1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * Copyright 2007-2010 Freescale Semiconductor, Inc. 5 * 6 * Modified by Cort Dougan (cort@cs.nmt.edu) 7 * and Paul Mackerras (paulus@samba.org) 8 */ 9 10 /* 11 * This file handles the architecture-dependent parts of hardware exceptions 12 */ 13 14 #include <linux/errno.h> 15 #include <linux/sched.h> 16 #include <linux/sched/debug.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/pkeys.h> 20 #include <linux/stddef.h> 21 #include <linux/unistd.h> 22 #include <linux/ptrace.h> 23 #include <linux/user.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/extable.h> 27 #include <linux/module.h> /* print_modules */ 28 #include <linux/prctl.h> 29 #include <linux/delay.h> 30 #include <linux/kprobes.h> 31 #include <linux/kexec.h> 32 #include <linux/backlight.h> 33 #include <linux/bug.h> 34 #include <linux/kdebug.h> 35 #include <linux/ratelimit.h> 36 #include <linux/context_tracking.h> 37 #include <linux/smp.h> 38 #include <linux/console.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/debugfs.h> 41 42 #include <asm/emulated_ops.h> 43 #include <linux/uaccess.h> 44 #include <asm/interrupt.h> 45 #include <asm/io.h> 46 #include <asm/machdep.h> 47 #include <asm/rtas.h> 48 #include <asm/pmc.h> 49 #include <asm/reg.h> 50 #ifdef CONFIG_PMAC_BACKLIGHT 51 #include <asm/backlight.h> 52 #endif 53 #ifdef CONFIG_PPC64 54 #include <asm/firmware.h> 55 #include <asm/processor.h> 56 #endif 57 #include <asm/kexec.h> 58 #include <asm/ppc-opcode.h> 59 #include <asm/rio.h> 60 #include <asm/fadump.h> 61 #include <asm/switch_to.h> 62 #include <asm/tm.h> 63 #include <asm/debug.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/hmi.h> 66 #include <sysdev/fsl_pci.h> 67 #include <asm/kprobes.h> 68 #include <asm/stacktrace.h> 69 #include <asm/nmi.h> 70 #include <asm/disassemble.h> 71 #include <asm/udbg.h> 72 73 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) 74 int (*__debugger)(struct pt_regs *regs) __read_mostly; 75 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; 76 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; 77 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; 78 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; 79 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; 80 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; 81 82 EXPORT_SYMBOL(__debugger); 83 EXPORT_SYMBOL(__debugger_ipi); 84 EXPORT_SYMBOL(__debugger_bpt); 85 EXPORT_SYMBOL(__debugger_sstep); 86 EXPORT_SYMBOL(__debugger_iabr_match); 87 EXPORT_SYMBOL(__debugger_break_match); 88 EXPORT_SYMBOL(__debugger_fault_handler); 89 #endif 90 91 /* Transactional Memory trap debug */ 92 #ifdef TM_DEBUG_SW 93 #define TM_DEBUG(x...) printk(KERN_INFO x) 94 #else 95 #define TM_DEBUG(x...) do { } while(0) 96 #endif 97 98 static const char *signame(int signr) 99 { 100 switch (signr) { 101 case SIGBUS: return "bus error"; 102 case SIGFPE: return "floating point exception"; 103 case SIGILL: return "illegal instruction"; 104 case SIGSEGV: return "segfault"; 105 case SIGTRAP: return "unhandled trap"; 106 } 107 108 return "unknown signal"; 109 } 110 111 /* 112 * Trap & Exception support 113 */ 114 115 #ifdef CONFIG_PMAC_BACKLIGHT 116 static void pmac_backlight_unblank(void) 117 { 118 mutex_lock(&pmac_backlight_mutex); 119 if (pmac_backlight) { 120 struct backlight_properties *props; 121 122 props = &pmac_backlight->props; 123 props->brightness = props->max_brightness; 124 props->power = FB_BLANK_UNBLANK; 125 backlight_update_status(pmac_backlight); 126 } 127 mutex_unlock(&pmac_backlight_mutex); 128 } 129 #else 130 static inline void pmac_backlight_unblank(void) { } 131 #endif 132 133 /* 134 * If oops/die is expected to crash the machine, return true here. 135 * 136 * This should not be expected to be 100% accurate, there may be 137 * notifiers registered or other unexpected conditions that may bring 138 * down the kernel. Or if the current process in the kernel is holding 139 * locks or has other critical state, the kernel may become effectively 140 * unusable anyway. 141 */ 142 bool die_will_crash(void) 143 { 144 if (should_fadump_crash()) 145 return true; 146 if (kexec_should_crash(current)) 147 return true; 148 if (in_interrupt() || panic_on_oops || 149 !current->pid || is_global_init(current)) 150 return true; 151 152 return false; 153 } 154 155 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 156 static int die_owner = -1; 157 static unsigned int die_nest_count; 158 static int die_counter; 159 160 extern void panic_flush_kmsg_start(void) 161 { 162 /* 163 * These are mostly taken from kernel/panic.c, but tries to do 164 * relatively minimal work. Don't use delay functions (TB may 165 * be broken), don't crash dump (need to set a firmware log), 166 * don't run notifiers. We do want to get some information to 167 * Linux console. 168 */ 169 console_verbose(); 170 bust_spinlocks(1); 171 } 172 173 extern void panic_flush_kmsg_end(void) 174 { 175 kmsg_dump(KMSG_DUMP_PANIC); 176 bust_spinlocks(0); 177 debug_locks_off(); 178 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 179 } 180 181 static unsigned long oops_begin(struct pt_regs *regs) 182 { 183 int cpu; 184 unsigned long flags; 185 186 oops_enter(); 187 188 /* racy, but better than risking deadlock. */ 189 raw_local_irq_save(flags); 190 cpu = smp_processor_id(); 191 if (!arch_spin_trylock(&die_lock)) { 192 if (cpu == die_owner) 193 /* nested oops. should stop eventually */; 194 else 195 arch_spin_lock(&die_lock); 196 } 197 die_nest_count++; 198 die_owner = cpu; 199 console_verbose(); 200 bust_spinlocks(1); 201 if (machine_is(powermac)) 202 pmac_backlight_unblank(); 203 return flags; 204 } 205 NOKPROBE_SYMBOL(oops_begin); 206 207 static void oops_end(unsigned long flags, struct pt_regs *regs, 208 int signr) 209 { 210 bust_spinlocks(0); 211 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 212 die_nest_count--; 213 oops_exit(); 214 printk("\n"); 215 if (!die_nest_count) { 216 /* Nest count reaches zero, release the lock. */ 217 die_owner = -1; 218 arch_spin_unlock(&die_lock); 219 } 220 raw_local_irq_restore(flags); 221 222 /* 223 * system_reset_excption handles debugger, crash dump, panic, for 0x100 224 */ 225 if (TRAP(regs) == INTERRUPT_SYSTEM_RESET) 226 return; 227 228 crash_fadump(regs, "die oops"); 229 230 if (kexec_should_crash(current)) 231 crash_kexec(regs); 232 233 if (!signr) 234 return; 235 236 /* 237 * While our oops output is serialised by a spinlock, output 238 * from panic() called below can race and corrupt it. If we 239 * know we are going to panic, delay for 1 second so we have a 240 * chance to get clean backtraces from all CPUs that are oopsing. 241 */ 242 if (in_interrupt() || panic_on_oops || !current->pid || 243 is_global_init(current)) { 244 mdelay(MSEC_PER_SEC); 245 } 246 247 if (panic_on_oops) 248 panic("Fatal exception"); 249 make_task_dead(signr); 250 } 251 NOKPROBE_SYMBOL(oops_end); 252 253 static char *get_mmu_str(void) 254 { 255 if (early_radix_enabled()) 256 return " MMU=Radix"; 257 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE)) 258 return " MMU=Hash"; 259 return ""; 260 } 261 262 static int __die(const char *str, struct pt_regs *regs, long err) 263 { 264 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); 265 266 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n", 267 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE", 268 PAGE_SIZE / 1024, get_mmu_str(), 269 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "", 270 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 271 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "", 272 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 273 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "", 274 ppc_md.name ? ppc_md.name : ""); 275 276 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) 277 return 1; 278 279 print_modules(); 280 show_regs(regs); 281 282 return 0; 283 } 284 NOKPROBE_SYMBOL(__die); 285 286 void die(const char *str, struct pt_regs *regs, long err) 287 { 288 unsigned long flags; 289 290 /* 291 * system_reset_excption handles debugger, crash dump, panic, for 0x100 292 */ 293 if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) { 294 if (debugger(regs)) 295 return; 296 } 297 298 flags = oops_begin(regs); 299 if (__die(str, regs, err)) 300 err = 0; 301 oops_end(flags, regs, err); 302 } 303 NOKPROBE_SYMBOL(die); 304 305 void user_single_step_report(struct pt_regs *regs) 306 { 307 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip); 308 } 309 310 static void show_signal_msg(int signr, struct pt_regs *regs, int code, 311 unsigned long addr) 312 { 313 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 314 DEFAULT_RATELIMIT_BURST); 315 316 if (!show_unhandled_signals) 317 return; 318 319 if (!unhandled_signal(current, signr)) 320 return; 321 322 if (!