xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 4da722ca)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>	/* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69 
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78 
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87 
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94 
95 /*
96  * Trap & Exception support
97  */
98 
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 	mutex_lock(&pmac_backlight_mutex);
103 	if (pmac_backlight) {
104 		struct backlight_properties *props;
105 
106 		props = &pmac_backlight->props;
107 		props->brightness = props->max_brightness;
108 		props->power = FB_BLANK_UNBLANK;
109 		backlight_update_status(pmac_backlight);
110 	}
111 	mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116 
117 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
118 static int die_owner = -1;
119 static unsigned int die_nest_count;
120 static int die_counter;
121 
122 static unsigned long oops_begin(struct pt_regs *regs)
123 {
124 	int cpu;
125 	unsigned long flags;
126 
127 	oops_enter();
128 
129 	/* racy, but better than risking deadlock. */
130 	raw_local_irq_save(flags);
131 	cpu = smp_processor_id();
132 	if (!arch_spin_trylock(&die_lock)) {
133 		if (cpu == die_owner)
134 			/* nested oops. should stop eventually */;
135 		else
136 			arch_spin_lock(&die_lock);
137 	}
138 	die_nest_count++;
139 	die_owner = cpu;
140 	console_verbose();
141 	bust_spinlocks(1);
142 	if (machine_is(powermac))
143 		pmac_backlight_unblank();
144 	return flags;
145 }
146 NOKPROBE_SYMBOL(oops_begin);
147 
148 static void oops_end(unsigned long flags, struct pt_regs *regs,
149 			       int signr)
150 {
151 	bust_spinlocks(0);
152 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 	die_nest_count--;
154 	oops_exit();
155 	printk("\n");
156 	if (!die_nest_count) {
157 		/* Nest count reaches zero, release the lock. */
158 		die_owner = -1;
159 		arch_spin_unlock(&die_lock);
160 	}
161 	raw_local_irq_restore(flags);
162 
163 	crash_fadump(regs, "die oops");
164 
165 	/*
166 	 * A system reset (0x100) is a request to dump, so we always send
167 	 * it through the crashdump code.
168 	 */
169 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
170 		crash_kexec(regs);
171 
172 		/*
173 		 * We aren't the primary crash CPU. We need to send it
174 		 * to a holding pattern to avoid it ending up in the panic
175 		 * code.
176 		 */
177 		crash_kexec_secondary(regs);
178 	}
179 
180 	if (!signr)
181 		return;
182 
183 	/*
184 	 * While our oops output is serialised by a spinlock, output
185 	 * from panic() called below can race and corrupt it. If we
186 	 * know we are going to panic, delay for 1 second so we have a
187 	 * chance to get clean backtraces from all CPUs that are oopsing.
188 	 */
189 	if (in_interrupt() || panic_on_oops || !current->pid ||
190 	    is_global_init(current)) {
191 		mdelay(MSEC_PER_SEC);
192 	}
193 
194 	if (in_interrupt())
195 		panic("Fatal exception in interrupt");
196 	if (panic_on_oops)
197 		panic("Fatal exception");
198 	do_exit(signr);
199 }
200 NOKPROBE_SYMBOL(oops_end);
201 
202 static int __die(const char *str, struct pt_regs *regs, long err)
203 {
204 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
205 #ifdef CONFIG_PREEMPT
206 	printk("PREEMPT ");
207 #endif
208 #ifdef CONFIG_SMP
209 	printk("SMP NR_CPUS=%d ", NR_CPUS);
210 #endif
211 	if (debug_pagealloc_enabled())
212 		printk("DEBUG_PAGEALLOC ");
213 #ifdef CONFIG_NUMA
214 	printk("NUMA ");
215 #endif
216 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
217 
218 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
219 		return 1;
220 
221 	print_modules();
222 	show_regs(regs);
223 
224 	return 0;
225 }
226 NOKPROBE_SYMBOL(__die);
227 
228 void die(const char *str, struct pt_regs *regs, long err)
229 {
230 	unsigned long flags;
231 
232 	if (debugger(regs))
233 		return;
234 
235 	flags = oops_begin(regs);
236 	if (__die(str, regs, err))
237 		err = 0;
238 	oops_end(flags, regs, err);
239 }
240 NOKPROBE_SYMBOL(die);
241 
242 void user_single_step_siginfo(struct task_struct *tsk,
243 				struct pt_regs *regs, siginfo_t *info)
244 {
245 	memset(info, 0, sizeof(*info));
246 	info->si_signo = SIGTRAP;
247 	info->si_code = TRAP_TRACE;
248 	info->si_addr = (void __user *)regs->nip;
249 }
250 
251 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
252 {
253 	siginfo_t info;
254 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
255 			"at %08lx nip %08lx lr %08lx code %x\n";
256 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
257 			"at %016lx nip %016lx lr %016lx code %x\n";
258 
259 	if (!user_mode(regs)) {
260 		die("Exception in kernel mode", regs, signr);
261 		return;
262 	}
263 
264 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
265 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
266 				   current->comm, current->pid, signr,
267 				   addr, regs->nip, regs->link, code);
268 	}
269 
270 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
271 		local_irq_enable();
272 
273 	current->thread.trap_nr = code;
274 	memset(&info, 0, sizeof(info));
275 	info.si_signo = signr;
276 	info.si_code = code;
277 	info.si_addr = (void __user *) addr;
278 	force_sig_info(signr, &info, current);
279 }
280 
281 void system_reset_exception(struct pt_regs *regs)
282 {
283 	/*
284 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
285 	 * is determined by RI and in_nmi
286 	 */
287 	bool nested = in_nmi();
288 	if (!nested)
289 		nmi_enter();
290 
291 	/* See if any machine dependent calls */
292 	if (ppc_md.system_reset_exception) {
293 		if (ppc_md.system_reset_exception(regs))
294 			goto out;
295 	}
296 
297 	die("System Reset", regs, SIGABRT);
298 
299 out:
300 #ifdef CONFIG_PPC_BOOK3S_64
301 	BUG_ON(get_paca()->in_nmi == 0);
302 	if (get_paca()->in_nmi > 1)
303 		panic("Unrecoverable nested System Reset");
304 #endif
305 	/* Must die if the interrupt is not recoverable */
306 	if (!(regs->msr & MSR_RI))
307 		panic("Unrecoverable System Reset");
308 
309 	if (!nested)
310 		nmi_exit();
311 
312 	/* What should we do here? We could issue a shutdown or hard reset. */
313 }
314 
315 #ifdef CONFIG_PPC64
316 /*
317  * This function is called in real mode. Strictly no printk's please.
318  *
319  * regs->nip and regs->msr contains srr0 and ssr1.
320  */
321 long machine_check_early(struct pt_regs *regs)
322 {
323 	long handled = 0;
324 
325 	__this_cpu_inc(irq_stat.mce_exceptions);
326 
327 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
328 		handled = cur_cpu_spec->machine_check_early(regs);
329 	return handled;
330 }
331 
332 long hmi_exception_realmode(struct pt_regs *regs)
333 {
334 	__this_cpu_inc(irq_stat.hmi_exceptions);
335 
336 	wait_for_subcore_guest_exit();
337 
338 	if (ppc_md.hmi_exception_early)
339 		ppc_md.hmi_exception_early(regs);
340 
341 	wait_for_tb_resync();
342 
343 	return 0;
344 }
345 
346 #endif
347 
348 /*
349  * I/O accesses can cause machine checks on powermacs.
350  * Check if the NIP corresponds to the address of a sync
351  * instruction for which there is an entry in the exception
352  * table.
353  * Note that the 601 only takes a machine check on TEA
354  * (transfer error ack) signal assertion, and does not
355  * set any of the top 16 bits of SRR1.
356  *  -- paulus.
