xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 2359ccdd)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/pkeys.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/extable.h>
31 #include <linux/module.h>	/* print_modules */
32 #include <linux/prctl.h>
33 #include <linux/delay.h>
34 #include <linux/kprobes.h>
35 #include <linux/kexec.h>
36 #include <linux/backlight.h>
37 #include <linux/bug.h>
38 #include <linux/kdebug.h>
39 #include <linux/ratelimit.h>
40 #include <linux/context_tracking.h>
41 #include <linux/smp.h>
42 #include <linux/console.h>
43 #include <linux/kmsg_dump.h>
44 
45 #include <asm/emulated_ops.h>
46 #include <asm/pgtable.h>
47 #include <linux/uaccess.h>
48 #include <asm/debugfs.h>
49 #include <asm/io.h>
50 #include <asm/machdep.h>
51 #include <asm/rtas.h>
52 #include <asm/pmc.h>
53 #include <asm/reg.h>
54 #ifdef CONFIG_PMAC_BACKLIGHT
55 #include <asm/backlight.h>
56 #endif
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #include <asm/processor.h>
60 #include <asm/tm.h>
61 #endif
62 #include <asm/kexec.h>
63 #include <asm/ppc-opcode.h>
64 #include <asm/rio.h>
65 #include <asm/fadump.h>
66 #include <asm/switch_to.h>
67 #include <asm/tm.h>
68 #include <asm/debug.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/hmi.h>
71 #include <sysdev/fsl_pci.h>
72 #include <asm/kprobes.h>
73 
74 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
75 int (*__debugger)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
81 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
82 
83 EXPORT_SYMBOL(__debugger);
84 EXPORT_SYMBOL(__debugger_ipi);
85 EXPORT_SYMBOL(__debugger_bpt);
86 EXPORT_SYMBOL(__debugger_sstep);
87 EXPORT_SYMBOL(__debugger_iabr_match);
88 EXPORT_SYMBOL(__debugger_break_match);
89 EXPORT_SYMBOL(__debugger_fault_handler);
90 #endif
91 
92 /* Transactional Memory trap debug */
93 #ifdef TM_DEBUG_SW
94 #define TM_DEBUG(x...) printk(KERN_INFO x)
95 #else
96 #define TM_DEBUG(x...) do { } while(0)
97 #endif
98 
99 /*
100  * Trap & Exception support
101  */
102 
103 #ifdef CONFIG_PMAC_BACKLIGHT
104 static void pmac_backlight_unblank(void)
105 {
106 	mutex_lock(&pmac_backlight_mutex);
107 	if (pmac_backlight) {
108 		struct backlight_properties *props;
109 
110 		props = &pmac_backlight->props;
111 		props->brightness = props->max_brightness;
112 		props->power = FB_BLANK_UNBLANK;
113 		backlight_update_status(pmac_backlight);
114 	}
115 	mutex_unlock(&pmac_backlight_mutex);
116 }
117 #else
118 static inline void pmac_backlight_unblank(void) { }
119 #endif
120 
121 /*
122  * If oops/die is expected to crash the machine, return true here.
123  *
124  * This should not be expected to be 100% accurate, there may be
125  * notifiers registered or other unexpected conditions that may bring
126  * down the kernel. Or if the current process in the kernel is holding
127  * locks or has other critical state, the kernel may become effectively
128  * unusable anyway.
129  */
130 bool die_will_crash(void)
131 {
132 	if (should_fadump_crash())
133 		return true;
134 	if (kexec_should_crash(current))
135 		return true;
136 	if (in_interrupt() || panic_on_oops ||
137 			!current->pid || is_global_init(current))
138 		return true;
139 
140 	return false;
141 }
142 
143 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
144 static int die_owner = -1;
145 static unsigned int die_nest_count;
146 static int die_counter;
147 
148 extern void panic_flush_kmsg_start(void)
149 {
150 	/*
151 	 * These are mostly taken from kernel/panic.c, but tries to do
152 	 * relatively minimal work. Don't use delay functions (TB may
153 	 * be broken), don't crash dump (need to set a firmware log),
154 	 * don't run notifiers. We do want to get some information to
155 	 * Linux console.
156 	 */
157 	console_verbose();
158 	bust_spinlocks(1);
159 }
160 
161 extern void panic_flush_kmsg_end(void)
162 {
163 	printk_safe_flush_on_panic();
164 	kmsg_dump(KMSG_DUMP_PANIC);
165 	bust_spinlocks(0);
166 	debug_locks_off();
167 	console_flush_on_panic();
168 }
169 
170 static unsigned long oops_begin(struct pt_regs *regs)
171 {
172 	int cpu;
173 	unsigned long flags;
174 
175 	oops_enter();
176 
177 	/* racy, but better than risking deadlock. */
178 	raw_local_irq_save(flags);
179 	cpu = smp_processor_id();
180 	if (!arch_spin_trylock(&die_lock)) {
181 		if (cpu == die_owner)
182 			/* nested oops. should stop eventually */;
183 		else
184 			arch_spin_lock(&die_lock);
185 	}
186 	die_nest_count++;
187 	die_owner = cpu;
188 	console_verbose();
189 	bust_spinlocks(1);
190 	if (machine_is(powermac))
191 		pmac_backlight_unblank();
192 	return flags;
193 }
194 NOKPROBE_SYMBOL(oops_begin);
195 
196 static void oops_end(unsigned long flags, struct pt_regs *regs,
197 			       int signr)
198 {
199 	bust_spinlocks(0);
200 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
201 	die_nest_count--;
202 	oops_exit();
203 	printk("\n");
204 	if (!die_nest_count) {
205 		/* Nest count reaches zero, release the lock. */
206 		die_owner = -1;
207 		arch_spin_unlock(&die_lock);
208 	}
209 	raw_local_irq_restore(flags);
210 
211 	/*
212 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
213 	 */
214 	if (TRAP(regs) == 0x100)
215 		return;
216 
217 	crash_fadump(regs, "die oops");
218 
219 	if (kexec_should_crash(current))
220 		crash_kexec(regs);
221 
222 	if (!signr)
223 		return;
224 
225 	/*
226 	 * While our oops output is serialised by a spinlock, output
227 	 * from panic() called below can race and corrupt it. If we
228 	 * know we are going to panic, delay for 1 second so we have a
229 	 * chance to get clean backtraces from all CPUs that are oopsing.
230 	 */
231 	if (in_interrupt() || panic_on_oops || !current->pid ||
232 	    is_global_init(current)) {
233 		mdelay(MSEC_PER_SEC);
234 	}
235 
236 	if (in_interrupt())
237 		panic("Fatal exception in interrupt");
238 	if (panic_on_oops)
239 		panic("Fatal exception");
240 	do_exit(signr);
241 }
242 NOKPROBE_SYMBOL(oops_end);
243 
244 static int __die(const char *str, struct pt_regs *regs, long err)
245 {
246 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
247 
248 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
249 		printk("LE ");
250 	else
251 		printk("BE ");
252 
253 	if (IS_ENABLED(CONFIG_PREEMPT))
254 		pr_cont("PREEMPT ");
255 
256 	if (IS_ENABLED(CONFIG_SMP))
257 		pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
258 
259 	if (debug_pagealloc_enabled())
260 		pr_cont("DEBUG_PAGEALLOC ");
261 
262 	if (IS_ENABLED(CONFIG_NUMA))
263 		pr_cont("NUMA ");
264 
265 	pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
266 
267 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
268 		return 1;
269 
270 	print_modules();
271 	show_regs(regs);
272 
273 	return 0;
274 }
275 NOKPROBE_SYMBOL(__die);
276 
277 void die(const char *str, struct pt_regs *regs, long err)
278 {
279 	unsigned long flags;
280 
281 	/*
282 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
283 	 */
284 	if (TRAP(regs) != 0x100) {
285 		if (debugger(regs))
286 			return;
287 	}
288 
289 	flags = oops_begin(regs);
290 	if (__die(str, regs, err))
291 		err = 0;
292 	oops_end(flags, regs, err);
293 }
294 NOKPROBE_SYMBOL(die);
295 
296 void user_single_step_siginfo(struct task_struct *tsk,
297 				struct pt_regs *regs, siginfo_t *info)
298 {
299 	memset(info, 0, sizeof(*info));
300 	info->si_signo = SIGTRAP;
301 	info->si_code = TRAP_TRACE;
302 	info->si_addr = (void __user *)regs->nip;
303 }
304 
305 
306 void _exception_pkey(int signr, struct pt_regs *regs, int code,
307 		unsigned long addr, int key)
308 {
309 	siginfo_t info;
310 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
311 			"at %08lx nip %08lx lr %08lx code %x\n";
312 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
313 			"at %016lx nip %016lx lr %016lx code %x\n";
314 
315 	if (!user_mode(regs)) {
316 		die("Exception in kernel mode", regs, signr);
317 		return;
318 	}
319 
320 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
321 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
322 				   current->comm, current->pid, signr,
323 				   addr, regs->nip, regs->link, code);
324 	}
325 
326 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
327 		local_irq_enable();
328 
329 	current->thread.trap_nr = code;
330 
331 	/*
332 	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
333 	 * to capture the content, if the task gets killed.