__ratelimit(&rs)) 323 return; 324 325 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x", 326 current->comm, current->pid, signame(signr), signr, 327 addr, regs->nip, regs->link, code); 328 329 print_vma_addr(KERN_CONT " in ", regs->nip); 330 331 pr_cont("\n"); 332 333 show_user_instructions(regs); 334 } 335 336 static bool exception_common(int signr, struct pt_regs *regs, int code, 337 unsigned long addr) 338 { 339 if (!user_mode(regs)) { 340 die("Exception in kernel mode", regs, signr); 341 return false; 342 } 343 344 /* 345 * Must not enable interrupts even for user-mode exception, because 346 * this can be called from machine check, which may be a NMI or IRQ 347 * which don't like interrupts being enabled. Could check for 348 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good 349 * reason why _exception() should enable irqs for an exception handler, 350 * the handlers themselves do that directly. 351 */ 352 353 show_signal_msg(signr, regs, code, addr); 354 355 current->thread.trap_nr = code; 356 357 return true; 358 } 359 360 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key) 361 { 362 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr)) 363 return; 364 365 force_sig_pkuerr((void __user *) addr, key); 366 } 367 368 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) 369 { 370 if (!exception_common(signr, regs, code, addr)) 371 return; 372 373 force_sig_fault(signr, code, (void __user *)addr); 374 } 375 376 /* 377 * The interrupt architecture has a quirk in that the HV interrupts excluding 378 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing 379 * that an interrupt handler must do is save off a GPR into a scratch register, 380 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch. 381 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing 382 * that it is non-reentrant, which leads to random data corruption. 383 * 384 * The solution is for NMI interrupts in HV mode to check if they originated 385 * from these critical HV interrupt regions. If so, then mark them not 386 * recoverable. 387 * 388 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the 389 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux 390 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so 391 * that would work. However any other guest OS that may have the SPRG live 392 * and MSR[RI]=1 could encounter silent corruption. 393 * 394 * Builds that do not support KVM could take this second option to increase 395 * the recoverability of NMIs. 396 */ 397 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs) 398 { 399 #ifdef CONFIG_PPC_POWERNV 400 unsigned long kbase = (unsigned long)_stext; 401 unsigned long nip = regs->nip; 402 403 if (!(regs->msr & MSR_RI)) 404 return; 405 if (!(regs->msr & MSR_HV)) 406 return; 407 if (regs->msr & MSR_PR) 408 return; 409 410 /* 411 * Now test if the interrupt has hit a range that may be using 412 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The 413 * problem ranges all run un-relocated. Test real and virt modes 414 * at the same time by dropping the high bit of the nip (virt mode 415 * entry points still have the +0x4000 offset). 416 */ 417 nip &= ~0xc000000000000000ULL; 418 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600)) 419 goto nonrecoverable; 420 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00)) 421 goto nonrecoverable; 422 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0)) 423 goto nonrecoverable; 424 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0)) 425 goto nonrecoverable; 426 427 /* Trampoline code runs un-relocated so subtract kbase. */ 428 if (nip >= (unsigned long)(start_real_trampolines - kbase) && 429 nip < (unsigned long)(end_real_trampolines - kbase)) 430 goto nonrecoverable; 431 if (nip >= (unsigned long)(start_virt_trampolines - kbase) && 432 nip < (unsigned long)(end_virt_trampolines - kbase)) 433 goto nonrecoverable; 434 return; 435 436 nonrecoverable: 437 regs->msr &= ~MSR_RI; 438 local_paca->hsrr_valid = 0; 439 local_paca->srr_valid = 0; 440 #endif 441 } 442 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception) 443 { 444 unsigned long hsrr0, hsrr1; 445 bool saved_hsrrs = false; 446 447 /* 448 * System reset can interrupt code where HSRRs are live and MSR[RI]=1. 449 * The system reset interrupt itself may clobber HSRRs (e.g., to call 450 * OPAL), so save them here and restore them before returning. 451 * 452 * Machine checks don't need to save HSRRs, as the real mode handler 453 * is careful to avoid them, and the regular handler is not delivered 454 * as an NMI. 455 */ 456 if (cpu_has_feature(CPU_FTR_HVMODE)) { 457 hsrr0 = mfspr(SPRN_HSRR0); 458 hsrr1 = mfspr(SPRN_HSRR1); 459 saved_hsrrs = true; 460 } 461 462 hv_nmi_check_nonrecoverable(regs); 463 464 __this_cpu_inc(irq_stat.sreset_irqs); 465 466 /* See if any machine dependent calls */ 467 if (ppc_md.system_reset_exception) { 468 if (ppc_md.system_reset_exception(regs)) 469 goto out; 470 } 471 472 if (debugger(regs)) 473 goto out; 474 475 kmsg_dump(KMSG_DUMP_OOPS); 476 /* 477 * A system reset is a request to dump, so we always send 478 * it through the crashdump code (if fadump or kdump are 479 * registered). 480 */ 481 crash_fadump(regs, "System Reset"); 482 483 crash_kexec(regs); 484 485 /* 486 * We aren't the primary crash CPU. We need to send it 487 * to a holding pattern to avoid it ending up in the panic 488 * code. 489 */ 490 crash_kexec_secondary(regs); 491 492 /* 493 * No debugger or crash dump registered, print logs then 494 * panic. 495 */ 496 die("System Reset", regs, SIGABRT); 497 498 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ 499 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 500 nmi_panic(regs, "System Reset"); 501 502 out: 503 #ifdef CONFIG_PPC_BOOK3S_64 504 BUG_ON(get_paca()->in_nmi == 0); 505 if (get_paca()->in_nmi > 1) 506 die("Unrecoverable nested System Reset", regs, SIGABRT); 507 #endif 508 /* Must die if the interrupt is not recoverable */ 509 if (regs_is_unrecoverable(regs)) { 510 /* For the reason explained in die_mce, nmi_exit before die */ 511 nmi_exit(); 512 die("Unrecoverable System Reset", regs, SIGABRT); 513 } 514 515 if (saved_hsrrs) { 516 mtspr(SPRN_HSRR0, hsrr0); 517 mtspr(SPRN_HSRR1, hsrr1); 518 } 519 520 /* What should we do here? We could issue a shutdown or hard reset. */ 521 522 return 0; 523 } 524 525 /* 526 * I/O accesses can cause machine checks on powermacs. 527 * Check if the NIP corresponds to the address of a sync 528 * instruction for which there is an entry in the exception 529 * table. 530 * -- paulus. 531 */ 532 static inline int check_io_access(struct pt_regs *regs) 533 { 534 #ifdef CONFIG_PPC32 535 unsigned long msr = regs->msr; 536 const struct exception_table_entry *entry; 537 unsigned int *nip = (unsigned int *)regs->nip; 538 539 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) 540 && (entry = search_exception_tables(regs->nip)) != NULL) { 541 /* 542 * Check that it's a sync instruction, or somewhere 543 * in the twi; isync; nop sequence that inb/inw/inl uses. 544 * As the address is in the exception table 545 * we should be able to read the instr there. 546 * For the debug message, we look at the preceding 547 * load or store. 548 */ 549 if (*nip == PPC_RAW_NOP()) 550 nip -= 2; 551 else if (*nip == PPC_RAW_ISYNC()) 552 --nip; 553 if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) { 554 unsigned int rb; 555 556 --nip; 557 rb = (*nip >> 11) & 0x1f; 558 printk(KERN_DEBUG "%s bad port %lx at %p\n", 559 (*nip & 0x100)? "OUT to": "IN from", 560 regs->gpr[rb] - _IO_BASE, nip); 561 regs_set_recoverable(regs); 562 regs_set_return_ip(regs, extable_fixup(entry)); 563 return 1; 564 } 565 } 566 #endif /* CONFIG_PPC32 */ 567 return 0; 568 } 569 570 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 571 /* On 4xx, the reason for the machine check or program exception 572 is in the ESR. */ 573 #define get_reason(regs) ((regs)->esr) 574 #define REASON_FP ESR_FP 575 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) 576 #define REASON_PRIVILEGED ESR_PPR 577 #define REASON_TRAP ESR_PTR 578 #define REASON_PREFIXED 0 579 #define REASON_BOUNDARY 0 580 581 /* single-step stuff */ 582 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) 583 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) 584 #define clear_br_trace(regs) do {} while(0) 585 #else 586 /* On non-4xx, the reason for the machine check or program 587 exception is in the MSR. */ 588 #define get_reason(regs) ((regs)->msr) 589 #define REASON_TM SRR1_PROGTM 590 #define REASON_FP SRR1_PROGFPE 591 #define REASON_ILLEGAL SRR1_PROGILL 592 #define REASON_PRIVILEGED SRR1_PROGPRIV 593 #define REASON_TRAP SRR1_PROGTRAP 594 #define REASON_PREFIXED SRR1_PREFIXED 595 #define REASON_BOUNDARY SRR1_BOUNDARY 596 597 #define single_stepping(regs) ((regs)->msr & MSR_SE) 598 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE)) 599 #define clear_br_trace(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE)) 600 #endif 601 602 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4) 603 604 #if defined(CONFIG_PPC_E500) 605 int machine_check_e500mc(struct pt_regs *regs) 606 { 607 unsigned long mcsr = mfspr(SPRN_MCSR); 608 unsigned long pvr = mfspr(SPRN_PVR); 609 unsigned long reason = mcsr; 610 int recoverable = 1; 611 612 if (reason & MCSR_LD) { 613 recoverable = fsl_rio_mcheck_exception(regs); 614 if (recoverable == 1) 615 goto silent_out; 616 } 617 618 printk("Machine check in kernel mode.