357  */
358 static inline int check_io_access(struct pt_regs *regs)
359 {
360 #ifdef CONFIG_PPC32
361 	unsigned long msr = regs->msr;
362 	const struct exception_table_entry *entry;
363 	unsigned int *nip = (unsigned int *)regs->nip;
364 
365 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
366 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
367 		/*
368 		 * Check that it's a sync instruction, or somewhere
369 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
370 		 * As the address is in the exception table
371 		 * we should be able to read the instr there.
372 		 * For the debug message, we look at the preceding
373 		 * load or store.
374 		 */
375 		if (*nip == PPC_INST_NOP)
376 			nip -= 2;
377 		else if (*nip == PPC_INST_ISYNC)
378 			--nip;
379 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
380 			unsigned int rb;
381 
382 			--nip;
383 			rb = (*nip >> 11) & 0x1f;
384 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
385 			       (*nip & 0x100)? "OUT to": "IN from",
386 			       regs->gpr[rb] - _IO_BASE, nip);
387 			regs->msr |= MSR_RI;
388 			regs->nip = extable_fixup(entry);
389 			return 1;
390 		}
391 	}
392 #endif /* CONFIG_PPC32 */
393 	return 0;
394 }
395 
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 /* On 4xx, the reason for the machine check or program exception
398    is in the ESR. */
399 #define get_reason(regs)	((regs)->dsisr)
400 #ifndef CONFIG_FSL_BOOKE
401 #define get_mc_reason(regs)	((regs)->dsisr)
402 #else
403 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
404 #endif
405 #define REASON_FP		ESR_FP
406 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
407 #define REASON_PRIVILEGED	ESR_PPR
408 #define REASON_TRAP		ESR_PTR
409 
410 /* single-step stuff */
411 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
412 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
413 
414 #else
415 /* On non-4xx, the reason for the machine check or program
416    exception is in the MSR. */
417 #define get_reason(regs)	((regs)->msr)
418 #define get_mc_reason(regs)	((regs)->msr)
419 #define REASON_TM		0x200000
420 #define REASON_FP		0x100000
421 #define REASON_ILLEGAL		0x80000
422 #define REASON_PRIVILEGED	0x40000
423 #define REASON_TRAP		0x20000
424 
425 #define single_stepping(regs)	((regs)->msr & MSR_SE)
426 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
427 #endif
428 
429 #if defined(CONFIG_4xx)
430 int machine_check_4xx(struct pt_regs *regs)
431 {
432 	unsigned long reason = get_mc_reason(regs);
433 
434 	if (reason & ESR_IMCP) {
435 		printk("Instruction");
436 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
437 	} else
438 		printk("Data");
439 	printk(" machine check in kernel mode.\n");
440 
441 	return 0;
442 }
443 
444 int machine_check_440A(struct pt_regs *regs)
445 {
446 	unsigned long reason = get_mc_reason(regs);
447 
448 	printk("Machine check in kernel mode.\n");
449 	if (reason & ESR_IMCP){
450 		printk("Instruction Synchronous Machine Check exception\n");
451 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
452 	}
453 	else {
454 		u32 mcsr = mfspr(SPRN_MCSR);
455 		if (mcsr & MCSR_IB)
456 			printk("Instruction Read PLB Error\n");
457 		if (mcsr & MCSR_DRB)
458 			printk("Data Read PLB Error\n");
459 		if (mcsr & MCSR_DWB)
460 			printk("Data Write PLB Error\n");
461 		if (mcsr & MCSR_TLBP)
462 			printk("TLB Parity Error\n");
463 		if (mcsr & MCSR_ICP){
464 			flush_instruction_cache();
465 			printk("I-Cache Parity Error\n");
466 		}
467 		if (mcsr & MCSR_DCSP)
468 			printk("D-Cache Search Parity Error\n");
469 		if (mcsr & MCSR_DCFP)
470 			printk("D-Cache Flush Parity Error\n");
471 		if (mcsr & MCSR_IMPE)
472 			printk("Machine Check exception is imprecise\n");
473 
474 		/* Clear MCSR */
475 		mtspr(SPRN_MCSR, mcsr);
476 	}
477 	return 0;
478 }
479 
480 int machine_check_47x(struct pt_regs *regs)
481 {
482 	unsigned long reason = get_mc_reason(regs);
483 	u32 mcsr;
484 
485 	printk(KERN_ERR "Machine check in kernel mode.\n");
486 	if (reason & ESR_IMCP) {
487 		printk(KERN_ERR
488 		       "Instruction Synchronous Machine Check exception\n");
489 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
490 		return 0;
491 	}
492 	mcsr = mfspr(SPRN_MCSR);
493 	if (mcsr & MCSR_IB)
494 		printk(KERN_ERR "Instruction Read PLB Error\n");
495 	if (mcsr & MCSR_DRB)
496 		printk(KERN_ERR "Data Read PLB Error\n");
497 	if (mcsr & MCSR_DWB)
498 		printk(KERN_ERR "Data Write PLB Error\n");
499 	if (mcsr & MCSR_TLBP)
500 		printk(KERN_ERR "TLB Parity Error\n");
501 	if (mcsr & MCSR_ICP) {
502 		flush_instruction_cache();
503 		printk(KERN_ERR "I-Cache Parity Error\n");
504 	}
505 	if (mcsr & MCSR_DCSP)
506 		printk(KERN_ERR "D-Cache Search Parity Error\n");
507 	if (mcsr & PPC47x_MCSR_GPR)
508 		printk(KERN_ERR "GPR Parity Error\n");
509 	if (mcsr & PPC47x_MCSR_FPR)
510 		printk(KERN_ERR "FPR Parity Error\n");
511 	if (mcsr & PPC47x_MCSR_IPR)
512 		printk(KERN_ERR "Machine Check exception is imprecise\n");
513 
514 	/* Clear MCSR */
515 	mtspr(SPRN_MCSR, mcsr);
516 
517 	return 0;
518 }
519 #elif defined(CONFIG_E500)
520 int machine_check_e500mc(struct pt_regs *regs)
521 {
522 	unsigned long mcsr = mfspr(SPRN_MCSR);
523 	unsigned long reason = mcsr;
524 	int recoverable = 1;
525 
526 	if (reason & MCSR_LD) {
527 		recoverable = fsl_rio_mcheck_exception(regs);
528 		if (recoverable == 1)
529 			goto silent_out;
530 	}
531 
532 	printk("Machine check in kernel mode.\n");
533 	printk("Caused by (from MCSR=%lx): ", reason);
534 
535 	if (reason & MCSR_MCP)
536 		printk("Machine Check Signal\n");
537 
538 	if (reason & MCSR_ICPERR) {
539 		printk("Instruction Cache Parity Error\n");
540 
541 		/*
542 		 * This is recoverable by invalidating the i-cache.
543 		 */
544 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
545 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
546 			;
547 
548 		/*
549 		 * This will generally be accompanied by an instruction
550 		 * fetch error report -- only treat MCSR_IF as fatal
551 		 * if it wasn't due to an L1 parity error.
552 		 */
553 		reason &= ~MCSR_IF;
554 	}
555 
556 	if (reason & MCSR_DCPERR_MC) {
557 		printk("Data Cache Parity Error\n");
558 
559 		/*
560 		 * In write shadow mode we auto-recover from the error, but it
561 		 * may still get logged and cause a machine check.  We should
562 		 * only treat the non-write shadow case as non-recoverable.