334 	 */
335 	thread_pkey_regs_save(&current->thread);
336 
337 	memset(&info, 0, sizeof(info));
338 	info.si_signo = signr;
339 	info.si_code = code;
340 	info.si_addr = (void __user *) addr;
341 	info.si_pkey = key;
342 
343 	force_sig_info(signr, &info, current);
344 }
345 
346 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
347 {
348 	_exception_pkey(signr, regs, code, addr, 0);
349 }
350 
351 void system_reset_exception(struct pt_regs *regs)
352 {
353 	/*
354 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
355 	 * is determined by RI and in_nmi
356 	 */
357 	bool nested = in_nmi();
358 	if (!nested)
359 		nmi_enter();
360 
361 	__this_cpu_inc(irq_stat.sreset_irqs);
362 
363 	/* See if any machine dependent calls */
364 	if (ppc_md.system_reset_exception) {
365 		if (ppc_md.system_reset_exception(regs))
366 			goto out;
367 	}
368 
369 	if (debugger(regs))
370 		goto out;
371 
372 	/*
373 	 * A system reset is a request to dump, so we always send
374 	 * it through the crashdump code (if fadump or kdump are
375 	 * registered).
376 	 */
377 	crash_fadump(regs, "System Reset");
378 
379 	crash_kexec(regs);
380 
381 	/*
382 	 * We aren't the primary crash CPU. We need to send it
383 	 * to a holding pattern to avoid it ending up in the panic
384 	 * code.
385 	 */
386 	crash_kexec_secondary(regs);
387 
388 	/*
389 	 * No debugger or crash dump registered, print logs then
390 	 * panic.
391 	 */
392 	die("System Reset", regs, SIGABRT);
393 
394 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
395 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
396 	nmi_panic(regs, "System Reset");
397 
398 out:
399 #ifdef CONFIG_PPC_BOOK3S_64
400 	BUG_ON(get_paca()->in_nmi == 0);
401 	if (get_paca()->in_nmi > 1)
402 		nmi_panic(regs, "Unrecoverable nested System Reset");
403 #endif
404 	/* Must die if the interrupt is not recoverable */
405 	if (!(regs->msr & MSR_RI))
406 		nmi_panic(regs, "Unrecoverable System Reset");
407 
408 	if (!nested)
409 		nmi_exit();
410 
411 	/* What should we do here? We could issue a shutdown or hard reset. */
412 }
413 
414 /*
415  * I/O accesses can cause machine checks on powermacs.
416  * Check if the NIP corresponds to the address of a sync
417  * instruction for which there is an entry in the exception
418  * table.
419  * Note that the 601 only takes a machine check on TEA
420  * (transfer error ack) signal assertion, and does not
421  * set any of the top 16 bits of SRR1.
422  *  -- paulus.
423  */
424 static inline int check_io_access(struct pt_regs *regs)
425 {
426 #ifdef CONFIG_PPC32
427 	unsigned long msr = regs->msr;
428 	const struct exception_table_entry *entry;
429 	unsigned int *nip = (unsigned int *)regs->nip;
430 
431 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
432 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
433 		/*
434 		 * Check that it's a sync instruction, or somewhere
435 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
436 		 * As the address is in the exception table
437 		 * we should be able to read the instr there.
438 		 * For the debug message, we look at the preceding
439 		 * load or store.
440 		 */
441 		if (*nip == PPC_INST_NOP)
442 			nip -= 2;
443 		else if (*nip == PPC_INST_ISYNC)
444 			--nip;
445 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
446 			unsigned int rb;
447 
448 			--nip;
449 			rb = (*nip >> 11) & 0x1f;
450 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
451 			       (*nip & 0x100)? "OUT to": "IN from",
452 			       regs->gpr[rb] - _IO_BASE, nip);
453 			regs->msr |= MSR_RI;
454 			regs->nip = extable_fixup(entry);
455 			return 1;
456 		}
457 	}
458 #endif /* CONFIG_PPC32 */
459 	return 0;
460 }
461 
462 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
463 /* On 4xx, the reason for the machine check or program exception
464    is in the ESR. */
465 #define get_reason(regs)	((regs)->dsisr)
466 #define REASON_FP		ESR_FP
467 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
468 #define REASON_PRIVILEGED	ESR_PPR
469 #define REASON_TRAP		ESR_PTR
470 
471 /* single-step stuff */
472 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
473 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
474 #define clear_br_trace(regs)	do {} while(0)
475 #else
476 /* On non-4xx, the reason for the machine check or program
477    exception is in the MSR. */
478 #define get_reason(regs)	((regs)->msr)
479 #define REASON_TM		SRR1_PROGTM
480 #define REASON_FP		SRR1_PROGFPE
481 #define REASON_ILLEGAL		SRR1_PROGILL
482 #define REASON_PRIVILEGED	SRR1_PROGPRIV
483 #define REASON_TRAP		SRR1_PROGTRAP
484 
485 #define single_stepping(regs)	((regs)->msr & MSR_SE)
486 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
487 #define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
488 #endif
489 
490 #if defined(CONFIG_E500)
491 int machine_check_e500mc(struct pt_regs *regs)
492 {
493 	unsigned long mcsr = mfspr(SPRN_MCSR);
494 	unsigned long pvr = mfspr(SPRN_PVR);
495 	unsigned long reason = mcsr;
496 	int recoverable = 1;
497 
498 	if (reason & MCSR_LD) {
499 		recoverable = fsl_rio_mcheck_exception(regs);
500 		if (recoverable == 1)
501 			goto silent_out;
502 	}
503 
504 	printk("Machine check in kernel mode.\n");
505 	printk("Caused by (from MCSR=%lx): ", reason);
506 
507 	if (reason & MCSR_MCP)
508 		printk("Machine Check Signal\n");
509 
510 	if (reason & MCSR_ICPERR) {
511 		printk("Instruction Cache Parity Error\n");
512 
513 		/*
514 		 * This is recoverable by invalidating the i-cache.
515 		 */
516 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
517 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
518 			;
519 
520 		/*
521 		 * This will generally be accompanied by an instruction
522 		 * fetch error report -- only treat MCSR_IF as fatal
523 		 * if it wasn't due to an L1 parity error.
524 		 */
525 		reason &= ~MCSR_IF;
526 	}
527 
528 	if (reason & MCSR_DCPERR_MC) {
529 		printk("Data Cache Parity Error\n");
530 
531 		/*
532 		 * In write shadow mode we auto-recover from the error, but it
533 		 * may still get logged and cause a machine check.  We should
534 		 * only treat the non-write shadow case as non-recoverable.
535 		 */
536 		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
537 		 * is not implemented but L1 data cache always runs in write
538 		 * shadow mode. Hence on data cache parity errors HW will
539 		 * automatically invalidate the L1 Data Cache.