\n"); 619 printk("Caused by (from MCSR=%lx): ", reason); 620 621 if (reason & MCSR_MCP) 622 pr_cont("Machine Check Signal\n"); 623 624 if (reason & MCSR_ICPERR) { 625 pr_cont("Instruction Cache Parity Error\n"); 626 627 /* 628 * This is recoverable by invalidating the i-cache. 629 */ 630 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); 631 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) 632 ; 633 634 /* 635 * This will generally be accompanied by an instruction 636 * fetch error report -- only treat MCSR_IF as fatal 637 * if it wasn't due to an L1 parity error. 638 */ 639 reason &= ~MCSR_IF; 640 } 641 642 if (reason & MCSR_DCPERR_MC) { 643 pr_cont("Data Cache Parity Error\n"); 644 645 /* 646 * In write shadow mode we auto-recover from the error, but it 647 * may still get logged and cause a machine check. We should 648 * only treat the non-write shadow case as non-recoverable. 649 */ 650 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit 651 * is not implemented but L1 data cache always runs in write 652 * shadow mode. Hence on data cache parity errors HW will 653 * automatically invalidate the L1 Data Cache. 654 */ 655 if (PVR_VER(pvr) != PVR_VER_E6500) { 656 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) 657 recoverable = 0; 658 } 659 } 660 661 if (reason & MCSR_L2MMU_MHIT) { 662 pr_cont("Hit on multiple TLB entries\n"); 663 recoverable = 0; 664 } 665 666 if (reason & MCSR_NMI) 667 pr_cont("Non-maskable interrupt\n"); 668 669 if (reason & MCSR_IF) { 670 pr_cont("Instruction Fetch Error Report\n"); 671 recoverable = 0; 672 } 673 674 if (reason & MCSR_LD) { 675 pr_cont("Load Error Report\n"); 676 recoverable = 0; 677 } 678 679 if (reason & MCSR_ST) { 680 pr_cont("Store Error Report\n"); 681 recoverable = 0; 682 } 683 684 if (reason & MCSR_LDG) { 685 pr_cont("Guarded Load Error Report\n"); 686 recoverable = 0; 687 } 688 689 if (reason & MCSR_TLBSYNC) 690 pr_cont("Simultaneous tlbsync operations\n"); 691 692 if (reason & MCSR_BSL2_ERR) { 693 pr_cont("Level 2 Cache Error\n"); 694 recoverable = 0; 695 } 696 697 if (reason & MCSR_MAV) { 698 u64 addr; 699 700 addr = mfspr(SPRN_MCAR); 701 addr |= (u64)mfspr(SPRN_MCARU) << 32; 702 703 pr_cont("Machine Check %s Address: %#llx\n", 704 reason & MCSR_MEA ? "Effective" : "Physical", addr); 705 } 706 707 silent_out: 708 mtspr(SPRN_MCSR, mcsr); 709 return mfspr(SPRN_MCSR) == 0 && recoverable; 710 } 711 712 int machine_check_e500(struct pt_regs *regs) 713 { 714 unsigned long reason = mfspr(SPRN_MCSR); 715 716 if (reason & MCSR_BUS_RBERR) { 717 if (fsl_rio_mcheck_exception(regs)) 718 return 1; 719 if (fsl_pci_mcheck_exception(regs)) 720 return 1; 721 } 722 723 printk("Machine check in kernel mode.\n"); 724 printk("Caused by (from MCSR=%lx): ", reason); 725 726 if (reason & MCSR_MCP) 727 pr_cont("Machine Check Signal\n"); 728 if (reason & MCSR_ICPERR) 729 pr_cont("Instruction Cache Parity Error\n"); 730 if (reason & MCSR_DCP_PERR) 731 pr_cont("Data Cache Push Parity Error\n"); 732 if (reason & MCSR_DCPERR) 733 pr_cont("Data Cache Parity Error\n"); 734 if (reason & MCSR_BUS_IAERR) 735 pr_cont("Bus - Instruction Address Error\n"); 736 if (reason & MCSR_BUS_RAERR) 737 pr_cont("Bus - Read Address Error\n"); 738 if (reason & MCSR_BUS_WAERR) 739 pr_cont("Bus - Write Address Error\n"); 740 if (reason & MCSR_BUS_IBERR) 741 pr_cont("Bus - Instruction Data Error\n"); 742 if (reason & MCSR_BUS_RBERR) 743 pr_cont("Bus - Read Data Bus Error\n"); 744 if (reason & MCSR_BUS_WBERR) 745 pr_cont("Bus - Write Data Bus Error\n"); 746 if (reason & MCSR_BUS_IPERR) 747 pr_cont("Bus - Instruction Parity Error\n"); 748 if (reason & MCSR_BUS_RPERR) 749 pr_cont("Bus - Read Parity Error\n"); 750 751 return 0; 752 } 753 754 int machine_check_generic(struct pt_regs *regs) 755 { 756 return 0; 757 } 758 #elif defined(CONFIG_PPC32) 759 int machine_check_generic(struct pt_regs *regs) 760 { 761 unsigned long reason = regs->msr; 762 763 printk("Machine check in kernel mode.\n"); 764 printk("Caused by (from SRR1=%lx): ", reason); 765 switch (reason & 0x601F0000) { 766 case 0x80000: 767 pr_cont("Machine check signal\n"); 768 break; 769 case 0x40000: 770 case 0x140000: /* 7450 MSS error and TEA */ 771 pr_cont("Transfer error ack signal\n"); 772 break; 773 case 0x20000: 774 pr_cont("Data parity error signal\n"); 775 break; 776 case 0x10000: 777 pr_cont("Address parity error signal\n"); 778 break; 779 case 0x20000000: 780 pr_cont("L1 Data Cache error\n"); 781 break; 782 case 0x40000000: 783 pr_cont("L1 Instruction Cache error\n"); 784 break; 785 case 0x00100000: 786 pr_cont("L2 data cache parity error\n"); 787 break; 788 default: 789 pr_cont("Unknown values in msr\n"); 790 } 791 return 0; 792 } 793 #endif /* everything else */ 794 795 void die_mce(const char *str, struct pt_regs *regs, long err) 796 { 797 /* 798 * The machine check wants to kill the interrupted context, 799 * but make_task_dead() checks for in_interrupt() and panics 800 * in that case, so exit the irq/nmi before calling die. 801 */ 802 if (in_nmi()) 803 nmi_exit(); 804 else 805 irq_exit(); 806 die(str, regs, err); 807 } 808 809 /* 810 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt 811 * (it uses its own early real-mode handler to handle the MCE proper 812 * and then raises irq_work to call this handler when interrupts are 813 * enabled). The only time when this is not true is if the early handler 814 * is unrecoverable, then it does call this directly to try to get a 815 * message out. 816 */ 817 static void __machine_check_exception(struct pt_regs *regs) 818 { 819 int recover = 0; 820 821 __this_cpu_inc(irq_stat.mce_exceptions); 822 823 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 824 825 /* See if any machine dependent calls. In theory, we would want 826 * to call the CPU first, and call the ppc_md. one if the CPU 827 * one returns a positive number. However there is existing code 828 * that assumes the board gets a first chance, so let's keep it 829 * that way for now and fix things later. --BenH. 830 */ 831 if (ppc_md.machine_check_exception) 832 recover = ppc_md.machine_check_exception(regs); 833 else if (cur_cpu_spec->machine_check) 834 recover = cur_cpu_spec->machine_check(regs); 835 836 if (recover > 0) 837 goto bail; 838 839 if (debugger_fault_handler(regs)) 840 goto bail; 841 842 if (check_io_access(regs)) 843 goto bail; 844 845 die_mce("Machine check", regs, SIGBUS); 846 847 bail: 848 /* Must die if the interrupt is not recoverable */ 849 if (regs_is_unrecoverable(regs)) 850 die_mce("Unrecoverable Machine check", regs, SIGBUS); 851 } 852 853 #ifdef CONFIG_PPC_BOOK3S_64 854 DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot) 855 { 856 udbg_printf("Machine check (early boot)\n"); 857 udbg_printf("SRR0=0x%016lx SRR1=0x%016lx\n", regs->nip, regs->msr); 858 udbg_printf(" DAR=0x%016lx DSISR=0x%08lx\n", regs->dar, regs->dsisr); 859 udbg_printf(" LR=0x%016lx R1=0x%08lx\n", regs->link, regs->gpr[1]); 860 udbg_printf("------\n"); 861 die("Machine check (early boot)", regs, SIGBUS); 862 for (;;) 863 ; 864 return 0; 865 } 866 867 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async) 868 { 869 __machine_check_exception(regs); 870 } 871 #endif 872 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception) 873 { 874 __machine_check_exception(regs); 875 876 return 0; 877 } 878 879 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */ 880 { 881 die("System Management Interrupt", regs, SIGABRT); 882 } 883 884 #ifdef CONFIG_VSX 885 static void p9_hmi_special_emu(struct pt_regs *regs) 886 { 887 unsigned int ra, rb, t, i, sel, instr, rc; 888 const void __user *addr; 889 u8 vbuf[16] __aligned(16), *vdst; 890 