563 		 */
564 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
565 			recoverable = 0;
566 	}
567 
568 	if (reason & MCSR_L2MMU_MHIT) {
569 		printk("Hit on multiple TLB entries\n");
570 		recoverable = 0;
571 	}
572 
573 	if (reason & MCSR_NMI)
574 		printk("Non-maskable interrupt\n");
575 
576 	if (reason & MCSR_IF) {
577 		printk("Instruction Fetch Error Report\n");
578 		recoverable = 0;
579 	}
580 
581 	if (reason & MCSR_LD) {
582 		printk("Load Error Report\n");
583 		recoverable = 0;
584 	}
585 
586 	if (reason & MCSR_ST) {
587 		printk("Store Error Report\n");
588 		recoverable = 0;
589 	}
590 
591 	if (reason & MCSR_LDG) {
592 		printk("Guarded Load Error Report\n");
593 		recoverable = 0;
594 	}
595 
596 	if (reason & MCSR_TLBSYNC)
597 		printk("Simultaneous tlbsync operations\n");
598 
599 	if (reason & MCSR_BSL2_ERR) {
600 		printk("Level 2 Cache Error\n");
601 		recoverable = 0;
602 	}
603 
604 	if (reason & MCSR_MAV) {
605 		u64 addr;
606 
607 		addr = mfspr(SPRN_MCAR);
608 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
609 
610 		printk("Machine Check %s Address: %#llx\n",
611 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
612 	}
613 
614 silent_out:
615 	mtspr(SPRN_MCSR, mcsr);
616 	return mfspr(SPRN_MCSR) == 0 && recoverable;
617 }
618 
619 int machine_check_e500(struct pt_regs *regs)
620 {
621 	unsigned long reason = get_mc_reason(regs);
622 
623 	if (reason & MCSR_BUS_RBERR) {
624 		if (fsl_rio_mcheck_exception(regs))
625 			return 1;
626 		if (fsl_pci_mcheck_exception(regs))
627 			return 1;
628 	}
629 
630 	printk("Machine check in kernel mode.\n");
631 	printk("Caused by (from MCSR=%lx): ", reason);
632 
633 	if (reason & MCSR_MCP)
634 		printk("Machine Check Signal\n");
635 	if (reason & MCSR_ICPERR)
636 		printk("Instruction Cache Parity Error\n");
637 	if (reason & MCSR_DCP_PERR)
638 		printk("Data Cache Push Parity Error\n");
639 	if (reason & MCSR_DCPERR)
640 		printk("Data Cache Parity Error\n");
641 	if (reason & MCSR_BUS_IAERR)
642 		printk("Bus - Instruction Address Error\n");
643 	if (reason & MCSR_BUS_RAERR)
644 		printk("Bus - Read Address Error\n");
645 	if (reason & MCSR_BUS_WAERR)
646 		printk("Bus - Write Address Error\n");
647 	if (reason & MCSR_BUS_IBERR)
648 		printk("Bus - Instruction Data Error\n");
649 	if (reason & MCSR_BUS_RBERR)
650 		printk("Bus - Read Data Bus Error\n");
651 	if (reason & MCSR_BUS_WBERR)
652 		printk("Bus - Write Data Bus Error\n");
653 	if (reason & MCSR_BUS_IPERR)
654 		printk("Bus - Instruction Parity Error\n");
655 	if (reason & MCSR_BUS_RPERR)
656 		printk("Bus - Read Parity Error\n");
657 
658 	return 0;
659 }
660 
661 int machine_check_generic(struct pt_regs *regs)
662 {
663 	return 0;
664 }
665 #elif defined(CONFIG_E200)
666 int machine_check_e200(struct pt_regs *regs)
667 {
668 	unsigned long reason = get_mc_reason(regs);
669 
670 	printk("Machine check in kernel mode.\n");
671 	printk("Caused by (from MCSR=%lx): ", reason);
672 
673 	if (reason & MCSR_MCP)
674 		printk("Machine Check Signal\n");
675 	if (reason & MCSR_CP_PERR)
676 		printk("Cache Push Parity Error\n");
677 	if (reason & MCSR_CPERR)
678 		printk("Cache Parity Error\n");
679 	if (reason & MCSR_EXCP_ERR)
680 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
681 	if (reason & MCSR_BUS_IRERR)
682 		printk("Bus - Read Bus Error on instruction fetch\n");
683 	if (reason & MCSR_BUS_DRERR)
684 		printk("Bus - Read Bus Error on data load\n");
685 	if (reason & MCSR_BUS_WRERR)
686 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
687 
688 	return 0;
689 }
690 #elif defined(CONFIG_PPC_8xx)
691 int machine_check_8xx(struct pt_regs *regs)
692 {
693 	unsigned long reason = get_mc_reason(regs);
694 
695 	pr_err("Machine check in kernel mode.\n");
696 	pr_err("Caused by (from SRR1=%lx): ", reason);
697 	if (reason & 0x40000000)
698 		pr_err("Fetch error at address %lx\n", regs->nip);
699 	else
700 		pr_err("Data access error at address %lx\n", regs->dar);
701 
702 #ifdef CONFIG_PCI
703 	/* the qspan pci read routines can cause machine checks -- Cort
704 	 *
705 	 * yuck !!! that totally needs to go away ! There are better ways
706 	 * to deal with that than having a wart in the mcheck handler.
707 	 * -- BenH
708 	 */
709 	bad_page_fault(regs, regs->dar, SIGBUS);
710 	return 1;
711 #else
712 	return 0;
713 #endif
714 }
715 #else
716 int machine_check_generic(struct pt_regs *regs)
717 {
718 	unsigned long reason = get_mc_reason(regs);
719 
720 	printk("Machine check in kernel mode.\n");
721 	printk("Caused by (from SRR1=%lx): ", reason);
722 	switch (reason & 0x601F0000) {
723 	case 0x80000:
724 		printk("Machine check signal\n");
725 		break;
726 	case 0:		/* for 601 */
727 	case 0x40000:
728 	case 0x140000:	/* 7450 MSS error and TEA */
729 		printk("Transfer error ack signal\n");
730 		break;
731 	case 0x20000:
732 		printk("Data parity error signal\n");
733 		break;
734 	case 0x10000:
735 		printk("Address parity error signal\n");
736 		break;
737 	case 0x20000000:
738 		printk("L1 Data Cache error\n");
739 		break;
740 	case 0x40000000:
741 		printk("L1 Instruction Cache error\n");
742 		break;
743 	case 0x00100000:
744 		printk("L2 data cache parity error\n");
745 		break;
746 	default:
747 		printk("Unknown values in msr\n");
748 	}
749 	return 0;
750 }
751 #endif /* everything else */
752 
753 void machine_check_exception(struct pt_regs *regs)
754 {
755 	enum ctx_state prev_state = exception_enter();
756 	int recover = 0;
757 
758 	__this_cpu_inc(irq_stat.mce_exceptions);
759 
760 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
761 
762 	/* See if any machine dependent calls. In theory, we would want
763 	 * to call the CPU first, and call the ppc_md. one if the CPU
764 	 * one returns a positive number. However there is existing code
765 	 * that assumes the board gets a first chance, so let's keep it
766 	 * that way for now and fix things later. --BenH.