540 		 */
541 		if (PVR_VER(pvr) != PVR_VER_E6500) {
542 			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
543 				recoverable = 0;
544 		}
545 	}
546 
547 	if (reason & MCSR_L2MMU_MHIT) {
548 		printk("Hit on multiple TLB entries\n");
549 		recoverable = 0;
550 	}
551 
552 	if (reason & MCSR_NMI)
553 		printk("Non-maskable interrupt\n");
554 
555 	if (reason & MCSR_IF) {
556 		printk("Instruction Fetch Error Report\n");
557 		recoverable = 0;
558 	}
559 
560 	if (reason & MCSR_LD) {
561 		printk("Load Error Report\n");
562 		recoverable = 0;
563 	}
564 
565 	if (reason & MCSR_ST) {
566 		printk("Store Error Report\n");
567 		recoverable = 0;
568 	}
569 
570 	if (reason & MCSR_LDG) {
571 		printk("Guarded Load Error Report\n");
572 		recoverable = 0;
573 	}
574 
575 	if (reason & MCSR_TLBSYNC)
576 		printk("Simultaneous tlbsync operations\n");
577 
578 	if (reason & MCSR_BSL2_ERR) {
579 		printk("Level 2 Cache Error\n");
580 		recoverable = 0;
581 	}
582 
583 	if (reason & MCSR_MAV) {
584 		u64 addr;
585 
586 		addr = mfspr(SPRN_MCAR);
587 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
588 
589 		printk("Machine Check %s Address: %#llx\n",
590 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
591 	}
592 
593 silent_out:
594 	mtspr(SPRN_MCSR, mcsr);
595 	return mfspr(SPRN_MCSR) == 0 && recoverable;
596 }
597 
598 int machine_check_e500(struct pt_regs *regs)
599 {
600 	unsigned long reason = mfspr(SPRN_MCSR);
601 
602 	if (reason & MCSR_BUS_RBERR) {
603 		if (fsl_rio_mcheck_exception(regs))
604 			return 1;
605 		if (fsl_pci_mcheck_exception(regs))
606 			return 1;
607 	}
608 
609 	printk("Machine check in kernel mode.\n");
610 	printk("Caused by (from MCSR=%lx): ", reason);
611 
612 	if (reason & MCSR_MCP)
613 		printk("Machine Check Signal\n");
614 	if (reason & MCSR_ICPERR)
615 		printk("Instruction Cache Parity Error\n");
616 	if (reason & MCSR_DCP_PERR)
617 		printk("Data Cache Push Parity Error\n");
618 	if (reason & MCSR_DCPERR)
619 		printk("Data Cache Parity Error\n");
620 	if (reason & MCSR_BUS_IAERR)
621 		printk("Bus - Instruction Address Error\n");
622 	if (reason & MCSR_BUS_RAERR)
623 		printk("Bus - Read Address Error\n");
624 	if (reason & MCSR_BUS_WAERR)
625 		printk("Bus - Write Address Error\n");
626 	if (reason & MCSR_BUS_IBERR)
627 		printk("Bus - Instruction Data Error\n");
628 	if (reason & MCSR_BUS_RBERR)
629 		printk("Bus - Read Data Bus Error\n");
630 	if (reason & MCSR_BUS_WBERR)
631 		printk("Bus - Write Data Bus Error\n");
632 	if (reason & MCSR_BUS_IPERR)
633 		printk("Bus - Instruction Parity Error\n");
634 	if (reason & MCSR_BUS_RPERR)
635 		printk("Bus - Read Parity Error\n");
636 
637 	return 0;
638 }
639 
640 int machine_check_generic(struct pt_regs *regs)
641 {
642 	return 0;
643 }
644 #elif defined(CONFIG_E200)
645 int machine_check_e200(struct pt_regs *regs)
646 {
647 	unsigned long reason = mfspr(SPRN_MCSR);
648 
649 	printk("Machine check in kernel mode.\n");
650 	printk("Caused by (from MCSR=%lx): ", reason);
651 
652 	if (reason & MCSR_MCP)
653 		printk("Machine Check Signal\n");
654 	if (reason & MCSR_CP_PERR)
655 		printk("Cache Push Parity Error\n");
656 	if (reason & MCSR_CPERR)
657 		printk("Cache Parity Error\n");
658 	if (reason & MCSR_EXCP_ERR)
659 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
660 	if (reason & MCSR_BUS_IRERR)
661 		printk("Bus - Read Bus Error on instruction fetch\n");
662 	if (reason & MCSR_BUS_DRERR)
663 		printk("Bus - Read Bus Error on data load\n");
664 	if (reason & MCSR_BUS_WRERR)
665 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
666 
667 	return 0;
668 }
669 #elif defined(CONFIG_PPC32)
670 int machine_check_generic(struct pt_regs *regs)
671 {
672 	unsigned long reason = regs->msr;
673 
674 	printk("Machine check in kernel mode.\n");
675 	printk("Caused by (from SRR1=%lx): ", reason);
676 	switch (reason & 0x601F0000) {
677 	case 0x80000:
678 		printk("Machine check signal\n");
679 		break;
680 	case 0:		/* for 601 */
681 	case 0x40000:
682 	case 0x140000:	/* 7450 MSS error and TEA */
683 		printk("Transfer error ack signal\n");
684 		break;
685 	case 0x20000:
686 		printk("Data parity error signal\n");
687 		break;
688 	case 0x10000:
689 		printk("Address parity error signal\n");
690 		break;
691 	case 0x20000000:
692 		printk("L1 Data Cache error\n");
693 		break;
694 	case 0x40000000:
695 		printk("L1 Instruction Cache error\n");
696 		break;
697 	case 0x00100000:
698 		printk("L2 data cache parity error\n");
699 		break;
700 	default:
701 		printk("Unknown values in msr\n");
702 	}
703 	return 0;
704 }
705 #endif /* everything else */
706 
707 void machine_check_exception(struct pt_regs *regs)
708 {
709 	int recover = 0;
710 	bool nested = in_nmi();
711 	if (!nested)
712 		nmi_enter();
713 
714 	/* 64s accounts the mce in machine_check_early when in HVMODE */
715 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
716 		__this_cpu_inc(irq_stat.mce_exceptions);
717 
718 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
719 
720 	/* See if any machine dependent calls. In theory, we would want
721 	 * to call the CPU first, and call the ppc_md. one if the CPU
722 	 * one returns a positive number. However there is existing code
723 	 * that assumes the board gets a first chance, so let's keep it
724 	 * that way for now and fix things later. --BenH.
725 	 */
726 	if (ppc_md.machine_check_exception)
727 		recover = ppc_md.machine_check_exception(regs);
728 	else if (cur_cpu_spec->machine_check)
729 		recover = cur_cpu_spec->machine_check(regs);
730 
731 	if (recover > 0)
732 		goto bail;
733 
734 	if (debugger_fault_handler(regs))
735 		goto bail;
736 
737 	if (check_io_access(regs))
738 		goto bail;
739 
740 	die("Machine check", regs, SIGBUS);
741 
742 	/* Must die if the interrupt is not recoverable */
743 	if (!(regs->msr & MSR_RI))
744 		nmi_panic(regs, "Unrecoverable Machine check");
745 
746 bail:
747 	if (!nested)
748 		nmi_exit();
749 }
750 
751 void SMIException(struct pt_regs *regs)
752 {
753 	die("System Management Interrupt", regs, SIGABRT);
754 }
755 
756 #ifdef CONFIG_VSX
757 static void p9_hmi_special_emu(struct pt_regs *regs)
758 {
759 	unsigned int ra, rb, t, i, sel, instr, rc;
760 	const void __user *addr;
761 	u8 vbuf[16], *vdst;
762 	unsigned long ea, msr, msr_mask;
763 	bool swap;
764 
765 	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
766 		return;
767 
768 	/*
769 	 * lxvb16x	opcode: 0x7c0006d8
770 	 * lxvd2x	opcode: 0x7c000698
771 	 * lxvh8x	opcode: 0x7c000658
772 	 * lxvw4x	opcode: 0x7c000618
773 	 */
774 	if ((instr & 0xfc00073e) != 0x7c000618) {
775 		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
776 			 " instr=%08x\n",
777 			 smp_processor_id(), current->comm, current->pid,
778 			 regs->nip, instr);
779 		return;
780 	}
781 
782 	/* Grab vector registers into the task struct */
783 	msr = regs->msr; /* Grab msr before we flush the bits */
784 	flush_vsx_to_thread(current);
785 	enable_kernel_altivec();
786 
787 	/*
788 	 * Is userspace running with a different endian (this is rare but
789 	 * not impossible)
790 	 */
791 	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
792 
793 	/* Decode the instruction */
794 	ra = (instr >> 16) & 0x1f;
795 	rb = (instr >> 11) & 0x1f;
796 	t = (instr >> 21) & 0x1f;
797 	if (instr & 1)
798 		vdst = (u8 *)&current->thread.vr_state.vr[t];
799 	else
800 		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
801 
802 	/* Grab the vector address */
803 	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
804 	if (is_32bit_task())
805 		ea &= 0xfffffffful;
806 	addr = (__force const void __user *)ea;
807 
808 	/* Check it */
809 	if (!access_ok(VERIFY_READ, addr, 16)) {
810 		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
811 			 " instr=%08x addr=%016lx\n",
812 			 smp_processor_id(), current->comm, current->pid,
813 			 regs->nip, instr, (unsigned long)addr);
814 		return;
815 	}
816 
817 	/* Read the vector */
818 	rc = 0;
819 	if ((unsigned long)addr & 0xfUL)
820 		/* unaligned case */
821 		rc = __copy_from_user_inatomic(vbuf, addr, 16);
822 	else
823 		__get_user_atomic_128_aligned(vbuf, addr, rc);
824 	if (rc) {
825 		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
826 			 " instr=%08x addr=%016lx\n",
827 			 smp_processor_id(), current->comm, current->pid,
828 			 regs->nip, instr, (unsigned long)addr);
829 		return;
830 	}
831 
832 	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
833 		 " instr=%08x addr=%016lx\n",
834 		 smp_processor_id(), current->comm, current->pid, regs->nip,
835 		 instr, (unsigned long) addr);
836 
837 	/* Grab instruction "selector" */
838 	sel = (instr >> 6) & 3;
839 
840 	/*
841 	 * Check to make sure the facility is actually enabled. This
842 	 * could happen if we get a false positive hit.