unsigned long ea, msr, msr_mask; 891 bool swap; 892 893 if (__get_user(instr, (unsigned int __user *)regs->nip)) 894 return; 895 896 /* 897 * lxvb16x opcode: 0x7c0006d8 898 * lxvd2x opcode: 0x7c000698 899 * lxvh8x opcode: 0x7c000658 900 * lxvw4x opcode: 0x7c000618 901 */ 902 if ((instr & 0xfc00073e) != 0x7c000618) { 903 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" 904 " instr=%08x\n", 905 smp_processor_id(), current->comm, current->pid, 906 regs->nip, instr); 907 return; 908 } 909 910 /* Grab vector registers into the task struct */ 911 msr = regs->msr; /* Grab msr before we flush the bits */ 912 flush_vsx_to_thread(current); 913 enable_kernel_altivec(); 914 915 /* 916 * Is userspace running with a different endian (this is rare but 917 * not impossible) 918 */ 919 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 920 921 /* Decode the instruction */ 922 ra = (instr >> 16) & 0x1f; 923 rb = (instr >> 11) & 0x1f; 924 t = (instr >> 21) & 0x1f; 925 if (instr & 1) 926 vdst = (u8 *)¤t->thread.vr_state.vr[t]; 927 else 928 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; 929 930 /* Grab the vector address */ 931 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); 932 if (is_32bit_task()) 933 ea &= 0xfffffffful; 934 addr = (__force const void __user *)ea; 935 936 /* Check it */ 937 if (!access_ok(addr, 16)) { 938 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" 939 " instr=%08x addr=%016lx\n", 940 smp_processor_id(), current->comm, current->pid, 941 regs->nip, instr, (unsigned long)addr); 942 return; 943 } 944 945 /* Read the vector */ 946 rc = 0; 947 if ((unsigned long)addr & 0xfUL) 948 /* unaligned case */ 949 rc = __copy_from_user_inatomic(vbuf, addr, 16); 950 else 951 __get_user_atomic_128_aligned(vbuf, addr, rc); 952 if (rc) { 953 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" 954 " instr=%08x addr=%016lx\n", 955 smp_processor_id(), current->comm, current->pid, 956 regs->nip, instr, (unsigned long)addr); 957 return; 958 } 959 960 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" 961 " instr=%08x addr=%016lx\n", 962 smp_processor_id(), current->comm, current->pid, regs->nip, 963 instr, (unsigned long) addr); 964 965 /* Grab instruction "selector" */ 966 sel = (instr >> 6) & 3; 967 968 /* 969 * Check to make sure the facility is actually enabled. This 970 * could happen if we get a false positive hit. 971 * 972 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 973 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 974 */ 975 msr_mask = MSR_VSX; 976 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ 977 msr_mask = MSR_VEC; 978 if (!(msr & msr_mask)) { 979 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" 980 " instr=%08x msr:%016lx\n", 981 smp_processor_id(), current->comm, current->pid, 982 regs->nip, instr, msr); 983 return; 984 } 985 986 /* Do logging here before we modify sel based on endian */ 987 switch (sel) { 988 case 0: /* lxvw4x */ 989 PPC_WARN_EMULATED(lxvw4x, regs); 990 break; 991 case 1: /* lxvh8x */ 992 PPC_WARN_EMULATED(lxvh8x, regs); 993 break; 994 case 2: /* lxvd2x */ 995 PPC_WARN_EMULATED(lxvd2x, regs); 996 break; 997 case 3: /* lxvb16x */ 998 PPC_WARN_EMULATED(lxvb16x, regs); 999 break; 1000 } 1001 1002 #ifdef __LITTLE_ENDIAN__ 1003 /* 1004 * An LE kernel stores the vector in the task struct as an LE 1005 * byte array (effectively swapping both the components and 1006 * the content of the components). Those instructions expect 1007 * the components to remain in ascending address order, so we 1008 * swap them back. 1009 * 1010 * If we are running a BE user space, the expectation is that 1011 * of a simple memcpy, so forcing the emulation to look like 1012 * a lxvb16x should do the trick. 1013 */ 1014 if (swap) 1015 sel = 3; 1016 1017 switch (sel) { 1018 case 0: /* lxvw4x */ 1019 for (i = 0; i < 4; i++) 1020 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; 1021 break; 1022 case 1: /* lxvh8x */ 1023 for (i = 0; i < 8; i++) 1024 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; 1025 break; 1026 case 2: /* lxvd2x */ 1027 for (i = 0; i < 2; i++) 1028 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; 1029 break; 1030 case 3: /* lxvb16x */ 1031 for (i = 0; i < 16; i++) 1032 vdst[i] = vbuf[15-i]; 1033 break; 1034 } 1035 #else /* __LITTLE_ENDIAN__ */ 1036 /* On a big endian kernel, a BE userspace only needs a memcpy */ 1037 if (!swap) 1038 sel = 3; 1039 1040 /* Otherwise, we need to swap the content of the components */ 1041 switch (sel) { 1042 case 0: /* lxvw4x */ 1043 for (i = 0; i < 4; i++) 1044 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); 1045 break; 1046 case 1: /* lxvh8x */ 1047 for (i = 0; i < 8; i++) 1048 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); 1049 break; 1050 case 2: /* lxvd2x */ 1051 for (i = 0; i < 2; i++) 1052 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); 1053 break; 1054 case 3: /* lxvb16x */ 1055 memcpy(vdst, vbuf, 16); 1056 break; 1057 } 1058 #endif /* !__LITTLE_ENDIAN__ */ 1059 1060 /* Go to next instruction */ 1061 regs_add_return_ip(regs, 4); 1062 } 1063 #endif /* CONFIG_VSX */ 1064 1065 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception) 1066 { 1067 struct pt_regs *old_regs; 1068 1069 old_regs = set_irq_regs(regs); 1070 1071 #ifdef CONFIG_VSX 1072 /* Real mode flagged P9 special emu is needed */ 1073 if (local_paca->hmi_p9_special_emu) { 1074 local_paca->hmi_p9_special_emu = 0; 1075 1076 /* 1077 * We don't want to take page faults while doing the 1078 * emulation, we just replay the instruction if necessary. 1079 */ 1080 pagefault_disable(); 1081 p9_hmi_special_emu(regs); 1082 pagefault_enable(); 1083 } 1084 #endif /* CONFIG_VSX */ 1085 1086 if (ppc_md.handle_hmi_exception) 1087 ppc_md.handle_hmi_exception(regs); 1088 1089 set_irq_regs(old_regs); 1090 } 1091 1092 DEFINE_INTERRUPT_HANDLER(unknown_exception) 1093 { 1094 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1095 regs->nip, regs->msr, regs->trap); 1096 1097 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1098 } 1099 1100 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception) 1101 { 1102 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1103 regs->nip, regs->msr, regs->trap); 1104 1105 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1106 } 1107 1108 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception) 1109 { 1110 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1111 regs->nip, regs->msr, regs->trap); 1112 1113 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1114 1115 return 0; 1116 } 1117 1118 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception) 1119 { 1120 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, 1121 5, SIGTRAP) == NOTIFY_STOP) 1122 return; 1123 if (debugger_iabr_match(regs)) 1124 return; 1125 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1126 } 1127 1128 DEFINE_INTERRUPT_HANDLER(RunModeException) 1129 { 1130 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1131 } 1132 1133 static void __single_step_exception(struct pt_regs *regs) 1134 { 1135 clear_single_step(regs); 1136 clear_br_trace(regs); 1137 1138 if (kprobe_post_handler(regs)) 1139 return; 1140 1141 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 1142 5, SIGTRAP) == NOTIFY_STOP) 1143 return; 1144 if (debugger_sstep(regs)) 1145 return; 1146 1147 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 1148 } 1149 1150 DEFINE_INTERRUPT_HANDLER(single_step_exception) 1151 { 1152 __single_step_exception(regs); 1153 } 1154 1155 /* 1156 * After we have successfully emulated an instruction, we have to 1157 * check if the instruction was being single-stepped, and if so, 1158 * pretend we got a single-step exception. This was pointed out 1159 * by Kumar Gala. -- paulus 1160 */ 1161 void emulate_single_step(struct pt_regs *regs) 1162 { 1163 if (single_stepping(regs)) 1164 __single_step_exception(regs); 1165 } 1166 1167 #ifdef CONFIG_PPC_FPU_REGS 1168 static inline int __parse_fpscr(unsigned long fpscr) 1169 { 1170 int ret = FPE_FLTUNK; 1171 1172 /* Invalid operation */ 1173 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) 1174 ret = FPE_FLTINV; 1175 1176 /* Overflow */ 1177 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) 1178 ret = FPE_FLTOVF; 1179 1180 /* Underflow */ 1181 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) 1182 ret = FPE_FLTUND; 1183 1184 /* Divide by zero */ 1185 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) 1186 ret = FPE_FLTDIV; 1187 1188 /* Inexact result */ 1189 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) 1190 ret = FPE_FLTRES; 1191 1192 return ret; 1193 } 1194 #endif 1195 1196 static void parse_fpe(struct pt_regs *regs) 1197 { 1198 int code = 0; 1199 1200 flush_fp_to_thread(current); 1201 1202 #ifdef CONFIG_PPC_FPU_REGS 1203 code = __parse_fpscr(current->thread.fp_state.fpscr); 1204 #endif 1205 1206 _exception(SIGFPE, regs, code, regs->nip); 1207 } 1208 1209 /* 1210 * Illegal instruction emulation support. Originally written to 1211 * provide the PVR to user applications using the mfspr rd, PVR. 1212 * Return non-zero if we can't emulate, or -EFAULT if the associated 1213 * memory access caused an access fault. Return zero on success. 