767 	 */
768 	if (ppc_md.machine_check_exception)
769 		recover = ppc_md.machine_check_exception(regs);
770 	else if (cur_cpu_spec->machine_check)
771 		recover = cur_cpu_spec->machine_check(regs);
772 
773 	if (recover > 0)
774 		goto bail;
775 
776 	if (debugger_fault_handler(regs))
777 		goto bail;
778 
779 	if (check_io_access(regs))
780 		goto bail;
781 
782 	die("Machine check", regs, SIGBUS);
783 
784 	/* Must die if the interrupt is not recoverable */
785 	if (!(regs->msr & MSR_RI))
786 		panic("Unrecoverable Machine check");
787 
788 bail:
789 	exception_exit(prev_state);
790 }
791 
792 void SMIException(struct pt_regs *regs)
793 {
794 	die("System Management Interrupt", regs, SIGABRT);
795 }
796 
797 void handle_hmi_exception(struct pt_regs *regs)
798 {
799 	struct pt_regs *old_regs;
800 
801 	old_regs = set_irq_regs(regs);
802 	irq_enter();
803 
804 	if (ppc_md.handle_hmi_exception)
805 		ppc_md.handle_hmi_exception(regs);
806 
807 	irq_exit();
808 	set_irq_regs(old_regs);
809 }
810 
811 void unknown_exception(struct pt_regs *regs)
812 {
813 	enum ctx_state prev_state = exception_enter();
814 
815 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
816 	       regs->nip, regs->msr, regs->trap);
817 
818 	_exception(SIGTRAP, regs, 0, 0);
819 
820 	exception_exit(prev_state);
821 }
822 
823 void instruction_breakpoint_exception(struct pt_regs *regs)
824 {
825 	enum ctx_state prev_state = exception_enter();
826 
827 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
828 					5, SIGTRAP) == NOTIFY_STOP)
829 		goto bail;
830 	if (debugger_iabr_match(regs))
831 		goto bail;
832 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
833 
834 bail:
835 	exception_exit(prev_state);
836 }
837 
838 void RunModeException(struct pt_regs *regs)
839 {
840 	_exception(SIGTRAP, regs, 0, 0);
841 }
842 
843 void single_step_exception(struct pt_regs *regs)
844 {
845 	enum ctx_state prev_state = exception_enter();
846 
847 	clear_single_step(regs);
848 
849 	if (kprobe_post_handler(regs))
850 		return;
851 
852 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
853 					5, SIGTRAP) == NOTIFY_STOP)
854 		goto bail;
855 	if (debugger_sstep(regs))
856 		goto bail;
857 
858 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
859 
860 bail:
861 	exception_exit(prev_state);
862 }
863 NOKPROBE_SYMBOL(single_step_exception);
864 
865 /*
866  * After we have successfully emulated an instruction, we have to
867  * check if the instruction was being single-stepped, and if so,
868  * pretend we got a single-step exception.  This was pointed out
869  * by Kumar Gala.  -- paulus
870  */
871 static void emulate_single_step(struct pt_regs *regs)
872 {
873 	if (single_stepping(regs))
874 		single_step_exception(regs);
875 }
876 
877 static inline int __parse_fpscr(unsigned long fpscr)
878 {
879 	int ret = 0;
880 
881 	/* Invalid operation */
882 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
883 		ret = FPE_FLTINV;
884 
885 	/* Overflow */
886 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
887 		ret = FPE_FLTOVF;
888 
889 	/* Underflow */
890 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
891 		ret = FPE_FLTUND;
892 
893 	/* Divide by zero */
894 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
895 		ret = FPE_FLTDIV;
896 
897 	/* Inexact result */
898 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
899 		ret = FPE_FLTRES;
900 
901 	return ret;
902 }
903 
904 static void parse_fpe(struct pt_regs *regs)
905 {
906 	int code = 0;
907 
908 	flush_fp_to_thread(current);
909 
910 	code = __parse_fpscr(current->thread.fp_state.fpscr);
911 
912 	_exception(SIGFPE, regs, code, regs->nip);
913 }
914 
915 /*
916  * Illegal instruction emulation support.  Originally written to
917  * provide the PVR to user applications using the mfspr rd, PVR.
918  * Return non-zero if we can't emulate, or -EFAULT if the associated
919  * memory access caused an access fault.  Return zero on success.
920  *
921  * There are a couple of ways to do this, either "decode" the instruction
922  * or directly match lots of bits.  In this case, matching lots of
923  * bits is faster and easier.
924  *
925  */
926 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
927 {
928 	u8 rT = (instword >> 21) & 0x1f;
929 	u8 rA = (instword >> 16) & 0x1f;
930 	u8 NB_RB = (instword >> 11) & 0x1f;
931 	u32 num_bytes;
932 	unsigned long EA;
933 	int pos = 0;
934 
935 	/* Early out if we are an invalid form of lswx */
936 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
937 		if ((rT == rA) || (rT == NB_RB))
938 			return -EINVAL;
939 
940 	EA = (rA == 0) ? 0 : regs->gpr[rA];
941 
942 	switch (instword & PPC_INST_STRING_MASK) {
943 		case PPC_INST_LSWX:
944 		case PPC_INST_STSWX:
945 			EA += NB_RB;
946 			num_bytes = regs->xer & 0x7f;
947 			break;
948 		case PPC_INST_LSWI:
949 		case PPC_INST_STSWI:
950 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
951 			break;
952 		default:
953 			return -EINVAL;
954 	}
955 
956 	while (num_bytes != 0)
957 	{
958 		u8 val;
959 		u32 shift = 8 * (3 - (pos & 0x3));
960 
961 		/* if process is 32-bit, clear upper 32 bits of EA */
962 		if ((regs->msr & MSR_64BIT) == 0)
963 			EA &= 0xFFFFFFFF;
964 
965 		switch ((instword & PPC_INST_STRING_MASK)) {
966 			case PPC_INST_LSWX:
967 			case PPC_INST_LSWI:
968 				if (get_user(val, (u8 __user *)EA))
969 					return -EFAULT;
970 				/* first time updating this reg,
971 				 * zero it out */
972 				if (pos == 0)
973 					regs->gpr[rT] = 0;
974 				regs->gpr[rT] |= val << shift;
975 				break;
976 			case PPC_INST_STSWI:
977 			case PPC_INST_STSWX:
978 				val = regs->gpr[rT] >> shift;
979 				if (put_user(val, (u8 __user *)EA))
980 					return -EFAULT;
981 				break;
982 		}
983 		/* move EA to next address */
984 		EA += 1;
985 		num_bytes--;
986 
987 		/* manage our position within the register */
988 		if (++pos == 4) {
989 			pos = 0;
990 			if (++rT == 32)
991 				rT = 0;
992 		}
993 	}
994 
995 	return 0;
996 }
997 
998 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
999 {
1000 	u32 ra,rs;
1001 	unsigned long tmp;
1002 
1003 	ra = (instword >> 16) & 0x1f;
1004 	rs = (instword >> 21) & 0x1f;
1005 
1006 	tmp = regs->gpr[rs];
1007 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1008 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1009 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1010 	regs->gpr[ra] = tmp;
1011 
1012 	return 0;
1013 }
1014 
1015 static int emulate_isel(struct pt_regs *regs, u32 instword)
1016 {
1017 	u8 rT = (instword >> 21) & 0x1f;
1018 	u8 rA = (instword >> 16) & 0x1f;
1019 	u8 rB = (instword >> 11) & 0x1f;
1020 	u8 BC = (instword >> 6) & 0x1f;
1021 	u8 bit;
1022 	unsigned long tmp;
1023 
1024 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1025 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1026 
1027 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1028 
1029 	return 0;
1030 }
1031 
1032 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1033 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1034 {
1035         /* If we're emulating a load/store in an active transaction, we cannot
1036          * emulate it as the kernel operates in transaction suspended context.
1037          * We need to abort the transaction.  This creates a persistent TM
1038          * abort so tell the user what caused it with a new code.