843 	 *
844 	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
845 	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
846 	 */
847 	msr_mask = MSR_VSX;
848 	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
849 		msr_mask = MSR_VEC;
850 	if (!(msr & msr_mask)) {
851 		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
852 			 " instr=%08x msr:%016lx\n",
853 			 smp_processor_id(), current->comm, current->pid,
854 			 regs->nip, instr, msr);
855 		return;
856 	}
857 
858 	/* Do logging here before we modify sel based on endian */
859 	switch (sel) {
860 	case 0:	/* lxvw4x */
861 		PPC_WARN_EMULATED(lxvw4x, regs);
862 		break;
863 	case 1: /* lxvh8x */
864 		PPC_WARN_EMULATED(lxvh8x, regs);
865 		break;
866 	case 2: /* lxvd2x */
867 		PPC_WARN_EMULATED(lxvd2x, regs);
868 		break;
869 	case 3: /* lxvb16x */
870 		PPC_WARN_EMULATED(lxvb16x, regs);
871 		break;
872 	}
873 
874 #ifdef __LITTLE_ENDIAN__
875 	/*
876 	 * An LE kernel stores the vector in the task struct as an LE
877 	 * byte array (effectively swapping both the components and
878 	 * the content of the components). Those instructions expect
879 	 * the components to remain in ascending address order, so we
880 	 * swap them back.
881 	 *
882 	 * If we are running a BE user space, the expectation is that
883 	 * of a simple memcpy, so forcing the emulation to look like
884 	 * a lxvb16x should do the trick.
885 	 */
886 	if (swap)
887 		sel = 3;
888 
889 	switch (sel) {
890 	case 0:	/* lxvw4x */
891 		for (i = 0; i < 4; i++)
892 			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
893 		break;
894 	case 1: /* lxvh8x */
895 		for (i = 0; i < 8; i++)
896 			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
897 		break;
898 	case 2: /* lxvd2x */
899 		for (i = 0; i < 2; i++)
900 			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
901 		break;
902 	case 3: /* lxvb16x */
903 		for (i = 0; i < 16; i++)
904 			vdst[i] = vbuf[15-i];
905 		break;
906 	}
907 #else /* __LITTLE_ENDIAN__ */
908 	/* On a big endian kernel, a BE userspace only needs a memcpy */
909 	if (!swap)
910 		sel = 3;
911 
912 	/* Otherwise, we need to swap the content of the components */
913 	switch (sel) {
914 	case 0:	/* lxvw4x */
915 		for (i = 0; i < 4; i++)
916 			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
917 		break;
918 	case 1: /* lxvh8x */
919 		for (i = 0; i < 8; i++)
920 			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
921 		break;
922 	case 2: /* lxvd2x */
923 		for (i = 0; i < 2; i++)
924 			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
925 		break;
926 	case 3: /* lxvb16x */
927 		memcpy(vdst, vbuf, 16);
928 		break;
929 	}
930 #endif /* !__LITTLE_ENDIAN__ */
931 
932 	/* Go to next instruction */
933 	regs->nip += 4;
934 }
935 #endif /* CONFIG_VSX */
936 
937 void handle_hmi_exception(struct pt_regs *regs)
938 {
939 	struct pt_regs *old_regs;
940 
941 	old_regs = set_irq_regs(regs);
942 	irq_enter();
943 
944 #ifdef CONFIG_VSX
945 	/* Real mode flagged P9 special emu is needed */
946 	if (local_paca->hmi_p9_special_emu) {
947 		local_paca->hmi_p9_special_emu = 0;
948 
949 		/*
950 		 * We don't want to take page faults while doing the
951 		 * emulation, we just replay the instruction if necessary.
952 		 */
953 		pagefault_disable();
954 		p9_hmi_special_emu(regs);
955 		pagefault_enable();
956 	}
957 #endif /* CONFIG_VSX */
958 
959 	if (ppc_md.handle_hmi_exception)
960 		ppc_md.handle_hmi_exception(regs);
961 
962 	irq_exit();
963 	set_irq_regs(old_regs);
964 }
965 
966 void unknown_exception(struct pt_regs *regs)
967 {
968 	enum ctx_state prev_state = exception_enter();
969 
970 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
971 	       regs->nip, regs->msr, regs->trap);
972 
973 	_exception(SIGTRAP, regs, TRAP_FIXME, 0);
974 
975 	exception_exit(prev_state);
976 }
977 
978 void instruction_breakpoint_exception(struct pt_regs *regs)
979 {
980 	enum ctx_state prev_state = exception_enter();
981 
982 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
983 					5, SIGTRAP) == NOTIFY_STOP)
984 		goto bail;
985 	if (debugger_iabr_match(regs))
986 		goto bail;
987 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
988 
989 bail:
990 	exception_exit(prev_state);
991 }
992 
993 void RunModeException(struct pt_regs *regs)
994 {
995 	_exception(SIGTRAP, regs, TRAP_FIXME, 0);
996 }
997 
998 void single_step_exception(struct pt_regs *regs)
999 {
1000 	enum ctx_state prev_state = exception_enter();
1001 
1002 	clear_single_step(regs);
1003 	clear_br_trace(regs);
1004 
1005 	if (kprobe_post_handler(regs))
1006 		return;
1007 
1008 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1009 					5, SIGTRAP) == NOTIFY_STOP)
1010 		goto bail;
1011 	if (debugger_sstep(regs))
1012 		goto bail;
1013 
1014 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1015 
1016 bail:
1017 	exception_exit(prev_state);
1018 }
1019 NOKPROBE_SYMBOL(single_step_exception);
1020 
1021 /*
1022  * After we have successfully emulated an instruction, we have to
1023  * check if the instruction was being single-stepped, and if so,
1024  * pretend we got a single-step exception.  This was pointed out
1025  * by Kumar Gala.  -- paulus
1026  */
1027 static void emulate_single_step(struct pt_regs *regs)
1028 {
1029 	if (single_stepping(regs))
1030 		single_step_exception(regs);
1031 }
1032 
1033 static inline int __parse_fpscr(unsigned long fpscr)
1034 {
1035 	int ret = FPE_FIXME;
1036 
1037 	/* Invalid operation */
1038 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1039 		ret = FPE_FLTINV;
1040 
1041 	/* Overflow */
1042 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1043 		ret = FPE_FLTOVF;
1044 
1045 	/* Underflow */
1046 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1047 		ret = FPE_FLTUND;
1048 
1049 	/* Divide by zero */
1050 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1051 		ret = FPE_FLTDIV;
1052 
1053 	/* Inexact result */
1054 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1055 		ret = FPE_FLTRES;
1056 
1057 	return ret;
1058 }
1059 
1060 static void parse_fpe(struct pt_regs *regs)
1061 {
1062 	int code = 0;
1063 
1064 	flush_fp_to_thread(current);
1065 
1066 	code = __parse_fpscr(current->thread.fp_state.fpscr);
1067 
1068 	_exception(SIGFPE, regs, code, regs->nip);
1069 }
1070 
1071 /*
1072  * Illegal instruction emulation support.  Originally written to
1073  * provide the PVR to user applications using the mfspr rd, PVR.
1074  * Return non-zero if we can't emulate, or -EFAULT if the associated
1075  * memory access caused an access fault.  Return zero on success.
1076  *
1077  * There are a couple of ways to do this, either "decode" the instruction
1078  * or directly match lots of bits.  In this case, matching lots of
1079  * bits is faster and easier.