1214 * 1215 * There are a couple of ways to do this, either "decode" the instruction 1216 * or directly match lots of bits. In this case, matching lots of 1217 * bits is faster and easier. 1218 * 1219 */ 1220 static int emulate_string_inst(struct pt_regs *regs, u32 instword) 1221 { 1222 u8 rT = (instword >> 21) & 0x1f; 1223 u8 rA = (instword >> 16) & 0x1f; 1224 u8 NB_RB = (instword >> 11) & 0x1f; 1225 u32 num_bytes; 1226 unsigned long EA; 1227 int pos = 0; 1228 1229 /* Early out if we are an invalid form of lswx */ 1230 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) 1231 if ((rT == rA) || (rT == NB_RB)) 1232 return -EINVAL; 1233 1234 EA = (rA == 0) ? 0 : regs->gpr[rA]; 1235 1236 switch (instword & PPC_INST_STRING_MASK) { 1237 case PPC_INST_LSWX: 1238 case PPC_INST_STSWX: 1239 EA += NB_RB; 1240 num_bytes = regs->xer & 0x7f; 1241 break; 1242 case PPC_INST_LSWI: 1243 case PPC_INST_STSWI: 1244 num_bytes = (NB_RB == 0) ? 32 : NB_RB; 1245 break; 1246 default: 1247 return -EINVAL; 1248 } 1249 1250 while (num_bytes != 0) 1251 { 1252 u8 val; 1253 u32 shift = 8 * (3 - (pos & 0x3)); 1254 1255 /* if process is 32-bit, clear upper 32 bits of EA */ 1256 if ((regs->msr & MSR_64BIT) == 0) 1257 EA &= 0xFFFFFFFF; 1258 1259 switch ((instword & PPC_INST_STRING_MASK)) { 1260 case PPC_INST_LSWX: 1261 case PPC_INST_LSWI: 1262 if (get_user(val, (u8 __user *)EA)) 1263 return -EFAULT; 1264 /* first time updating this reg, 1265 * zero it out */ 1266 if (pos == 0) 1267 regs->gpr[rT] = 0; 1268 regs->gpr[rT] |= val << shift; 1269 break; 1270 case PPC_INST_STSWI: 1271 case PPC_INST_STSWX: 1272 val = regs->gpr[rT] >> shift; 1273 if (put_user(val, (u8 __user *)EA)) 1274 return -EFAULT; 1275 break; 1276 } 1277 /* move EA to next address */ 1278 EA += 1; 1279 num_bytes--; 1280 1281 /* manage our position within the register */ 1282 if (++pos == 4) { 1283 pos = 0; 1284 if (++rT == 32) 1285 rT = 0; 1286 } 1287 } 1288 1289 return 0; 1290 } 1291 1292 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) 1293 { 1294 u32 ra,rs; 1295 unsigned long tmp; 1296 1297 ra = (instword >> 16) & 0x1f; 1298 rs = (instword >> 21) & 0x1f; 1299 1300 tmp = regs->gpr[rs]; 1301 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); 1302 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); 1303 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1304 regs->gpr[ra] = tmp; 1305 1306 return 0; 1307 } 1308 1309 static int emulate_isel(struct pt_regs *regs, u32 instword) 1310 { 1311 u8 rT = (instword >> 21) & 0x1f; 1312 u8 rA = (instword >> 16) & 0x1f; 1313 u8 rB = (instword >> 11) & 0x1f; 1314 u8 BC = (instword >> 6) & 0x1f; 1315 u8 bit; 1316 unsigned long tmp; 1317 1318 tmp = (rA == 0) ? 0 : regs->gpr[rA]; 1319 bit = (regs->ccr >> (31 - BC)) & 0x1; 1320 1321 regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; 1322 1323 return 0; 1324 } 1325 1326 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1327 static inline bool tm_abort_check(struct pt_regs *regs, int cause) 1328 { 1329 /* If we're emulating a load/store in an active transaction, we cannot 1330 * emulate it as the kernel operates in transaction suspended context. 1331 * We need to abort the transaction. This creates a persistent TM 1332 * abort so tell the user what caused it with a new code. 1333 */ 1334 if (MSR_TM_TRANSACTIONAL(regs->msr)) { 1335 tm_enable(); 1336 tm_abort(cause); 1337 return true; 1338 } 1339 return false; 1340 } 1341 #else 1342 static inline bool tm_abort_check(struct pt_regs *regs, int reason) 1343 { 1344 return false; 1345 } 1346 #endif 1347 1348 static int emulate_instruction(struct pt_regs *regs) 1349 { 1350 u32 instword; 1351 u32 rd; 1352 1353 if (!user_mode(regs)) 1354 return -EINVAL; 1355 1356 if (get_user(instword, (u32 __user *)(regs->nip))) 1357 return -EFAULT; 1358 1359 /* Emulate the mfspr rD, PVR. */ 1360 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { 1361 PPC_WARN_EMULATED(mfpvr, regs); 1362 rd = (instword >> 21) & 0x1f; 1363 regs->gpr[rd] = mfspr(SPRN_PVR); 1364 return 0; 1365 } 1366 1367 /* Emulating the dcba insn is just a no-op. */ 1368 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { 1369 PPC_WARN_EMULATED(dcba, regs); 1370 return 0; 1371 } 1372 1373 /* Emulate the mcrxr insn. */ 1374 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { 1375 int shift = (instword >> 21) & 0x1c; 1376 unsigned long msk = 0xf0000000UL >> shift; 1377 1378 PPC_WARN_EMULATED(mcrxr, regs); 1379 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); 1380 regs->xer &= ~0xf0000000UL; 1381 return 0; 1382 } 1383 1384 /* Emulate load/store string insn. */ 1385 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { 1386 if (tm_abort_check(regs, 1387 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) 1388 return -EINVAL; 1389 PPC_WARN_EMULATED(string, regs); 1390 return emulate_string_inst(regs, instword); 1391 } 1392 1393 /* Emulate the popcntb (Population Count Bytes) instruction. */ 1394 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { 1395 PPC_WARN_EMULATED(popcntb, regs); 1396 return emulate_popcntb_inst(regs, instword); 1397 } 1398 1399 /* Emulate isel (Integer Select) instruction */ 1400 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { 1401 PPC_WARN_EMULATED(isel, regs); 1402 return emulate_isel(regs, instword); 1403 } 1404 1405 /* Emulate sync instruction variants */ 1406 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { 1407 PPC_WARN_EMULATED(sync, regs); 1408 asm volatile("sync"); 1409 return 0; 1410 } 1411 1412 #ifdef CONFIG_PPC64 1413 /* Emulate the mfspr rD, DSCR. */ 1414 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == 1415 PPC_INST_MFSPR_DSCR_USER) || 1416 ((instword & PPC_INST_MFSPR_DSCR_MASK) == 1417 PPC_INST_MFSPR_DSCR)) && 1418 cpu_has_feature(CPU_FTR_DSCR)) { 1419 PPC_WARN_EMULATED(mfdscr, regs); 1420 rd = (instword >> 21) & 0x1f; 1421 regs->gpr[rd] = mfspr(SPRN_DSCR); 1422 return 0; 1423 } 1424 /* Emulate the mtspr DSCR, rD. */ 1425 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == 1426 PPC_INST_MTSPR_DSCR_USER) || 1427 ((instword & PPC_INST_MTSPR_DSCR_MASK) == 1428 PPC_INST_MTSPR_DSCR)) && 1429 cpu_has_feature(CPU_FTR_DSCR)) { 1430 PPC_WARN_EMULATED(mtdscr, regs); 1431 rd = (instword >> 21) & 0x1f; 1432 current->thread.dscr = regs->gpr[rd]; 1433 current->thread.dscr_inherit = 1; 1434 mtspr(SPRN_DSCR, current->thread.dscr); 1435 return 0; 1436 } 1437 #endif 1438 1439 return -EINVAL; 1440 } 1441 1442 int is_valid_bugaddr(unsigned long addr) 1443 { 1444 return is_kernel_addr(addr); 1445 } 1446 1447 #ifdef CONFIG_MATH_EMULATION 1448 static int emulate_math(struct pt_regs *regs) 1449 { 1450 int ret; 1451 1452 ret = do_mathemu(regs); 1453 if (ret >= 0) 1454 PPC_WARN_EMULATED(math, regs); 1455 1456 switch (ret) { 1457 case 0: 1458 emulate_single_step(regs); 1459 return 0; 1460 case 1: { 1461 int code = 0; 1462 code = __parse_fpscr(current->thread.fp_state.fpscr); 1463 _exception(SIGFPE, regs, code, regs->nip); 1464 return 0; 1465 } 1466 case -EFAULT: 1467 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1468 return 0; 1469 } 1470 1471 return -1; 1472 } 1473 #else 1474 static inline int emulate_math(struct pt_regs *regs) { return -1; } 1475 #endif 1476 1477 static void do_program_check(struct pt_regs *regs) 1478 { 1479 unsigned int reason = get_reason(regs); 1480 1481 /* We can now get here via a FP Unavailable exception if the core 1482 * has no FPU, in that case the reason flags will be 0 */ 1483 1484 if (reason & REASON_FP) { 1485 /* IEEE FP exception */ 1486 parse_fpe(regs); 1487 return; 1488 } 1489 if (reason & REASON_TRAP) { 1490 unsigned long bugaddr; 1491 /* Debugger is first in line to stop recursive faults in 1492 * rcu_lock, notify_die, or atomic_notifier_call_chain */ 1493 if (debugger_bpt(regs)) 1494 return; 1495 1496 if (kprobe_handler(regs)) 1497 return; 1498 1499 /* trap exception */ 1500 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) 1501 == NOTIFY_STOP) 1502 return; 1503 1504 bugaddr = regs->nip; 1505 /* 1506 * Fixup bugaddr for BUG_ON() in real mode 1507 */ 1508 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) 1509 bugaddr += PAGE_OFFSET; 1510 1511 if (!