOVF;
1729 	}
1730 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1731 		code = FPE_FLTUND;
1732 	}
1733 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1734 		code = FPE_FLTDIV;
1735 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1736 		code = FPE_FLTINV;
1737 	}
1738 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1739 		code = FPE_FLTRES;
1740 
1741 	err = do_spe_mathemu(regs);
1742 	if (err == 0) {
1743 		regs->nip += 4;		/* skip emulated instruction */
1744 		emulate_single_step(regs);
1745 		return;
1746 	}
1747 
1748 	if (err == -EFAULT) {
1749 		/* got an error reading the instruction */
1750 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1751 	} else if (err == -EINVAL) {
1752 		/* didn't recognize the instruction */
1753 		printk(KERN_ERR "unrecognized spe instruction "
1754 		       "in %s at %lx\n", current->comm, regs->nip);
1755 	} else {
1756 		_exception(SIGFPE, regs, code, regs->nip);
1757 	}
1758 
1759 	return;
1760 }
1761 
1762 void SPEFloatingPointRoundException(struct pt_regs *regs)
1763 {
1764 	extern int speround_handler(struct pt_regs *regs);
1765 	int err;
1766 
1767 	preempt_disable();
1768 	if (regs->msr & MSR_SPE)
1769 		giveup_spe(current);
1770 	preempt_enable();
1771 
1772 	regs->nip -= 4;
1773 	err = speround_handler(regs);
1774 	if (err == 0) {
1775 		regs->nip += 4;		/* skip emulated instruction */
1776 		emulate_single_step(regs);
1777 		return;
1778 	}
1779 
1780 	if (err == -EFAULT) {
1781 		/* got an error reading the instruction */
1782 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1783 	} else if (err == -EINVAL) {
1784 		/* didn't recognize the instruction */
1785 		printk(KERN_ERR "unrecognized spe instruction "
1786 		       "in %s at %lx\n", current->comm, regs->nip);
1787 	} else {
1788 		_exception(SIGFPE, regs, 0, regs->nip);
1789 		return;
1790 	}
1791 }
1792 #endif
1793 
1794 /*
1795  * We enter here if we get an unrecoverable exception, that is, one
1796  * that happened at a point where the RI (recoverable interrupt) bit
1797  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1798  * we therefore lost state by taking this exception.
1799  */
1800 void unrecoverable_exception(struct pt_regs *regs)
1801 {
1802 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1803 	       regs->trap, regs->nip);
1804 	die("Unrecoverable exception", regs, SIGABRT);
1805 }
1806 
1807 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1808 /*
1809  * Default handler for a Watchdog exception,
1810  * spins until a reboot occurs
1811  */
1812 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1813 {
1814 	/* Generic WatchdogHandler, implement your own */
1815 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1816 	return;
1817 }
1818 
1819 void WatchdogException(struct pt_regs *regs)
1820 {
1821 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1822 	WatchdogHandler(regs);
1823 }
1824 #endif
1825 
1826 /*
1827  * We enter here if we discover during exception entry that we are
1828  * running in supervisor mode with a userspace value in the stack pointer.
1829  */
1830 void kernel_bad_stack(struct pt_regs *regs)
1831 {
1832 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1833 	       regs->gpr[1], regs->nip);
1834 	die("Bad kernel stack pointer", regs, SIGABRT);
1835 }
1836 
1837 void __init trap_init(void)
1838 {
1839 }
1840 
1841 
1842 #ifdef CONFIG_PPC_EMULATED_STATS
1843 
1844 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1845 
1846 struct ppc_emulated ppc_emulated = {
1847 #ifdef CONFIG_ALTIVEC
1848 	WARN_EMULATED_SETUP(altivec),
1849 #endif
1850 	WARN_EMULATED_SETUP(dcba),
1851 	WARN_EMULATED_SETUP(dcbz),
1852 	WARN_EMULATED_SETUP(fp_pair),
1853 	WARN_EMULATED_SETUP(isel),
1854 	WARN_EMULATED_SETUP(mcrxr),
1855 	WARN_EMULATED_SETUP(mfpvr),
1856 	WARN_EMULATED_SETUP(multiple),
1857 	WARN_EMULATED_SETUP(popcntb),
1858 	WARN_EMULATED_SETUP(spe),
1859 	WARN_EMULATED_SETUP(string),
1860 	WARN_EMULATED_SETUP(sync),
1861 	WARN_EMULATED_SETUP(unaligned),
1862 #ifdef CONFIG_MATH_EMULATION
1863 	WARN_EMULATED_SETUP(math),
1864 #endif
1865 #ifdef CONFIG_VSX
1866 	WARN_EMULATED_SETUP(vsx),
1867 #endif
1868 #ifdef CONFIG_PPC64
1869 	WARN_EMULATED_SETUP(mfdscr),
1870 	WARN_EMULATED_SETUP(mtdscr),
1871 	WARN_EMULATED_SETUP(lq_stq),
1872 #endif
1873 };
1874 
1875 u32 ppc_warn_emulated;
1876 
1877 void ppc_warn_emulated_print(const char *type)
1878 {
1879 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1880 			    type);
1881 }
1882 
1883 static int __init ppc_warn_emulated_init(void)
1884 {
1885 	struct dentry *dir, *d;
1886 	unsigned int i;
1887 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1888 
1889 	if (!powerpc_debugfs_root)
1890 		return -ENODEV;
1891 
1892 	dir = debugfs_create_dir("emulated_instructions",
1893 				 powerpc_debugfs_root);
1894 	if (!dir)
1895 		return -ENOMEM;
1896 
1897 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1898 			       &ppc_warn_emulated);
1899 	if (!d)
1900 		goto fail;
1901 
1902 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1903 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1904 				       (u32 *)&entries[i].val.counter);
1905 		if (!d)
1906 			goto fail;
1907 	}
1908 
1909 	return 0;
1910 
1911 fail:
1912 	debugfs_remove_recursive(dir);
1913 	return -ENOMEM;
1914 }
1915 
1916 device_initcall(ppc_warn_emulated_init);
1917 
1918 #endif /* CONFIG_PPC_EMULATED_STATS */
1919