1080  *
1081  */
1082 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1083 {
1084 	u8 rT = (instword >> 21) & 0x1f;
1085 	u8 rA = (instword >> 16) & 0x1f;
1086 	u8 NB_RB = (instword >> 11) & 0x1f;
1087 	u32 num_bytes;
1088 	unsigned long EA;
1089 	int pos = 0;
1090 
1091 	/* Early out if we are an invalid form of lswx */
1092 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1093 		if ((rT == rA) || (rT == NB_RB))
1094 			return -EINVAL;
1095 
1096 	EA = (rA == 0) ? 0 : regs->gpr[rA];
1097 
1098 	switch (instword & PPC_INST_STRING_MASK) {
1099 		case PPC_INST_LSWX:
1100 		case PPC_INST_STSWX:
1101 			EA += NB_RB;
1102 			num_bytes = regs->xer & 0x7f;
1103 			break;
1104 		case PPC_INST_LSWI:
1105 		case PPC_INST_STSWI:
1106 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1107 			break;
1108 		default:
1109 			return -EINVAL;
1110 	}
1111 
1112 	while (num_bytes != 0)
1113 	{
1114 		u8 val;
1115 		u32 shift = 8 * (3 - (pos & 0x3));
1116 
1117 		/* if process is 32-bit, clear upper 32 bits of EA */
1118 		if ((regs->msr & MSR_64BIT) == 0)
1119 			EA &= 0xFFFFFFFF;
1120 
1121 		switch ((instword & PPC_INST_STRING_MASK)) {
1122 			case PPC_INST_LSWX:
1123 			case PPC_INST_LSWI:
1124 				if (get_user(val, (u8 __user *)EA))
1125 					return -EFAULT;
1126 				/* first time updating this reg,
1127 				 * zero it out */
1128 				if (pos == 0)
1129 					regs->gpr[rT] = 0;
1130 				regs->gpr[rT] |= val << shift;
1131 				break;
1132 			case PPC_INST_STSWI:
1133 			case PPC_INST_STSWX:
1134 				val = regs->gpr[rT] >> shift;
1135 				if (put_user(val, (u8 __user *)EA))
1136 					return -EFAULT;
1137 				break;
1138 		}
1139 		/* move EA to next address */
1140 		EA += 1;
1141 		num_bytes--;
1142 
1143 		/* manage our position within the register */
1144 		if (++pos == 4) {
1145 			pos = 0;
1146 			if (++rT == 32)
1147 				rT = 0;
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1155 {
1156 	u32 ra,rs;
1157 	unsigned long tmp;
1158 
1159 	ra = (instword >> 16) & 0x1f;
1160 	rs = (instword >> 21) & 0x1f;
1161 
1162 	tmp = regs->gpr[rs];
1163 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1164 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1165 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1166 	regs->gpr[ra] = tmp;
1167 
1168 	return 0;
1169 }
1170 
1171 static int emulate_isel(struct pt_regs *regs, u32 instword)
1172 {
1173 	u8 rT = (instword >> 21) & 0x1f;
1174 	u8 rA = (instword >> 16) & 0x1f;
1175 	u8 rB = (instword >> 11) & 0x1f;
1176 	u8 BC = (instword >> 6) & 0x1f;
1177 	u8 bit;
1178 	unsigned long tmp;
1179 
1180 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1181 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1182 
1183 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1184 
1185 	return 0;
1186 }
1187 
1188 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1189 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1190 {
1191         /* If we're emulating a load/store in an active transaction, we cannot
1192          * emulate it as the kernel operates in transaction suspended context.
1193          * We need to abort the transaction.  This creates a persistent TM
1194          * abort so tell the user what caused it with a new code.
1195 	 */
1196 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1197 		tm_enable();
1198 		tm_abort(cause);
1199 		return true;
1200 	}
1201 	return false;
1202 }
1203 #else
1204 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1205 {
1206 	return false;
1207 }
1208 #endif
1209 
1210 static int emulate_instruction(struct pt_regs *regs)
1211 {
1212 	u32 instword;
1213 	u32 rd;
1214 
1215 	if (!user_mode(regs))
1216 		return -EINVAL;
1217 	CHECK_FULL_REGS(regs);
1218 
1219 	if (get_user(instword, (u32 __user *)(regs->nip)))
1220 		return -EFAULT;
1221 
1222 	/* Emulate the mfspr rD, PVR. */
1223 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1224 		PPC_WARN_EMULATED(mfpvr, regs);
1225 		rd = (instword >> 21) & 0x1f;
1226 		regs->gpr[rd] = mfspr(SPRN_PVR);
1227 		return 0;
1228 	}
1229 
1230 	/* Emulating the dcba insn is just a no-op.  */
1231 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1232 		PPC_WARN_EMULATED(dcba, regs);
1233 		return 0;
1234 	}
1235 
1236 	/* Emulate the mcrxr insn.  */
1237 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1238 		int shift = (instword >> 21) & 0x1c;
1239 		unsigned long msk = 0xf0000000UL >> shift;
1240 
1241 		PPC_WARN_EMULATED(mcrxr, regs);
1242 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1243 		regs->xer &= ~0xf0000000UL;
1244 		return 0;
1245 	}
1246 
1247 	/* Emulate load/store string insn. */
1248 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1249 		if (tm_abort_check(regs,
1250 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1251 			return -EINVAL;
1252 		PPC_WARN_EMULATED(string, regs);
1253 		return emulate_string_inst(regs, instword);
1254 	}
1255 
1256 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1257 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1258 		PPC_WARN_EMULATED(popcntb, regs);
1259 		return emulate_popcntb_inst(regs, instword);
1260 	}
1261 
1262 	/* Emulate isel (Integer Select) instruction */
1263 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1264 		PPC_WARN_EMULATED(isel, regs);
1265 		return emulate_isel(regs, instword);
1266 	}
1267 
1268 	/* Emulate sync instruction variants */
1269 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1270 		PPC_WARN_EMULATED(sync, regs);
1271 		asm volatile("sync");
1272 		return 0;
1273 	}
1274 
1275 #ifdef CONFIG_PPC64
1276 	/* Emulate the mfspr rD, DSCR. */
1277 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1278 		PPC_INST_MFSPR_DSCR_USER) ||
1279 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1280 		PPC_INST_MFSPR_DSCR)) &&
1281 			cpu_has_feature(CPU_FTR_DSCR)) {
1282 		PPC_WARN_EMULATED(mfdscr, regs);
1283 		rd = (instword >> 21) & 0x1f;
1284 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1285 		return 0;
1286 	}
1287 	/* Emulate the mtspr DSCR, rD. */
1288 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1289 		PPC_INST_MTSPR_DSCR_USER) ||
1290 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1291 		PPC_INST_MTSPR_DSCR)) &&
1292 			cpu_has_feature(CPU_FTR_DSCR)) {
1293 		PPC_WARN_EMULATED(mtdscr, regs);
1294 		rd = (instword >> 21) & 0x1f;
1295 		current->thread.dscr = regs->gpr[rd];
1296 		current->thread.dscr_inherit = 1;
1297 		mtspr(SPRN_DSCR, current->thread.dscr);
1298 		return 0;
1299 	}
1300 #endif
1301 
1302 	return -EINVAL;
1303 }
1304 
1305 int is_valid_bugaddr(unsigned long addr)
1306 {
1307 	return is_kernel_addr(addr);
1308 }
1309 
1310 #ifdef CONFIG_MATH_EMULATION
1311 static int emulate_math(struct pt_regs *regs)
1312 {
1313 	int ret;
1314 	extern int do_mathemu(struct pt_regs *regs);
1315 
1316 	ret = do_mathemu(regs);
1317 	if (ret >= 0)
1318 		PPC_WARN_EMULATED(math, regs);
1319 
1320 	switch (ret) {
1321 	case 0:
1322 		emulate_single_step(regs);
1323 		return 0;
1324 	case 1: {
1325 			int code = 0;
1326 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1327 			_exception(SIGFPE, regs, code, regs->nip);
1328 			return 0;
1329 		}
1330 	case -EFAULT:
1331 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1332 		return 0;
1333 	}
1334 
1335 	return -1;
1336 }
1337 #else
1338 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1339 #endif
1340 
1341 void program_check_exception(struct pt_regs *regs)
1342 {
1343 	enum ctx_state prev_state = exception_enter();
1344 	unsigned int reason = get_reason(regs);
1345 
1346 	/* We can now get here via a FP Unavailable exception if the core
1347 	 * has no FPU, in that case the reason flags will be 0 */
1348 
1349 	if (reason & REASON_FP) {
1350 		/* IEEE FP exception */
1351 		parse_fpe(regs);
1352 		goto bail;
1353 	}
1354 	if (reason & REASON_TRAP) {
1355 		unsigned long bugaddr;
1356 		/* Debugger is first in line to stop recursive faults in
1357 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1358 		if (debugger_bpt(regs))
1359 			goto bail;
1360 
1361 		if (kprobe_handler(regs))
1362 			goto bail;
1363 
1364 		/* trap exception */
1365 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1366 				== NOTIFY_STOP)
1367 			goto bail;
1368 
1369 		bugaddr = regs->nip;
1370 		/*
1371 		 * Fixup bugaddr for BUG_ON() in real mode
1372 		 */
1373 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1374 			bugaddr += PAGE_OFFSET;
1375 
1376 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1377 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1378 			regs->nip += 4;
1379 			goto bail;
1380 		}
1381 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1382 		goto bail;
1383 	}
1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1385 	if (reason & REASON_TM) {
1386 		/* This is a TM "Bad Thing Exception" program check.