(regs->msr & MSR_PR) && /* not user-mode */ 1512 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { 1513 regs_add_return_ip(regs, 4); 1514 return; 1515 } 1516 1517 /* User mode considers other cases after enabling IRQs */ 1518 if (!user_mode(regs)) { 1519 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1520 return; 1521 } 1522 } 1523 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1524 if (reason & REASON_TM) { 1525 /* This is a TM "Bad Thing Exception" program check. 1526 * This occurs when: 1527 * - An rfid/hrfid/mtmsrd attempts to cause an illegal 1528 * transition in TM states. 1529 * - A trechkpt is attempted when transactional. 1530 * - A treclaim is attempted when non transactional. 1531 * - A tend is illegally attempted. 1532 * - writing a TM SPR when transactional. 1533 * 1534 * If usermode caused this, it's done something illegal and 1535 * gets a SIGILL slap on the wrist. We call it an illegal 1536 * operand to distinguish from the instruction just being bad 1537 * (e.g. executing a 'tend' on a CPU without TM!); it's an 1538 * illegal /placement/ of a valid instruction. 1539 */ 1540 if (user_mode(regs)) { 1541 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); 1542 return; 1543 } else { 1544 printk(KERN_EMERG "Unexpected TM Bad Thing exception " 1545 "at %lx (msr 0x%lx) tm_scratch=%llx\n", 1546 regs->nip, regs->msr, get_paca()->tm_scratch); 1547 die("Unrecoverable exception", regs, SIGABRT); 1548 } 1549 } 1550 #endif 1551 1552 /* 1553 * If we took the program check in the kernel skip down to sending a 1554 * SIGILL. The subsequent cases all relate to user space, such as 1555 * emulating instructions which we should only do for user space. We 1556 * also do not want to enable interrupts for kernel faults because that 1557 * might lead to further faults, and loose the context of the original 1558 * exception. 1559 */ 1560 if (!user_mode(regs)) 1561 goto sigill; 1562 1563 interrupt_cond_local_irq_enable(regs); 1564 1565 /* 1566 * (reason & REASON_TRAP) is mostly handled before enabling IRQs, 1567 * except get_user_instr() can sleep so we cannot reliably inspect the 1568 * current instruction in that context. Now that we know we are 1569 * handling a user space trap and can sleep, we can check if the trap 1570 * was a hashchk failure. 1571 */ 1572 if (reason & REASON_TRAP) { 1573 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) { 1574 ppc_inst_t insn; 1575 1576 if (get_user_instr(insn, (void __user *)regs->nip)) { 1577 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1578 return; 1579 } 1580 1581 if (ppc_inst_primary_opcode(insn) == 31 && 1582 get_xop(ppc_inst_val(insn)) == OP_31_XOP_HASHCHK) { 1583 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); 1584 return; 1585 } 1586 } 1587 1588 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1589 return; 1590 } 1591 1592 /* (reason & REASON_ILLEGAL) would be the obvious thing here, 1593 * but there seems to be a hardware bug on the 405GP (RevD) 1594 * that means ESR is sometimes set incorrectly - either to 1595 * ESR_DST (!?) or 0. In the process of chasing this with the 1596 * hardware people - not sure if it can happen on any illegal 1597 * instruction or only on FP instructions, whether there is a 1598 * pattern to occurrences etc. -dgibson 31/Mar/2003 1599 */ 1600 if (!emulate_math(regs)) 1601 return; 1602 1603 /* Try to emulate it if we should. */ 1604 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { 1605 switch (emulate_instruction(regs)) { 1606 case 0: 1607 regs_add_return_ip(regs, 4); 1608 emulate_single_step(regs); 1609 return; 1610 case -EFAULT: 1611 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1612 return; 1613 } 1614 } 1615 1616 sigill: 1617 if (reason & REASON_PRIVILEGED) 1618 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 1619 else 1620 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1621 1622 } 1623 1624 DEFINE_INTERRUPT_HANDLER(program_check_exception) 1625 { 1626 do_program_check(regs); 1627 } 1628 1629 /* 1630 * This occurs when running in hypervisor mode on POWER6 or later 1631 * and an illegal instruction is encountered. 1632 */ 1633 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt) 1634 { 1635 regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL); 1636 do_program_check(regs); 1637 } 1638 1639 DEFINE_INTERRUPT_HANDLER(alignment_exception) 1640 { 1641 int sig, code, fixed = 0; 1642 unsigned long reason; 1643 1644 interrupt_cond_local_irq_enable(regs); 1645 1646 reason = get_reason(regs); 1647 if (reason & REASON_BOUNDARY) { 1648 sig = SIGBUS; 1649 code = BUS_ADRALN; 1650 goto bad; 1651 } 1652 1653 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) 1654 return; 1655 1656 /* we don't implement logging of alignment exceptions */ 1657 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 1658 fixed = fix_alignment(regs); 1659 1660 if (fixed == 1) { 1661 /* skip over emulated instruction */ 1662 regs_add_return_ip(regs, inst_length(reason)); 1663 emulate_single_step(regs); 1664 return; 1665 } 1666 1667 /* Operand address was bad */ 1668 if (fixed == -EFAULT) { 1669 sig = SIGSEGV; 1670 code = SEGV_ACCERR; 1671 } else { 1672 sig = SIGBUS; 1673 code = BUS_ADRALN; 1674 } 1675 bad: 1676 if (user_mode(regs)) 1677 _exception(sig, regs, code, regs->dar); 1678 else 1679 bad_page_fault(regs, sig); 1680 } 1681 1682 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception) 1683 { 1684 die("Kernel stack overflow", regs, SIGSEGV); 1685 } 1686 1687 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception) 1688 { 1689 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " 1690 "%lx at %lx\n", regs->trap, regs->nip); 1691 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); 1692 } 1693 1694 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception) 1695 { 1696 if (user_mode(regs)) { 1697 /* A user program has executed an altivec instruction, 1698 but this kernel doesn't support altivec. */ 1699 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1700 return; 1701 } 1702 1703 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " 1704 "%lx at %lx\n", regs->trap, regs->nip); 1705 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); 1706 } 1707 1708 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception) 1709 { 1710 if (user_mode(regs)) { 1711 /* A user program has executed an vsx instruction, 1712 but this kernel doesn't support vsx. */ 1713 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1714 return; 1715 } 1716 1717 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " 1718 "%lx at %lx\n", regs->trap, regs->nip); 1719 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); 1720 } 1721 1722 #ifdef CONFIG_PPC_BOOK3S_64 1723 static void tm_unavailable(struct pt_regs *regs) 1724 { 1725 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1726 if (user_mode(regs)) { 1727 current->thread.load_tm++; 1728 regs_set_return_msr(regs, regs->msr | MSR_TM); 1729 tm_enable(); 1730 tm_restore_sprs(¤t->thread); 1731 return; 1732 } 1733 #endif 1734 pr_emerg("Unrecoverable TM Unavailable Exception " 1735 "%lx at %lx\n", regs->trap, regs->nip); 1736 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); 1737 } 1738 1739 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception) 1740 { 1741 static char *facility_strings[] = { 1742 [FSCR_FP_LG] = "FPU", 1743 [FSCR_VECVSX_LG] = "VMX/VSX", 1744 [FSCR_DSCR_LG] = "DSCR", 1745 [FSCR_PM_LG] = "PMU SPRs", 1746 [FSCR_BHRB_LG] = "BHRB", 1747 [FSCR_TM_LG] = "TM", 1748 [FSCR_EBB_LG] = "EBB", 1749 [FSCR_TAR_LG] = "TAR", 1750 [FSCR_MSGP_LG] = "MSGP", 1751 [FSCR_SCV_LG] = "SCV", 1752 [FSCR_PREFIX_LG] = "PREFIX", 1753 }; 1754 char *facility = "unknown"; 1755 u64 value; 1756 u32 instword, rd; 1757 u8 status; 1758 bool hv; 1759 1760 hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL); 1761 if (hv) 1762 value = mfspr(SPRN_HFSCR); 1763 else 1764 value = mfspr(SPRN_FSCR); 1765 1766 status = value >> 56; 1767 if ((hv || status >= 2) && 1768 (status < ARRAY_SIZE(facility_strings)) && 1769 facility_strings[status]) 1770 facility = facility_strings[status]; 1771 1772 /* We should not have taken this interrupt in kernel */ 1773 if (!user_mode(regs)) { 1774 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", 1775 facility, status, regs->nip); 1776 die("Unexpected facility unavailable exception", regs, SIGABRT); 1777 } 1778 1779 interrupt_cond_local_irq_enable(regs); 1780 1781 if (status == FSCR_DSCR_LG) { 1782 /* 1783 * User is accessing the DSCR register using the problem 1784 * state only SPR number (0x03) either through a mfspr or 1785 * a mtspr instruction. If it is a write attempt through 1786 * a mtspr, then we set the inherit bit. This also allows 1787 * the user to write or read the register directly in the 1788 * future by setting via the FSCR DSCR bit. But in case it 1789 * is a read DSCR attempt through a mfspr instruction, we 1790 * just emulate the instruction instead. This code path will 1791 * always emulate all the mfspr instructions till the user 1792 * has attempted at least one mtspr instruction. This way it 1793 * preserves the same behaviour when the user is accessing 1794 * the DSCR through privilege level only SPR number (0x11) 1795 * which is emulated through illegal instruction exception. 