1039 	 */
1040 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1041 		tm_enable();
1042 		tm_abort(cause);
1043 		return true;
1044 	}
1045 	return false;
1046 }
1047 #else
1048 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1049 {
1050 	return false;
1051 }
1052 #endif
1053 
1054 static int emulate_instruction(struct pt_regs *regs)
1055 {
1056 	u32 instword;
1057 	u32 rd;
1058 
1059 	if (!user_mode(regs))
1060 		return -EINVAL;
1061 	CHECK_FULL_REGS(regs);
1062 
1063 	if (get_user(instword, (u32 __user *)(regs->nip)))
1064 		return -EFAULT;
1065 
1066 	/* Emulate the mfspr rD, PVR. */
1067 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1068 		PPC_WARN_EMULATED(mfpvr, regs);
1069 		rd = (instword >> 21) & 0x1f;
1070 		regs->gpr[rd] = mfspr(SPRN_PVR);
1071 		return 0;
1072 	}
1073 
1074 	/* Emulating the dcba insn is just a no-op.  */
1075 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1076 		PPC_WARN_EMULATED(dcba, regs);
1077 		return 0;
1078 	}
1079 
1080 	/* Emulate the mcrxr insn.  */
1081 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1082 		int shift = (instword >> 21) & 0x1c;
1083 		unsigned long msk = 0xf0000000UL >> shift;
1084 
1085 		PPC_WARN_EMULATED(mcrxr, regs);
1086 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1087 		regs->xer &= ~0xf0000000UL;
1088 		return 0;
1089 	}
1090 
1091 	/* Emulate load/store string insn. */
1092 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1093 		if (tm_abort_check(regs,
1094 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1095 			return -EINVAL;
1096 		PPC_WARN_EMULATED(string, regs);
1097 		return emulate_string_inst(regs, instword);
1098 	}
1099 
1100 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1101 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1102 		PPC_WARN_EMULATED(popcntb, regs);
1103 		return emulate_popcntb_inst(regs, instword);
1104 	}
1105 
1106 	/* Emulate isel (Integer Select) instruction */
1107 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1108 		PPC_WARN_EMULATED(isel, regs);
1109 		return emulate_isel(regs, instword);
1110 	}
1111 
1112 	/* Emulate sync instruction variants */
1113 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1114 		PPC_WARN_EMULATED(sync, regs);
1115 		asm volatile("sync");
1116 		return 0;
1117 	}
1118 
1119 #ifdef CONFIG_PPC64
1120 	/* Emulate the mfspr rD, DSCR. */
1121 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1122 		PPC_INST_MFSPR_DSCR_USER) ||
1123 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1124 		PPC_INST_MFSPR_DSCR)) &&
1125 			cpu_has_feature(CPU_FTR_DSCR)) {
1126 		PPC_WARN_EMULATED(mfdscr, regs);
1127 		rd = (instword >> 21) & 0x1f;
1128 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1129 		return 0;
1130 	}
1131 	/* Emulate the mtspr DSCR, rD. */
1132 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1133 		PPC_INST_MTSPR_DSCR_USER) ||
1134 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1135 		PPC_INST_MTSPR_DSCR)) &&
1136 			cpu_has_feature(CPU_FTR_DSCR)) {
1137 		PPC_WARN_EMULATED(mtdscr, regs);
1138 		rd = (instword >> 21) & 0x1f;
1139 		current->thread.dscr = regs->gpr[rd];
1140 		current->thread.dscr_inherit = 1;
1141 		mtspr(SPRN_DSCR, current->thread.dscr);
1142 		return 0;
1143 	}
1144 #endif
1145 
1146 	return -EINVAL;
1147 }
1148 
1149 int is_valid_bugaddr(unsigned long addr)
1150 {
1151 	return is_kernel_addr(addr);
1152 }
1153 
1154 #ifdef CONFIG_MATH_EMULATION
1155 static int emulate_math(struct pt_regs *regs)
1156 {
1157 	int ret;
1158 	extern int do_mathemu(struct pt_regs *regs);
1159 
1160 	ret = do_mathemu(regs);
1161 	if (ret >= 0)
1162 		PPC_WARN_EMULATED(math, regs);
1163 
1164 	switch (ret) {
1165 	case 0:
1166 		emulate_single_step(regs);
1167 		return 0;
1168 	case 1: {
1169 			int code = 0;
1170 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1171 			_exception(SIGFPE, regs, code, regs->nip);
1172 			return 0;
1173 		}
1174 	case -EFAULT:
1175 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1176 		return 0;
1177 	}
1178 
1179 	return -1;
1180 }
1181 #else
1182 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1183 #endif
1184 
1185 void program_check_exception(struct pt_regs *regs)
1186 {
1187 	enum ctx_state prev_state = exception_enter();
1188 	unsigned int reason = get_reason(regs);
1189 
1190 	/* We can now get here via a FP Unavailable exception if the core
1191 	 * has no FPU, in that case the reason flags will be 0 */
1192 
1193 	if (reason & REASON_FP) {
1194 		/* IEEE FP exception */
1195 		parse_fpe(regs);
1196 		goto bail;
1197 	}
1198 	if (reason & REASON_TRAP) {
1199 		unsigned long bugaddr;
1200 		/* Debugger is first in line to stop recursive faults in
1201 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1202 		if (debugger_bpt(regs))
1203 			goto bail;
1204 
1205 		if (kprobe_handler(regs))
1206 			goto bail;
1207 
1208 		/* trap exception */
1209 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1210 				== NOTIFY_STOP)
1211 			goto bail;
1212 
1213 		bugaddr = regs->nip;
1214 		/*
1215 		 * Fixup bugaddr for BUG_ON() in real mode
1216 		 */
1217 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1218 			bugaddr += PAGE_OFFSET;
1219 
1220 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1221 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1222 			regs->nip += 4;
1223 			goto bail;
1224 		}
1225 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1226 		goto bail;
1227 	}
1228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1229 	if (reason & REASON_TM) {
1230 		/* This is a TM "Bad Thing Exception" program check.
1231 		 * This occurs when:
1232 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1233 		 *    transition in TM states.
1234 		 * -  A trechkpt is attempted when transactional.
1235 		 * -  A treclaim is attempted when non transactional.
1236 		 * -  A tend is illegally attempted.
1237 		 * -  writing a TM SPR when transactional.
1238 		 */
1239 		if (!user_mode(regs) &&
1240 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1241 			regs->nip += 4;
1242 			goto bail;
1243 		}
1244 		/* If usermode caused this, it's done something illegal and
1245 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1246 		 * operand to distinguish from the instruction just being bad
1247 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1248 		 * illegal /placement/ of a valid instruction.
1249 		 */
1250 		if (user_mode(regs)) {
1251 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1252 			goto bail;
1253 		} else {
1254 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1255 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1256 			die("Unrecoverable exception", regs, SIGABRT);
1257 		}
1258 	}
1259 #endif
1260 
1261 	/*
1262 	 * If we took the program check in the kernel skip down to sending a
1263 	 * SIGILL. The subsequent cases all relate to emulating instructions
1264 	 * which we should only do for userspace. We also do not want to enable
1265 	 * interrupts for kernel faults because that might lead to further
1266 	 * faults, and loose the context of the original exception.
1267 	 */
1268 	if (!user_mode(regs))
1269 		goto sigill;
1270 
1271 	/* We restore the interrupt state now */
1272 	if (!arch_irq_disabled_regs(regs))
1273 		local_irq_enable();
1274 
1275 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1276 	 * but there seems to be a hardware bug on the 405GP (RevD)
1277 	 * that means ESR is sometimes set incorrectly - either to
1278 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1279 	 * hardware people - not sure if it can happen on any illegal
1280 	 * instruction or only on FP instructions, whether there is a
1281 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1282 	 */
1283 	if (!emulate_math(regs))
1284 		goto bail;
1285 
1286 	/* Try to emulate it if we should. */
1287 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1288 		switch (emulate_instruction(regs)) {
1289 		case 0:
1290 			regs->nip += 4;
1291 			emulate_single_step(regs);
1292 			goto bail;
1293 		case -EFAULT:
1294 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1295 			goto bail;
1296 		}
1297 	}
1298 
1299 sigill:
1300 	if (reason & REASON_PRIVILEGED)
1301 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1302 	else
1303 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1304 
1305 bail:
1306 	exception_exit(prev_state);
1307 }
1308 NOKPROBE_SYMBOL(program_check_exception);
1309 
1310 /*
1311  * This occurs when running in hypervisor mode on POWER6 or later
1312  * and an illegal instruction is encountered.