1387 		 * This occurs when:
1388 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1389 		 *    transition in TM states.
1390 		 * -  A trechkpt is attempted when transactional.
1391 		 * -  A treclaim is attempted when non transactional.
1392 		 * -  A tend is illegally attempted.
1393 		 * -  writing a TM SPR when transactional.
1394 		 *
1395 		 * If usermode caused this, it's done something illegal and
1396 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1397 		 * operand to distinguish from the instruction just being bad
1398 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1399 		 * illegal /placement/ of a valid instruction.
1400 		 */
1401 		if (user_mode(regs)) {
1402 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1403 			goto bail;
1404 		} else {
1405 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1406 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1407 			die("Unrecoverable exception", regs, SIGABRT);
1408 		}
1409 	}
1410 #endif
1411 
1412 	/*
1413 	 * If we took the program check in the kernel skip down to sending a
1414 	 * SIGILL. The subsequent cases all relate to emulating instructions
1415 	 * which we should only do for userspace. We also do not want to enable
1416 	 * interrupts for kernel faults because that might lead to further
1417 	 * faults, and loose the context of the original exception.
1418 	 */
1419 	if (!user_mode(regs))
1420 		goto sigill;
1421 
1422 	/* We restore the interrupt state now */
1423 	if (!arch_irq_disabled_regs(regs))
1424 		local_irq_enable();
1425 
1426 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1427 	 * but there seems to be a hardware bug on the 405GP (RevD)
1428 	 * that means ESR is sometimes set incorrectly - either to
1429 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1430 	 * hardware people - not sure if it can happen on any illegal
1431 	 * instruction or only on FP instructions, whether there is a
1432 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1433 	 */
1434 	if (!emulate_math(regs))
1435 		goto bail;
1436 
1437 	/* Try to emulate it if we should. */
1438 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1439 		switch (emulate_instruction(regs)) {
1440 		case 0:
1441 			regs->nip += 4;
1442 			emulate_single_step(regs);
1443 			goto bail;
1444 		case -EFAULT:
1445 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1446 			goto bail;
1447 		}
1448 	}
1449 
1450 sigill:
1451 	if (reason & REASON_PRIVILEGED)
1452 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1453 	else
1454 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1455 
1456 bail:
1457 	exception_exit(prev_state);
1458 }
1459 NOKPROBE_SYMBOL(program_check_exception);
1460 
1461 /*
1462  * This occurs when running in hypervisor mode on POWER6 or later
1463  * and an illegal instruction is encountered.
1464  */
1465 void emulation_assist_interrupt(struct pt_regs *regs)
1466 {
1467 	regs->msr |= REASON_ILLEGAL;
1468 	program_check_exception(regs);
1469 }
1470 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1471 
1472 void alignment_exception(struct pt_regs *regs)
1473 {
1474 	enum ctx_state prev_state = exception_enter();
1475 	int sig, code, fixed = 0;
1476 
1477 	/* We restore the interrupt state now */
1478 	if (!arch_irq_disabled_regs(regs))
1479 		local_irq_enable();
1480 
1481 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1482 		goto bail;
1483 
1484 	/* we don't implement logging of alignment exceptions */
1485 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1486 		fixed = fix_alignment(regs);
1487 
1488 	if (fixed == 1) {
1489 		regs->nip += 4;	/* skip over emulated instruction */
1490 		emulate_single_step(regs);
1491 		goto bail;
1492 	}
1493 
1494 	/* Operand address was bad */
1495 	if (fixed == -EFAULT) {
1496 		sig = SIGSEGV;
1497 		code = SEGV_ACCERR;
1498 	} else {
1499 		sig = SIGBUS;
1500 		code = BUS_ADRALN;
1501 	}
1502 	if (user_mode(regs))
1503 		_exception(sig, regs, code, regs->dar);
1504 	else
1505 		bad_page_fault(regs, regs->dar, sig);
1506 
1507 bail:
1508 	exception_exit(prev_state);
1509 }
1510 
1511 void StackOverflow(struct pt_regs *regs)
1512 {
1513 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1514 	       current, regs->gpr[1]);
1515 	debugger(regs);
1516 	show_regs(regs);
1517 	panic("kernel stack overflow");
1518 }
1519 
1520 void nonrecoverable_exception(struct pt_regs *regs)
1521 {
1522 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1523 	       regs->nip, regs->msr);
1524 	debugger(regs);
1525 	die("nonrecoverable exception", regs, SIGKILL);
1526 }
1527 
1528 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1529 {
1530 	enum ctx_state prev_state = exception_enter();
1531 
1532 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1533 			  "%lx at %lx\n", regs->trap, regs->nip);
1534 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1535 
1536 	exception_exit(prev_state);
1537 }
1538 
1539 void altivec_unavailable_exception(struct pt_regs *regs)
1540 {
1541 	enum ctx_state prev_state = exception_enter();
1542 
1543 	if (user_mode(regs)) {
1544 		/* A user program has executed an altivec instruction,
1545 		   but this kernel doesn't support altivec. */
1546 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1547 		goto bail;
1548 	}
1549 
1550 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1551 			"%lx at %lx\n", regs->trap, regs->nip);
1552 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1553 
1554 bail:
1555 	exception_exit(prev_state);
1556 }
1557 
1558 void vsx_unavailable_exception(struct pt_regs *regs)
1559 {
1560 	if (user_mode(regs)) {
1561 		/* A user program has executed an vsx instruction,
1562 		   but this kernel doesn't support vsx. */
1563 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1564 		return;
1565 	}
1566 
1567 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1568 			"%lx at %lx\n", regs->trap, regs->nip);
1569 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1570 }
1571 
1572 #ifdef CONFIG_PPC64
1573 static void tm_unavailable(struct pt_regs *regs)
1574 {
1575 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1576 	if (user_mode(regs)) {
1577 		current->thread.load_tm++;
1578 		regs->msr |= MSR_TM;
1579 		tm_enable();
1580 		tm_restore_sprs(&current->thread);
1581 		return;
1582 	}
1583 #endif
1584 	pr_emerg("Unrecoverable TM Unavailable Exception "
1585 			"%lx at %lx\n", regs->trap, regs->nip);
1586 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1587 }
1588 
1589 void facility_unavailable_exception(struct pt_regs *regs)
1590 {
1591 	static char *facility_strings[] = {
1592 		[FSCR_FP_LG] = "FPU",
1593 		[FSCR_VECVSX_LG] = "VMX/VSX",
1594 		[FSCR_DSCR_LG] = "DSCR",
1595 		[FSCR_PM_LG] = "PMU SPRs",
1596 		[FSCR_BHRB_LG] = "BHRB",
1597 		[FSCR_TM_LG] = "TM",
1598 		[FSCR_EBB_LG] = "EBB",
1599 		[FSCR_TAR_LG] = "TAR",
1600 		[FSCR_MSGP_LG] = "MSGP",
1601 		[FSCR_SCV_LG] = "SCV",
1602 	};
1603 	char *facility = "unknown";
1604 	u64 value;
1605 	u32 instword, rd;
1606 	u8 status;
1607 	bool hv;
1608 
1609 	hv = (TRAP(regs) == 0xf80);
1610 	if (hv)
1611 		value = mfspr(SPRN_HFSCR);
1612 	else
1613 		value = mfspr(SPRN_FSCR);
1614 
1615 	status = value >> 56;
1616 	if ((hv || status >= 2) &&
1617 	    (status < ARRAY_SIZE(facility_strings)) &&
1618 	    facility_strings[status])
1619 		facility = facility_strings[status];
1620 
1621 	/* We should not have taken this interrupt in kernel */
1622 	if (!user_mode(regs)) {
1623 		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1624 			 facility, status, regs->nip);
1625 		die("Unexpected facility unavailable exception", regs, SIGABRT);
1626 	}
1627 
1628 	/* We restore the interrupt state now */
1629 	if (!arch_irq_disabled_regs(regs))
1630 		local_irq_enable();
1631 
1632 	if (status == FSCR_DSCR_LG) {
1633 		/*
1634 		 * User is accessing the DSCR register using the problem
1635 		 * state only SPR number (0x03) either through a mfspr or
1636 		 * a mtspr instruction. If it is a write attempt through
1637 		 * a mtspr, then we set the inherit bit. This also allows
1638 		 * the user to write or read the register directly in the
1639 		 * future by setting via the FSCR DSCR bit. But in case it
1640 		 * is a read DSCR attempt through a mfspr instruction, we
1641 		 * just emulate the instruction instead. This code path will
1642 		 * always emulate all the mfspr instructions till the user
1643 		 * has attempted at least one mtspr instruction. This way it
1644 		 * preserves the same behaviour when the user is accessing
1645 		 * the DSCR through privilege level only SPR number (0x11)
1646 		 * which is emulated through illegal instruction exception.