1796 * We always leave HFSCR DSCR set. 1797 */ 1798 if (get_user(instword, (u32 __user *)(regs->nip))) { 1799 pr_err("Failed to fetch the user instruction\n"); 1800 return; 1801 } 1802 1803 /* Write into DSCR (mtspr 0x03, RS) */ 1804 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) 1805 == PPC_INST_MTSPR_DSCR_USER) { 1806 rd = (instword >> 21) & 0x1f; 1807 current->thread.dscr = regs->gpr[rd]; 1808 current->thread.dscr_inherit = 1; 1809 current->thread.fscr |= FSCR_DSCR; 1810 mtspr(SPRN_FSCR, current->thread.fscr); 1811 } 1812 1813 /* Read from DSCR (mfspr RT, 0x03) */ 1814 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) 1815 == PPC_INST_MFSPR_DSCR_USER) { 1816 if (emulate_instruction(regs)) { 1817 pr_err("DSCR based mfspr emulation failed\n"); 1818 return; 1819 } 1820 regs_add_return_ip(regs, 4); 1821 emulate_single_step(regs); 1822 } 1823 return; 1824 } 1825 1826 if (status == FSCR_TM_LG) { 1827 /* 1828 * If we're here then the hardware is TM aware because it 1829 * generated an exception with FSRM_TM set. 1830 * 1831 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware 1832 * told us not to do TM, or the kernel is not built with TM 1833 * support. 1834 * 1835 * If both of those things are true, then userspace can spam the 1836 * console by triggering the printk() below just by continually 1837 * doing tbegin (or any TM instruction). So in that case just 1838 * send the process a SIGILL immediately. 1839 */ 1840 if (!cpu_has_feature(CPU_FTR_TM)) 1841 goto out; 1842 1843 tm_unavailable(regs); 1844 return; 1845 } 1846 1847 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", 1848 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); 1849 1850 out: 1851 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1852 } 1853 #endif 1854 1855 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1856 1857 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm) 1858 { 1859 /* Note: This does not handle any kind of FP laziness. */ 1860 1861 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", 1862 regs->nip, regs->msr); 1863 1864 /* We can only have got here if the task started using FP after 1865 * beginning the transaction. So, the transactional regs are just a 1866 * copy of the checkpointed ones. But, we still need to recheckpoint 1867 * as we're enabling FP for the process; it will return, abort the 1868 * transaction, and probably retry but now with FP enabled. So the 1869 * checkpointed FP registers need to be loaded. 1870 */ 1871 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1872 1873 /* 1874 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and 1875 * then it was overwrite by the thr->fp_state by tm_reclaim_thread(). 1876 * 1877 * At this point, ck{fp,vr}_state contains the exact values we want to 1878 * recheckpoint. 1879 */ 1880 1881 /* Enable FP for the task: */ 1882 current->thread.load_fp = 1; 1883 1884 /* 1885 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers. 1886 */ 1887 tm_recheckpoint(¤t->thread); 1888 } 1889 1890 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm) 1891 { 1892 /* See the comments in fp_unavailable_tm(). This function operates 1893 * the same way. 1894 */ 1895 1896 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," 1897 "MSR=%lx\n", 1898 regs->nip, regs->msr); 1899 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1900 current->thread.load_vec = 1; 1901 tm_recheckpoint(¤t->thread); 1902 current->thread.used_vr = 1; 1903 } 1904 1905 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm) 1906 { 1907 /* See the comments in fp_unavailable_tm(). This works similarly, 1908 * though we're loading both FP and VEC registers in here. 1909 * 1910 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC 1911 * regs. Either way, set MSR_VSX. 1912 */ 1913 1914 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," 1915 "MSR=%lx\n", 1916 regs->nip, regs->msr); 1917 1918 current->thread.used_vsr = 1; 1919 1920 /* This reclaims FP and/or VR regs if they're already enabled */ 1921 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1922 1923 current->thread.load_vec = 1; 1924 current->thread.load_fp = 1; 1925 1926 tm_recheckpoint(¤t->thread); 1927 } 1928 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1929 1930 #ifdef CONFIG_PPC64 1931 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi); 1932 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi) 1933 { 1934 __this_cpu_inc(irq_stat.pmu_irqs); 1935 1936 perf_irq(regs); 1937 1938 return 0; 1939 } 1940 #endif 1941 1942 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async); 1943 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async) 1944 { 1945 __this_cpu_inc(irq_stat.pmu_irqs); 1946 1947 perf_irq(regs); 1948 } 1949 1950 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception) 1951 { 1952 /* 1953 * On 64-bit, if perf interrupts hit in a local_irq_disable 1954 * (soft-masked) region, we consider them as NMIs. This is required to 1955 * prevent hash faults on user addresses when reading callchains (and 1956 * looks better from an irq tracing perspective). 1957 */ 1958 if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs))) 1959 performance_monitor_exception_nmi(regs); 1960 else 1961 performance_monitor_exception_async(regs); 1962 1963 return 0; 1964 } 1965 1966 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1967 static void handle_debug(struct pt_regs *regs, unsigned long debug_status) 1968 { 1969 int changed = 0; 1970 /* 1971 * Determine the cause of the debug event, clear the 1972 * event flags and send a trap to the handler. Torez 1973 */ 1974 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { 1975 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); 1976 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE 1977 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; 1978 #endif 1979 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, 1980 5); 1981 changed |= 0x01; 1982 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { 1983 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); 1984 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, 1985 6); 1986 changed |= 0x01; 1987 } else if (debug_status & DBSR_IAC1) { 1988 current->thread.debug.dbcr0 &= ~DBCR0_IAC1; 1989 dbcr_iac_range(current) &= ~DBCR_IAC12MODE; 1990 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, 1991 1); 1992 changed |= 0x01; 1993 } else if (debug_status & DBSR_IAC2) { 1994 current->thread.debug.dbcr0 &= ~DBCR0_IAC2; 1995 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, 1996 2); 1997 changed |= 0x01; 1998 } else if (debug_status & DBSR_IAC3) { 1999 current->thread.debug.dbcr0 &= ~DBCR0_IAC3; 2000 dbcr_iac_range(current) &= ~DBCR_IAC34MODE; 2001 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, 2002 3); 2003 changed |= 0x01; 2004 } else if (debug_status & DBSR_IAC4) { 2005 current->thread.debug.dbcr0 &= ~DBCR0_IAC4; 2006 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, 2007 4); 2008 changed |= 0x01; 2009 } 2010 /* 2011 * At the point this routine was called, the MSR(DE) was turned off. 2012 * Check all other debug flags and see if that bit needs to be turned 2013 * back on or not. 2014 */ 2015 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 2016 current->thread.debug.dbcr1)) 2017 regs_set_return_msr(regs, regs->msr | MSR_DE); 2018 else 2019 /* Make sure the IDM flag is off */ 2020 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 2021 2022 if (changed & 0x01) 2023 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); 2024 } 2025 2026 DEFINE_INTERRUPT_HANDLER(DebugException) 2027 { 2028 unsigned long debug_status = regs->dsisr; 2029 2030 current->thread.debug.dbsr = debug_status; 2031 2032 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while 2033 * on server, it stops on the target of the branch. In order to simulate 2034 * the server behaviour, we thus restart right away with a single step 2035 * instead of stopping here when hitting a BT 2036 */ 2037 if (debug_status & DBSR_BT) { 2038 