1313  */
1314 void emulation_assist_interrupt(struct pt_regs *regs)
1315 {
1316 	regs->msr |= REASON_ILLEGAL;
1317 	program_check_exception(regs);
1318 }
1319 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1320 
1321 void alignment_exception(struct pt_regs *regs)
1322 {
1323 	enum ctx_state prev_state = exception_enter();
1324 	int sig, code, fixed = 0;
1325 
1326 	/* We restore the interrupt state now */
1327 	if (!arch_irq_disabled_regs(regs))
1328 		local_irq_enable();
1329 
1330 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1331 		goto bail;
1332 
1333 	/* we don't implement logging of alignment exceptions */
1334 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1335 		fixed = fix_alignment(regs);
1336 
1337 	if (fixed == 1) {
1338 		regs->nip += 4;	/* skip over emulated instruction */
1339 		emulate_single_step(regs);
1340 		goto bail;
1341 	}
1342 
1343 	/* Operand address was bad */
1344 	if (fixed == -EFAULT) {
1345 		sig = SIGSEGV;
1346 		code = SEGV_ACCERR;
1347 	} else {
1348 		sig = SIGBUS;
1349 		code = BUS_ADRALN;
1350 	}
1351 	if (user_mode(regs))
1352 		_exception(sig, regs, code, regs->dar);
1353 	else
1354 		bad_page_fault(regs, regs->dar, sig);
1355 
1356 bail:
1357 	exception_exit(prev_state);
1358 }
1359 
1360 void slb_miss_bad_addr(struct pt_regs *regs)
1361 {
1362 	enum ctx_state prev_state = exception_enter();
1363 
1364 	if (user_mode(regs))
1365 		_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1366 	else
1367 		bad_page_fault(regs, regs->dar, SIGSEGV);
1368 
1369 	exception_exit(prev_state);
1370 }
1371 
1372 void StackOverflow(struct pt_regs *regs)
1373 {
1374 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1375 	       current, regs->gpr[1]);
1376 	debugger(regs);
1377 	show_regs(regs);
1378 	panic("kernel stack overflow");
1379 }
1380 
1381 void nonrecoverable_exception(struct pt_regs *regs)
1382 {
1383 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1384 	       regs->nip, regs->msr);
1385 	debugger(regs);
1386 	die("nonrecoverable exception", regs, SIGKILL);
1387 }
1388 
1389 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1390 {
1391 	enum ctx_state prev_state = exception_enter();
1392 
1393 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1394 			  "%lx at %lx\n", regs->trap, regs->nip);
1395 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1396 
1397 	exception_exit(prev_state);
1398 }
1399 
1400 void altivec_unavailable_exception(struct pt_regs *regs)
1401 {
1402 	enum ctx_state prev_state = exception_enter();
1403 
1404 	if (user_mode(regs)) {
1405 		/* A user program has executed an altivec instruction,
1406 		   but this kernel doesn't support altivec. */
1407 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1408 		goto bail;
1409 	}
1410 
1411 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1412 			"%lx at %lx\n", regs->trap, regs->nip);
1413 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1414 
1415 bail:
1416 	exception_exit(prev_state);
1417 }
1418 
1419 void vsx_unavailable_exception(struct pt_regs *regs)
1420 {
1421 	if (user_mode(regs)) {
1422 		/* A user program has executed an vsx instruction,
1423 		   but this kernel doesn't support vsx. */
1424 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1425 		return;
1426 	}
1427 
1428 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1429 			"%lx at %lx\n", regs->trap, regs->nip);
1430 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1431 }
1432 
1433 #ifdef CONFIG_PPC64
1434 static void tm_unavailable(struct pt_regs *regs)
1435 {
1436 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1437 	if (user_mode(regs)) {
1438 		current->thread.load_tm++;
1439 		regs->msr |= MSR_TM;
1440 		tm_enable();
1441 		tm_restore_sprs(&current->thread);
1442 		return;
1443 	}
1444 #endif
1445 	pr_emerg("Unrecoverable TM Unavailable Exception "
1446 			"%lx at %lx\n", regs->trap, regs->nip);
1447 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1448 }
1449 
1450 void facility_unavailable_exception(struct pt_regs *regs)
1451 {
1452 	static char *facility_strings[] = {
1453 		[FSCR_FP_LG] = "FPU",
1454 		[FSCR_VECVSX_LG] = "VMX/VSX",
1455 		[FSCR_DSCR_LG] = "DSCR",
1456 		[FSCR_PM_LG] = "PMU SPRs",
1457 		[FSCR_BHRB_LG] = "BHRB",
1458 		[FSCR_TM_LG] = "TM",
1459 		[FSCR_EBB_LG] = "EBB",
1460 		[FSCR_TAR_LG] = "TAR",
1461 		[FSCR_MSGP_LG] = "MSGP",
1462 		[FSCR_SCV_LG] = "SCV",
1463 	};
1464 	char *facility = "unknown";
1465 	u64 value;
1466 	u32 instword, rd;
1467 	u8 status;
1468 	bool hv;
1469 
1470 	hv = (regs->trap == 0xf80);
1471 	if (hv)
1472 		value = mfspr(SPRN_HFSCR);
1473 	else
1474 		value = mfspr(SPRN_FSCR);
1475 
1476 	status = value >> 56;
1477 	if (status == FSCR_DSCR_LG) {
1478 		/*
1479 		 * User is accessing the DSCR register using the problem
1480 		 * state only SPR number (0x03) either through a mfspr or
1481 		 * a mtspr instruction. If it is a write attempt through
1482 		 * a mtspr, then we set the inherit bit. This also allows
1483 		 * the user to write or read the register directly in the
1484 		 * future by setting via the FSCR DSCR bit. But in case it
1485 		 * is a read DSCR attempt through a mfspr instruction, we
1486 		 * just emulate the instruction instead. This code path will
1487 		 * always emulate all the mfspr instructions till the user
1488 		 * has attempted at least one mtspr instruction. This way it
1489 		 * preserves the same behaviour when the user is accessing
1490 		 * the DSCR through privilege level only SPR number (0x11)
1491 		 * which is emulated through illegal instruction exception.
1492 		 * We always leave HFSCR DSCR set.
1493 		 */
1494 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1495 			pr_err("Failed to fetch the user instruction\n");
1496 			return;
1497 		}
1498 
1499 		/* Write into DSCR (mtspr 0x03, RS) */
1500 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1501 				== PPC_INST_MTSPR_DSCR_USER) {
1502 			rd = (instword >> 21) & 0x1f;
1503 			current->thread.dscr = regs->gpr[rd];
1504 			current->thread.dscr_inherit = 1;
1505 			current->thread.fscr |= FSCR_DSCR;
1506 			mtspr(SPRN_FSCR, current->thread.fscr);
1507 		}
1508 
1509 		/* Read from DSCR (mfspr RT, 0x03) */
1510 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1511 				== PPC_INST_MFSPR_DSCR_USER) {
1512 			if (emulate_instruction(regs)) {
1513 				pr_err("DSCR based mfspr emulation failed\n");
1514 				return;
1515 			}
1516 			regs->nip += 4;
1517 			emulate_single_step(regs);
1518 		}
1519 		return;
1520 	}
1521 
1522 	if (status == FSCR_TM_LG) {
1523 		/*
1524 		 * If we're here then the hardware is TM aware because it
1525 		 * generated an exception with FSRM_TM set.
1526 		 *
1527 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1528 		 * told us not to do TM, or the kernel is not built with TM
1529 		 * support.
1530 		 *
1531 		 * If both of those things are true, then userspace can spam the
1532 		 * console by triggering the printk() below just by continually
1533 		 * doing tbegin (or any TM instruction). So in that case just
1534 		 * send the process a SIGILL immediately.
1535 		 */
1536 		if (!cpu_has_feature(CPU_FTR_TM))
1537 			goto out;
1538 
1539 		tm_unavailable(regs);
1540 		return;
1541 	}
1542 
1543 	if ((hv || status >= 2) &&
1544 	    (status < ARRAY_SIZE(facility_strings)) &&
1545 	    facility_strings[status])
1546 		facility = facility_strings[status];
1547 
1548 	/* We restore the interrupt state now */
1549 	if (!arch_irq_disabled_regs(regs))
1550 		local_irq_enable();
1551 
1552 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1553 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1554 
1555 out:
1556 	if (user_mode(regs)) {
1557 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1558 		return;
1559 	}
1560 
1561 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1562 }
1563 #endif
1564 
1565 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1566 
1567 void fp_unavailable_tm(struct pt_regs *regs)
1568 {
1569 	/* Note:  This does not handle any kind of FP laziness. */
1570 
1571 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1572 		 regs->nip, regs->msr);
1573 
1574         /* We can only have got here if the task started using FP after
1575          * beginning the transaction.  So, the transactional regs are just a
1576          * copy of the checkpointed ones.  But, we still need to recheckpoint
1577          * as we're enabling FP for the process; it will return, abort the
1578          * transaction, and probably retry but now with FP enabled.  So the
1579          * checkpointed FP registers need to be loaded.