1647 		 * We always leave HFSCR DSCR set.
1648 		 */
1649 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1650 			pr_err("Failed to fetch the user instruction\n");
1651 			return;
1652 		}
1653 
1654 		/* Write into DSCR (mtspr 0x03, RS) */
1655 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1656 				== PPC_INST_MTSPR_DSCR_USER) {
1657 			rd = (instword >> 21) & 0x1f;
1658 			current->thread.dscr = regs->gpr[rd];
1659 			current->thread.dscr_inherit = 1;
1660 			current->thread.fscr |= FSCR_DSCR;
1661 			mtspr(SPRN_FSCR, current->thread.fscr);
1662 		}
1663 
1664 		/* Read from DSCR (mfspr RT, 0x03) */
1665 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1666 				== PPC_INST_MFSPR_DSCR_USER) {
1667 			if (emulate_instruction(regs)) {
1668 				pr_err("DSCR based mfspr emulation failed\n");
1669 				return;
1670 			}
1671 			regs->nip += 4;
1672 			emulate_single_step(regs);
1673 		}
1674 		return;
1675 	}
1676 
1677 	if (status == FSCR_TM_LG) {
1678 		/*
1679 		 * If we're here then the hardware is TM aware because it
1680 		 * generated an exception with FSRM_TM set.
1681 		 *
1682 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1683 		 * told us not to do TM, or the kernel is not built with TM
1684 		 * support.
1685 		 *
1686 		 * If both of those things are true, then userspace can spam the
1687 		 * console by triggering the printk() below just by continually
1688 		 * doing tbegin (or any TM instruction). So in that case just
1689 		 * send the process a SIGILL immediately.
1690 		 */
1691 		if (!cpu_has_feature(CPU_FTR_TM))
1692 			goto out;
1693 
1694 		tm_unavailable(regs);
1695 		return;
1696 	}
1697 
1698 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1699 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1700 
1701 out:
1702 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1703 }
1704 #endif
1705 
1706 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1707 
1708 void fp_unavailable_tm(struct pt_regs *regs)
1709 {
1710 	/* Note:  This does not handle any kind of FP laziness. */
1711 
1712 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1713 		 regs->nip, regs->msr);
1714 
1715         /* We can only have got here if the task started using FP after
1716          * beginning the transaction.  So, the transactional regs are just a
1717          * copy of the checkpointed ones.  But, we still need to recheckpoint
1718          * as we're enabling FP for the process; it will return, abort the
1719          * transaction, and probably retry but now with FP enabled.  So the
1720          * checkpointed FP registers need to be loaded.
1721 	 */
1722 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1723 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1724 
1725 	/* Enable FP for the task: */
1726 	current->thread.load_fp = 1;
1727 
1728 	/* This loads and recheckpoints the FP registers from
1729 	 * thread.fpr[].  They will remain in registers after the
1730 	 * checkpoint so we don't need to reload them after.
1731 	 * If VMX is in use, the VRs now hold checkpointed values,
1732 	 * so we don't want to load the VRs from the thread_struct.
1733 	 */
1734 	tm_recheckpoint(&current->thread);
1735 }
1736 
1737 void altivec_unavailable_tm(struct pt_regs *regs)
1738 {
1739 	/* See the comments in fp_unavailable_tm().  This function operates
1740 	 * the same way.
1741 	 */
1742 
1743 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1744 		 "MSR=%lx\n",
1745 		 regs->nip, regs->msr);
1746 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1747 	current->thread.load_vec = 1;
1748 	tm_recheckpoint(&current->thread);
1749 	current->thread.used_vr = 1;
1750 }
1751 
1752 void vsx_unavailable_tm(struct pt_regs *regs)
1753 {
1754 	/* See the comments in fp_unavailable_tm().  This works similarly,
1755 	 * though we're loading both FP and VEC registers in here.
1756 	 *
1757 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1758 	 * regs.  Either way, set MSR_VSX.
1759 	 */
1760 
1761 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1762 		 "MSR=%lx\n",
1763 		 regs->nip, regs->msr);
1764 
1765 	current->thread.used_vsr = 1;
1766 
1767 	/* This reclaims FP and/or VR regs if they're already enabled */
1768 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1769 
1770 	current->thread.load_vec = 1;
1771 	current->thread.load_fp = 1;
1772 
1773 	tm_recheckpoint(&current->thread);
1774 }
1775 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1776 
1777 void performance_monitor_exception(struct pt_regs *regs)
1778 {
1779 	__this_cpu_inc(irq_stat.pmu_irqs);
1780 
1781 	perf_irq(regs);
1782 }
1783 
1784 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1785 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1786 {
1787 	int changed = 0;
1788 	/*
1789 	 * Determine the cause of the debug event, clear the
1790 	 * event flags and send a trap to the handler. Torez
1791 	 */
1792 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1793 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1794 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1795 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1796 #endif
1797 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1798 			     5);
1799 		changed |= 0x01;
1800 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1801 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1802 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1803 			     6);
1804 		changed |= 0x01;
1805 	}  else if (debug_status & DBSR_IAC1) {
1806 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1807 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1808 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1809 			     1);
1810 		changed |= 0x01;
1811 	}  else if (debug_status & DBSR_IAC2) {
1812 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1813 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1814 			     2);
1815 		changed |= 0x01;
1816 	}  else if (debug_status & DBSR_IAC3) {
1817 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1818 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1819 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1820 			     3);
1821 		changed |= 0x01;
1822 	}  else if (debug_status & DBSR_IAC4) {
1823 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1824 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1825 			     4);
1826 		changed |= 0x01;
1827 	}
1828 	/*
1829 	 * At the point this routine was called, the MSR(DE) was turned off.
1830 	 * Check all other debug flags and see if that bit needs to be turned
1831 	 * back on or not.