regs_set_return_msr(regs, regs->msr & ~MSR_DE); 2039 2040 /* Disable BT */ 2041 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); 2042 /* Clear the BT event */ 2043 mtspr(SPRN_DBSR, DBSR_BT); 2044 2045 /* Do the single step trick only when coming from userspace */ 2046 if (user_mode(regs)) { 2047 current->thread.debug.dbcr0 &= ~DBCR0_BT; 2048 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; 2049 regs_set_return_msr(regs, regs->msr | MSR_DE); 2050 return; 2051 } 2052 2053 if (kprobe_post_handler(regs)) 2054 return; 2055 2056 if (notify_die(DIE_SSTEP, "block_step", regs, 5, 2057 5, SIGTRAP) == NOTIFY_STOP) { 2058 return; 2059 } 2060 if (debugger_sstep(regs)) 2061 return; 2062 } else if (debug_status & DBSR_IC) { /* Instruction complete */ 2063 regs_set_return_msr(regs, regs->msr & ~MSR_DE); 2064 2065 /* Disable instruction completion */ 2066 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); 2067 /* Clear the instruction completion event */ 2068 mtspr(SPRN_DBSR, DBSR_IC); 2069 2070 if (kprobe_post_handler(regs)) 2071 return; 2072 2073 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 2074 5, SIGTRAP) == NOTIFY_STOP) { 2075 return; 2076 } 2077 2078 if (debugger_sstep(regs)) 2079 return; 2080 2081 if (user_mode(regs)) { 2082 current->thread.debug.dbcr0 &= ~DBCR0_IC; 2083 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 2084 current->thread.debug.dbcr1)) 2085 regs_set_return_msr(regs, regs->msr | MSR_DE); 2086 else 2087 /* Make sure the IDM bit is off */ 2088 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 2089 } 2090 2091 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 2092 } else 2093 handle_debug(regs, debug_status); 2094 } 2095 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 2096 2097 #ifdef CONFIG_ALTIVEC 2098 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception) 2099 { 2100 int err; 2101 2102 if (!user_mode(regs)) { 2103 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" 2104 " at %lx\n", regs->nip); 2105 die("Kernel VMX/Altivec assist exception", regs, SIGILL); 2106 } 2107 2108 flush_altivec_to_thread(current); 2109 2110 PPC_WARN_EMULATED(altivec, regs); 2111 err = emulate_altivec(regs); 2112 if (err == 0) { 2113 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2114 emulate_single_step(regs); 2115 return; 2116 } 2117 2118 if (err == -EFAULT) { 2119 /* got an error reading the instruction */ 2120 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2121 } else { 2122 /* didn't recognize the instruction */ 2123 /* XXX quick hack for now: set the non-Java bit in the VSCR */ 2124 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " 2125 "in %s at %lx\n", current->comm, regs->nip); 2126 current->thread.vr_state.vscr.u[3] |= 0x10000; 2127 } 2128 } 2129 #endif /* CONFIG_ALTIVEC */ 2130 2131 #ifdef CONFIG_PPC_85xx 2132 DEFINE_INTERRUPT_HANDLER(CacheLockingException) 2133 { 2134 unsigned long error_code = regs->dsisr; 2135 2136 /* We treat cache locking instructions from the user 2137 * as priv ops, in the future we could try to do 2138 * something smarter 2139 */ 2140 if (error_code & (ESR_DLK|ESR_ILK)) 2141 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 2142 return; 2143 } 2144 #endif /* CONFIG_PPC_85xx */ 2145 2146 #ifdef CONFIG_SPE 2147 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException) 2148 { 2149 unsigned long spefscr; 2150 int fpexc_mode; 2151 int code = FPE_FLTUNK; 2152 int err; 2153 2154 interrupt_cond_local_irq_enable(regs); 2155 2156 flush_spe_to_thread(current); 2157 2158 spefscr = current->thread.spefscr; 2159 fpexc_mode = current->thread.fpexc_mode; 2160 2161 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { 2162 code = FPE_FLTOVF; 2163 } 2164 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { 2165 code = FPE_FLTUND; 2166 } 2167 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) 2168 code = FPE_FLTDIV; 2169 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { 2170 code = FPE_FLTINV; 2171 } 2172 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) 2173 code = FPE_FLTRES; 2174 2175 err = do_spe_mathemu(regs); 2176 if (err == 0) { 2177 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2178 emulate_single_step(regs); 2179 return; 2180 } 2181 2182 if (err == -EFAULT) { 2183 /* got an error reading the instruction */ 2184 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2185 } else if (err == -EINVAL) { 2186 /* didn't recognize the instruction */ 2187 printk(KERN_ERR "unrecognized spe instruction " 2188 "in %s at %lx\n", current->comm, regs->nip); 2189 } else { 2190 _exception(SIGFPE, regs, code, regs->nip); 2191 } 2192 2193 return; 2194 } 2195 2196 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException) 2197 { 2198 int err; 2199 2200 interrupt_cond_local_irq_enable(regs); 2201 2202 preempt_disable(); 2203 if (regs->msr & MSR_SPE) 2204 giveup_spe(current); 2205 preempt_enable(); 2206 2207 regs_add_return_ip(regs, -4); 2208 err = speround_handler(regs); 2209 if (err == 0) { 2210 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2211 emulate_single_step(regs); 2212 return; 2213 } 2214 2215 if (err == -EFAULT) { 2216 /* got an error reading the instruction */ 2217 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2218 } else if (err == -EINVAL) { 2219 /* didn't recognize the instruction */ 2220 printk(KERN_ERR "unrecognized spe instruction " 2221 "in %s at %lx\n", current->comm, regs->nip); 2222 } else { 2223 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip); 2224 return; 2225 } 2226 } 2227 #endif 2228 2229 /* 2230 * We enter here if we get an unrecoverable exception, that is, one 2231 * that happened at a point where the RI (recoverable interrupt) bit 2232 * in the MSR is 0. This indicates that SRR0/1 are live, and that 2233 * we therefore lost state by taking this exception. 2234 */ 2235 void __noreturn unrecoverable_exception(struct pt_regs *regs) 2236 { 2237 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n", 2238 regs->trap, regs->nip, regs->msr); 2239 die("Unrecoverable exception", regs, SIGABRT); 2240 /* die() should not return */ 2241 for (;;) 2242 ; 2243 } 2244 2245 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) 2246 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException) 2247 { 2248 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); 2249 mtspr(SPRN_TCR, mfspr(SPRN_TCR) & ~TCR_WIE); 2250 return 0; 2251 } 2252 #endif 2253 2254 /* 2255 * We enter here if we discover during exception entry that we are 2256 * running in supervisor mode with a userspace value in the stack pointer. 2257 */ 2258 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack) 2259 { 2260 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", 2261 regs->gpr[1], regs->nip); 2262 die("Bad kernel stack pointer", regs, SIGABRT); 2263 } 2264 2265 #ifdef CONFIG_PPC_EMULATED_STATS 2266 2267 #define WARN_EMULATED_SETUP(type) .type = { .name = #type } 2268 2269 struct ppc_emulated ppc_emulated = { 2270 #ifdef CONFIG_ALTIVEC 2271 WARN_EMULATED_SETUP(altivec), 2272 #endif 2273 WARN_EMULATED_SETUP(dcba), 2274 WARN_EMULATED_SETUP(dcbz), 2275 WARN_EMULATED_SETUP(fp_pair), 2276 WARN_EMULATED_SETUP(isel), 2277 WARN_EMULATED_SETUP(mcrxr), 2278 WARN_EMULATED_SETUP(mfpvr), 2279 WARN_EMULATED_SETUP(multiple), 2280 WARN_EMULATED_SETUP(popcntb), 2281 WARN_EMULATED_SETUP(spe), 2282 WARN_EMULATED_SETUP(string), 2283 WARN_EMULATED_SETUP(sync), 2284 WARN_EMULATED_SETUP(unaligned), 2285 #ifdef CONFIG_MATH_EMULATION 2286 WARN_EMULATED_SETUP(math), 2287 #endif 2288 #ifdef CONFIG_VSX 2289 WARN_EMULATED_SETUP(vsx), 2290 #endif 2291 #ifdef CONFIG_PPC64 2292 WARN_EMULATED_SETUP(mfdscr), 2293 WARN_EMULATED_SETUP(mtdscr), 2294 WARN_EMULATED_SETUP(lq_stq), 2295 WARN_EMULATED_SETUP(lxvw4x), 2296 WARN_EMULATED_SETUP(lxvh8x), 2297 WARN_EMULATED_SETUP(lxvd2x), 2298 WARN_EMULATED_SETUP(lxvb16x), 2299 #endif 2300 }; 2301 2302 u32 ppc_warn_emulated; 2303 2304 void ppc_warn_emulated_print(const char *type) 2305 { 2306 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, 2307 type); 2308 } 2309 2310 static int __init ppc_warn_emulated_init(void) 2311 { 2312 struct dentry *dir; 2313 unsigned int i; 2314 struct ppc_emulated_entry *entries = (void *)&ppc_emulated; 2315 2316 dir = debugfs_create_dir("emulated_instructions", 2317 arch_debugfs_dir); 2318 2319 debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated); 2320 2321 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) 2322 debugfs_create_u32(entries[i].name, 0644, dir, 2323 (u32 *)&entries[i].val.counter); 2324 2325 return 0; 2326 } 2327 2328 device_initcall(ppc_warn_emulated_init); 2329 2330 #endif /* CONFIG_PPC_EMULATED_STATS */ 2331