1580 	 */
1581 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1582 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1583 
1584 	/* Enable FP for the task: */
1585 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1586 
1587 	/* This loads and recheckpoints the FP registers from
1588 	 * thread.fpr[].  They will remain in registers after the
1589 	 * checkpoint so we don't need to reload them after.
1590 	 * If VMX is in use, the VRs now hold checkpointed values,
1591 	 * so we don't want to load the VRs from the thread_struct.
1592 	 */
1593 	tm_recheckpoint(&current->thread, MSR_FP);
1594 
1595 	/* If VMX is in use, get the transactional values back */
1596 	if (regs->msr & MSR_VEC) {
1597 		msr_check_and_set(MSR_VEC);
1598 		load_vr_state(&current->thread.vr_state);
1599 		/* At this point all the VSX state is loaded, so enable it */
1600 		regs->msr |= MSR_VSX;
1601 	}
1602 }
1603 
1604 void altivec_unavailable_tm(struct pt_regs *regs)
1605 {
1606 	/* See the comments in fp_unavailable_tm().  This function operates
1607 	 * the same way.
1608 	 */
1609 
1610 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1611 		 "MSR=%lx\n",
1612 		 regs->nip, regs->msr);
1613 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1614 	regs->msr |= MSR_VEC;
1615 	tm_recheckpoint(&current->thread, MSR_VEC);
1616 	current->thread.used_vr = 1;
1617 
1618 	if (regs->msr & MSR_FP) {
1619 		msr_check_and_set(MSR_FP);
1620 		load_fp_state(&current->thread.fp_state);
1621 		regs->msr |= MSR_VSX;
1622 	}
1623 }
1624 
1625 void vsx_unavailable_tm(struct pt_regs *regs)
1626 {
1627 	unsigned long orig_msr = regs->msr;
1628 
1629 	/* See the comments in fp_unavailable_tm().  This works similarly,
1630 	 * though we're loading both FP and VEC registers in here.
1631 	 *
1632 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1633 	 * regs.  Either way, set MSR_VSX.
1634 	 */
1635 
1636 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1637 		 "MSR=%lx\n",
1638 		 regs->nip, regs->msr);
1639 
1640 	current->thread.used_vsr = 1;
1641 
1642 	/* If FP and VMX are already loaded, we have all the state we need */
1643 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1644 		regs->msr |= MSR_VSX;
1645 		return;
1646 	}
1647 
1648 	/* This reclaims FP and/or VR regs if they're already enabled */
1649 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1650 
1651 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1652 		MSR_VSX;
1653 
1654 	/* This loads & recheckpoints FP and VRs; but we have
1655 	 * to be sure not to overwrite previously-valid state.
1656 	 */
1657 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1658 
1659 	msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1660 
1661 	if (orig_msr & MSR_FP)
1662 		load_fp_state(&current->thread.fp_state);
1663 	if (orig_msr & MSR_VEC)
1664 		load_vr_state(&current->thread.vr_state);
1665 }
1666 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1667 
1668 void performance_monitor_exception(struct pt_regs *regs)
1669 {
1670 	__this_cpu_inc(irq_stat.pmu_irqs);
1671 
1672 	perf_irq(regs);
1673 }
1674 
1675 #ifdef CONFIG_8xx
1676 void SoftwareEmulation(struct pt_regs *regs)
1677 {
1678 	CHECK_FULL_REGS(regs);
1679 
1680 	if (!user_mode(regs)) {
1681 		debugger(regs);
1682 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1683 			regs, SIGFPE);
1684 	}
1685 
1686 	if (!emulate_math(regs))
1687 		return;
1688 
1689 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1690 }
1691 #endif /* CONFIG_8xx */
1692 
1693 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1694 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1695 {
1696 	int changed = 0;
1697 	/*
1698 	 * Determine the cause of the debug event, clear the
1699 	 * event flags and send a trap to the handler. Torez
1700 	 */
1701 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1702 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1703 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1704 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1705 #endif
1706 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1707 			     5);
1708 		changed |= 0x01;
1709 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1710 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1711 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1712 			     6);
1713 		changed |= 0x01;
1714 	}  else if (debug_status & DBSR_IAC1) {
1715 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1716 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1717 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1718 			     1);
1719 		changed |= 0x01;
1720 	}  else if (debug_status & DBSR_IAC2) {
1721 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1722 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1723 			     2);
1724 		changed |= 0x01;
1725 	}  else if (debug_status & DBSR_IAC3) {
1726 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1727 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1728 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1729 			     3);
1730 		changed |= 0x01;
1731 	}  else if (debug_status & DBSR_IAC4) {
1732 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1733 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1734 			     4);
1735 		changed |= 0x01;
1736 	}
1737 	/*
1738 	 * At the point this routine was called, the MSR(DE) was turned off.
1739 	 * Check all other debug flags and see if that bit needs to be turned
1740 	 * back on or not.
1741 	 */
1742 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1743 			       current->thread.debug.dbcr1))
1744 		regs->msr |= MSR_DE;
1745 	else
1746 		/* Make sure the IDM flag is off */
1747 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1748 
1749 	if (changed & 0x01)
1750 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1751 }
1752 
1753 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1754 {
1755 	current->thread.debug.dbsr = debug_status;
1756 
1757 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1758 	 * on server, it stops on the target of the branch. In order to simulate
1759 	 * the server behaviour, we thus restart right away with a single step
1760 	 * instead of stopping here when hitting a BT
1761 	 */
1762 	if (debug_status & DBSR_BT) {
1763 		regs->msr &= ~MSR_DE;
1764 
1765 		/* Disable BT */
1766 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1767 		/* Clear the BT event */
1768 		mtspr(SPRN_DBSR, DBSR_BT);
1769 
1770 		/* Do the single step trick only when coming from userspace */
1771 		if (user_mode(regs)) {
1772 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1773 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1774 			regs->msr |= MSR_DE;
1775 			return;
1776 		}
1777 
1778 		if (kprobe_post_handler(regs))
1779 			return;
1780 
1781 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1782 			       5, SIGTRAP) == NOTIFY_STOP) {
1783 			return;
1784 		}
1785 		if (debugger_sstep(regs))
1786 			return;
1787 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1788 		regs->msr &= ~MSR_DE;
1789 
1790 		/* Disable instruction completion */
1791 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1792 		/* Clear the instruction completion event */
1793 		mtspr(SPRN_DBSR, DBSR_IC);
1794 
1795 		if (kprobe_post_handler(regs))
1796 			return;
1797 
1798 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1799 			       5, SIGTRAP) == NOTIFY_STOP) {
1800 			return;
1801 		}
1802 
1803 		if (debugger_sstep(regs))
1804 			return;
1805 
1806 		if (user_mode(regs)) {
1807 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1808 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1809 					       current->thread.debug.dbcr1))
1810 				regs->msr |= MSR_DE;
1811 			else
1812 				/* Make sure the IDM bit is off */
1813 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1814 		}
1815 