1832 	 */
1833 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1834 			       current->thread.debug.dbcr1))
1835 		regs->msr |= MSR_DE;
1836 	else
1837 		/* Make sure the IDM flag is off */
1838 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1839 
1840 	if (changed & 0x01)
1841 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1842 }
1843 
1844 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1845 {
1846 	current->thread.debug.dbsr = debug_status;
1847 
1848 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1849 	 * on server, it stops on the target of the branch. In order to simulate
1850 	 * the server behaviour, we thus restart right away with a single step
1851 	 * instead of stopping here when hitting a BT
1852 	 */
1853 	if (debug_status & DBSR_BT) {
1854 		regs->msr &= ~MSR_DE;
1855 
1856 		/* Disable BT */
1857 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1858 		/* Clear the BT event */
1859 		mtspr(SPRN_DBSR, DBSR_BT);
1860 
1861 		/* Do the single step trick only when coming from userspace */
1862 		if (user_mode(regs)) {
1863 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1864 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1865 			regs->msr |= MSR_DE;
1866 			return;
1867 		}
1868 
1869 		if (kprobe_post_handler(regs))
1870 			return;
1871 
1872 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1873 			       5, SIGTRAP) == NOTIFY_STOP) {
1874 			return;
1875 		}
1876 		if (debugger_sstep(regs))
1877 			return;
1878 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1879 		regs->msr &= ~MSR_DE;
1880 
1881 		/* Disable instruction completion */
1882 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1883 		/* Clear the instruction completion event */
1884 		mtspr(SPRN_DBSR, DBSR_IC);
1885 
1886 		if (kprobe_post_handler(regs))
1887 			return;
1888 
1889 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1890 			       5, SIGTRAP) == NOTIFY_STOP) {
1891 			return;
1892 		}
1893 
1894 		if (debugger_sstep(regs))
1895 			return;
1896 
1897 		if (user_mode(regs)) {
1898 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1899 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1900 					       current->thread.debug.dbcr1))
1901 				regs->msr |= MSR_DE;
1902 			else
1903 				/* Make sure the IDM bit is off */
1904 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1905 		}
1906 
1907 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1908 	} else
1909 		handle_debug(regs, debug_status);
1910 }
1911 NOKPROBE_SYMBOL(DebugException);
1912 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1913 
1914 #if !defined(CONFIG_TAU_INT)
1915 void TAUException(struct pt_regs *regs)
1916 {
1917 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1918 	       regs->nip, regs->msr, regs->trap, print_tainted());
1919 }
1920 #endif /* CONFIG_INT_TAU */
1921 
1922 #ifdef CONFIG_ALTIVEC
1923 void altivec_assist_exception(struct pt_regs *regs)
1924 {
1925 	int err;
1926 
1927 	if (!user_mode(regs)) {
1928 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1929 		       " at %lx\n", regs->nip);
1930 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1931 	}
1932 
1933 	flush_altivec_to_thread(current);
1934 
1935 	PPC_WARN_EMULATED(altivec, regs);
1936 	err = emulate_altivec(regs);
1937 	if (err == 0) {
1938 		regs->nip += 4;		/* skip emulated instruction */
1939 		emulate_single_step(regs);
1940 		return;
1941 	}
1942 
1943 	if (err == -EFAULT) {
1944 		/* got an error reading the instruction */
1945 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1946 	} else {
1947 		/* didn't recognize the instruction */
1948 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1949 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1950 				   "in %s at %lx\n", current->comm, regs->nip);
1951 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1952 	}
1953 }
1954 #endif /* CONFIG_ALTIVEC */
1955 
1956 #ifdef CONFIG_FSL_BOOKE
1957 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1958 			   unsigned long error_code)
1959 {
1960 	/* We treat cache locking instructions from the user
1961 	 * as priv ops, in the future we could try to do
1962 	 * something smarter
1963 	 */
1964 	if (error_code & (ESR_DLK|ESR_ILK))
1965 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1966 	return;
1967 }
1968 #endif /* CONFIG_FSL_BOOKE */
1969 
1970 #ifdef CONFIG_SPE
1971 void SPEFloatingPointException(struct pt_regs *regs)
1972 {
1973 	extern int do_spe_mathemu(struct pt_regs *regs);
1974 	unsigned long spefscr;
1975 	int fpexc_mode;
1976 	int code = FPE_FIXME;
1977 	int err;
1978 
1979 	flush_spe_to_thread(current);
1980 
1981 	spefscr = current->thread.spefscr;
1982 	fpexc_mode = current->thread.fpexc_mode;
1983 
1984 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1985 		code = FPE_FLTOVF;
1986 	}
1987 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1988 		code = FPE_FLTUND;
1989 	}
1990 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1991 		code = FPE_FLTDIV;
1992 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1993 		code = FPE_FLTINV;
1994 	}
1995 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1996 		code = FPE_FLTRES;
1997 
1998 	err = do_spe_mathemu(regs);
1999 	if (err == 0) {
2000 		regs->nip += 4;		/* skip emulated instruction */
2001 		emulate_single_step(regs);
2002 		return;
2003 	}
2004 
2005 	if (err == -EFAULT) {
2006 		/* got an error reading the instruction */
2007 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2008 	} else if (err == -EINVAL) {
2009 		/* didn't recognize the instruction */
2010 		printk(KERN_ERR "unrecognized spe instruction "
2011 		       "in %s at %lx\n", current->comm, regs->nip);
2012 	} else {
2013 		_exception(SIGFPE, regs, code, regs->nip);
2014 	}
2015 
2016 	return;
2017 }
2018 
2019 void SPEFloatingPointRoundException(struct pt_regs *regs)
2020 {
2021 	extern int speround_handler(struct pt_regs *regs);
2022 	int err;
2023 
2024 	preempt_disable();
2025 	if (regs->msr & MSR_SPE)
2026 		giveup_spe(current);
2027 	preempt_enable();
2028 
2029 	regs->nip -= 4;
2030 	err = speround_handler(regs);
2031 	if (err == 0) {
2032 		regs->nip += 4;		/* skip emulated instruction */
2033 		emulate_single_step(regs);
2034 		return;
2035 	}
2036 
2037 	if (err == -EFAULT) {
2038 		/* got an error reading the instruction */
2039 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2040 	} else if (err == -EINVAL) {
2041 		/* didn't recognize the instruction */
2042 		printk(KERN_ERR "unrecognized spe instruction "
2043 		       "in %s at %lx\n", current->comm, regs->nip);
2044 	} else {
2045 		_exception(SIGFPE, regs, FPE_FIXME, regs->nip);
2046 		return;
2047 	}
2048 }
2049 #endif
2050 
2051 /*
2052  * We enter here if we get an unrecoverable exception, that is, one
2053  * that happened at a point where the RI (recoverable interrupt) bit
2054  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2055  * we therefore lost state by taking this exception.
2056  */
2057 void unrecoverable_exception(struct pt_regs *regs)
2058 {
2059 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
2060 	       regs->trap, regs->nip);
2061 	die("Unrecoverable exception", regs, SIGABRT);
2062 }
2063 NOKPROBE_SYMBOL(unrecoverable_exception);
2064 
2065 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2066 /*
2067  * Default handler for a Watchdog exception,
2068  * spins until a reboot occurs
2069  */
2070 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2071 {
2072 	/* Generic WatchdogHandler, implement your own */
2073 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2074 	return;
2075 }
2076 
2077 void WatchdogException(struct pt_regs *regs)
2078 {
2079 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2080 	WatchdogHandler(regs);
2081 }
2082 #endif
2083 
2084 /*
2085  * We enter here if we discover during exception entry that we are
2086  * running in supervisor mode with a userspace value in the stack pointer.
2087  */
2088 void kernel_bad_stack(struct pt_regs *regs)
2089 {
2090 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2091 	       regs->gpr[1], regs->nip);
2092 	die("Bad kernel stack pointer", regs, SIGABRT);
2093 }
2094 NOKPROBE_SYMBOL(kernel_bad_stack);
2095 
2096 void __init trap_init(void)
2097 {
2098 }
2099 
2100 
2101 #ifdef CONFIG_PPC_EMULATED_STATS
2102 
2103 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2104 
2105 struct ppc_emulated ppc_emulated = {
2106 #ifdef CONFIG_ALTIVEC
2107 	WARN_EMULATED_SETUP(altivec),
2108 #endif
2109 	WARN_EMULATED_SETUP(dcba),
2110 	WARN_EMULATED_SETUP(dcbz),
2111 	WARN_EMULATED_SETUP(fp_pair),
2112 	WARN_EMULATED_SETUP(isel),
2113 	WARN_EMULATED_SETUP(mcrxr),
2114 	WARN_EMULATED_SETUP(mfpvr),
2115 	WARN_EMULATED_SETUP(multiple),
2116 	WARN_EMULATED_SETUP(popcntb),
2117 	WARN_EMULATED_SETUP(spe),
2118 	WARN_EMULATED_SETUP(string),
2119 	WARN_EMULATED_SETUP(sync),
2120 	WARN_EMULATED_SETUP(unaligned),
2121 #ifdef CONFIG_MATH_EMULATION
2122 	WARN_EMULATED_SETUP(math),
2123 #endif
2124 #ifdef CONFIG_VSX
2125 	WARN_EMULATED_SETUP(vsx),
2126 #endif
2127 #ifdef CONFIG_PPC64
2128 	WARN_EMULATED_SETUP(mfdscr),
2129 	WARN_EMULATED_SETUP(mtdscr),
2130 	WARN_EMULATED_SETUP(lq_stq),
2131 	WARN_EMULATED_SETUP(lxvw4x),
2132 	WARN_EMULATED_SETUP(lxvh8x),
2133 	WARN_EMULATED_SETUP(lxvd2x),
2134 	WARN_EMULATED_SETUP(lxvb16x),
2135 #endif
2136 };
2137 
2138 u32 ppc_warn_emulated;
2139 
2140 void ppc_warn_emulated_print(const char *type)
2141 {
2142 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2143 			    type);
2144 }
2145 
2146 static int __init ppc_warn_emulated_init(void)
2147 {
2148 	struct dentry *dir, *d;
2149 	unsigned int i;
2150 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2151 
2152 	if (!powerpc_debugfs_root)
2153 		return -ENODEV;
2154 
2155 	dir = debugfs_create_dir("emulated_instructions",
2156 				 powerpc_debugfs_root);
2157 	if (!dir)
2158 		return -ENOMEM;
2159 
2160 	d = debugfs_create_u32("do_warn", 0644, dir,
2161 			       &ppc_warn_emulated);
2162 	if (!d)
2163 		goto fail;
2164 
2165 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2166 		d = debugfs_create_u32(entries[i].name, 0644, dir,
2167 				       (u32 *)&entries[i].val.counter);
2168 		if (!d)
2169 			goto fail;
2170 	}
2171 
2172 	return 0;
2173 
2174 fail:
2175 	debugfs_remove_recursive(dir);
2176 	return -ENOMEM;
2177 }
2178 
2179 device_initcall(ppc_warn_emulated_init);
2180 
2181 #endif /* CONFIG_PPC_EMULATED_STATS */
2182