1816 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1817 	} else
1818 		handle_debug(regs, debug_status);
1819 }
1820 NOKPROBE_SYMBOL(DebugException);
1821 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1822 
1823 #if !defined(CONFIG_TAU_INT)
1824 void TAUException(struct pt_regs *regs)
1825 {
1826 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1827 	       regs->nip, regs->msr, regs->trap, print_tainted());
1828 }
1829 #endif /* CONFIG_INT_TAU */
1830 
1831 #ifdef CONFIG_ALTIVEC
1832 void altivec_assist_exception(struct pt_regs *regs)
1833 {
1834 	int err;
1835 
1836 	if (!user_mode(regs)) {
1837 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1838 		       " at %lx\n", regs->nip);
1839 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1840 	}
1841 
1842 	flush_altivec_to_thread(current);
1843 
1844 	PPC_WARN_EMULATED(altivec, regs);
1845 	err = emulate_altivec(regs);
1846 	if (err == 0) {
1847 		regs->nip += 4;		/* skip emulated instruction */
1848 		emulate_single_step(regs);
1849 		return;
1850 	}
1851 
1852 	if (err == -EFAULT) {
1853 		/* got an error reading the instruction */
1854 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1855 	} else {
1856 		/* didn't recognize the instruction */
1857 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1858 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1859 				   "in %s at %lx\n", current->comm, regs->nip);
1860 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1861 	}
1862 }
1863 #endif /* CONFIG_ALTIVEC */
1864 
1865 #ifdef CONFIG_FSL_BOOKE
1866 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1867 			   unsigned long error_code)
1868 {
1869 	/* We treat cache locking instructions from the user
1870 	 * as priv ops, in the future we could try to do
1871 	 * something smarter
1872 	 */
1873 	if (error_code & (ESR_DLK|ESR_ILK))
1874 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1875 	return;
1876 }
1877 #endif /* CONFIG_FSL_BOOKE */
1878 
1879 #ifdef CONFIG_SPE
1880 void SPEFloatingPointException(struct pt_regs *regs)
1881 {
1882 	extern int do_spe_mathemu(struct pt_regs *regs);
1883 	unsigned long spefscr;
1884 	int fpexc_mode;
1885 	int code = 0;
1886 	int err;
1887 
1888 	flush_spe_to_thread(current);
1889 
1890 	spefscr = current->thread.spefscr;
1891 	fpexc_mode = current->thread.fpexc_mode;
1892 
1893 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1894 		code = FPE_FLTOVF;
1895 	}
1896 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1897 		code = FPE_FLTUND;
1898 	}
1899 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1900 		code = FPE_FLTDIV;
1901 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1902 		code = FPE_FLTINV;
1903 	}
1904 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1905 		code = FPE_FLTRES;
1906 
1907 	err = do_spe_mathemu(regs);
1908 	if (err == 0) {
1909 		regs->nip += 4;		/* skip emulated instruction */
1910 		emulate_single_step(regs);
1911 		return;
1912 	}
1913 
1914 	if (err == -EFAULT) {
1915 		/* got an error reading the instruction */
1916 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1917 	} else if (err == -EINVAL) {
1918 		/* didn't recognize the instruction */
1919 		printk(KERN_ERR "unrecognized spe instruction "
1920 		       "in %s at %lx\n", current->comm, regs->nip);
1921 	} else {
1922 		_exception(SIGFPE, regs, code, regs->nip);
1923 	}
1924 
1925 	return;
1926 }
1927 
1928 void SPEFloatingPointRoundException(struct pt_regs *regs)
1929 {
1930 	extern int speround_handler(struct pt_regs *regs);
1931 	int err;
1932 
1933 	preempt_disable();
1934 	if (regs->msr & MSR_SPE)
1935 		giveup_spe(current);
1936 	preempt_enable();
1937 
1938 	regs->nip -= 4;
1939 	err = speround_handler(regs);
1940 	if (err == 0) {
1941 		regs->nip += 4;		/* skip emulated instruction */
1942 		emulate_single_step(regs);
1943 		return;
1944 	}
1945 
1946 	if (err == -EFAULT) {
1947 		/* got an error reading the instruction */
1948 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1949 	} else if (err == -EINVAL) {
1950 		/* didn't recognize the instruction */
1951 		printk(KERN_ERR "unrecognized spe instruction "
1952 		       "in %s at %lx\n", current->comm, regs->nip);
1953 	} else {
1954 		_exception(SIGFPE, regs, 0, regs->nip);
1955 		return;
1956 	}
1957 }
1958 #endif
1959 
1960 /*
1961  * We enter here if we get an unrecoverable exception, that is, one
1962  * that happened at a point where the RI (recoverable interrupt) bit
1963  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1964  * we therefore lost state by taking this exception.
1965  */
1966 void unrecoverable_exception(struct pt_regs *regs)
1967 {
1968 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1969 	       regs->trap, regs->nip);
1970 	die("Unrecoverable exception", regs, SIGABRT);
1971 }
1972 NOKPROBE_SYMBOL(unrecoverable_exception);
1973 
1974 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1975 /*
1976  * Default handler for a Watchdog exception,
1977  * spins until a reboot occurs
1978  */
1979 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1980 {
1981 	/* Generic WatchdogHandler, implement your own */
1982 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1983 	return;
1984 }
1985 
1986 void WatchdogException(struct pt_regs *regs)
1987 {
1988 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1989 	WatchdogHandler(regs);
1990 }
1991 #endif
1992 
1993 /*
1994  * We enter here if we discover during exception entry that we are
1995  * running in supervisor mode with a userspace value in the stack pointer.
1996  */
1997 void kernel_bad_stack(struct pt_regs *regs)
1998 {
1999 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2000 	       regs->gpr[1], regs->nip);
2001 	die("Bad kernel stack pointer", regs, SIGABRT);
2002 }
2003 NOKPROBE_SYMBOL(kernel_bad_stack);
2004 
2005 void __init trap_init(void)
2006 {
2007 }
2008 
2009 
2010 #ifdef CONFIG_PPC_EMULATED_STATS
2011 
2012 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2013 
2014 struct ppc_emulated ppc_emulated = {
2015 #ifdef CONFIG_ALTIVEC
2016 	WARN_EMULATED_SETUP(altivec),
2017 #endif
2018 	WARN_EMULATED_SETUP(dcba),
2019 	WARN_EMULATED_SETUP(dcbz),
2020 	WARN_EMULATED_SETUP(fp_pair),
2021 	WARN_EMULATED_SETUP(isel),
2022 	WARN_EMULATED_SETUP(mcrxr),
2023 	WARN_EMULATED_SETUP(mfpvr),
2024 	WARN_EMULATED_SETUP(multiple),
2025 	WARN_EMULATED_SETUP(popcntb),
2026 	WARN_EMULATED_SETUP(spe),
2027 	WARN_EMULATED_SETUP(string),
2028 	WARN_EMULATED_SETUP(sync),
2029 	WARN_EMULATED_SETUP(unaligned),
2030 #ifdef CONFIG_MATH_EMULATION
2031 	WARN_EMULATED_SETUP(math),
2032 #endif
2033 #ifdef CONFIG_VSX
2034 	WARN_EMULATED_SETUP(vsx),
2035 #endif
2036 #ifdef CONFIG_PPC64
2037 	WARN_EMULATED_SETUP(mfdscr),
2038 	WARN_EMULATED_SETUP(mtdscr),
2039 	WARN_EMULATED_SETUP(lq_stq),
2040 #endif
2041 };
2042 
2043 u32 ppc_warn_emulated;
2044 
2045 void ppc_warn_emulated_print(const char *type)
2046 {
2047 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2048 			    type);
2049 }
2050 
2051 static int __init ppc_warn_emulated_init(void)
2052 {
2053 	struct dentry *dir, *d;
2054 	unsigned int i;
2055 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2056 
2057 	if (!powerpc_debugfs_root)
2058 		return -ENODEV;
2059 
2060 	dir = debugfs_create_dir("emulated_instructions",
2061 				 powerpc_debugfs_root);
2062 	if (!dir)
2063 		return -ENOMEM;
2064 
2065 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2066 			       &ppc_warn_emulated);
2067 	if (!d)
2068 		goto fail;
2069 
2070 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2071 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2072 				       (u32 *)&entries[i].val.counter);
2073 		if (!d)
2074 			goto fail;
2075 	}
2076 
2077 	return 0;
2078 
2079 fail:
2080 	debugfs_remove_recursive(dir);
2081 	return -ENOMEM;
2082 }
2083 
2084 device_initcall(ppc_warn_emulated_init);
2085 
2086 #endif /* CONFIG_PPC_EMULATED_STATS */
2087