1 /* 2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 3 * Copyright 2007-2010 Freescale Semiconductor, Inc. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 8 * 2 of the License, or (at your option) any later version. 9 * 10 * Modified by Cort Dougan (cort@cs.nmt.edu) 11 * and Paul Mackerras (paulus@samba.org) 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of hardware exceptions 16 */ 17 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/pkeys.h> 24 #include <linux/stddef.h> 25 #include <linux/unistd.h> 26 #include <linux/ptrace.h> 27 #include <linux/user.h> 28 #include <linux/interrupt.h> 29 #include <linux/init.h> 30 #include <linux/extable.h> 31 #include <linux/module.h> /* print_modules */ 32 #include <linux/prctl.h> 33 #include <linux/delay.h> 34 #include <linux/kprobes.h> 35 #include <linux/kexec.h> 36 #include <linux/backlight.h> 37 #include <linux/bug.h> 38 #include <linux/kdebug.h> 39 #include <linux/ratelimit.h> 40 #include <linux/context_tracking.h> 41 #include <linux/smp.h> 42 #include <linux/console.h> 43 #include <linux/kmsg_dump.h> 44 45 #include <asm/emulated_ops.h> 46 #include <asm/pgtable.h> 47 #include <linux/uaccess.h> 48 #include <asm/debugfs.h> 49 #include <asm/io.h> 50 #include <asm/machdep.h> 51 #include <asm/rtas.h> 52 #include <asm/pmc.h> 53 #include <asm/reg.h> 54 #ifdef CONFIG_PMAC_BACKLIGHT 55 #include <asm/backlight.h> 56 #endif 57 #ifdef CONFIG_PPC64 58 #include <asm/firmware.h> 59 #include <asm/processor.h> 60 #include <asm/tm.h> 61 #endif 62 #include <asm/kexec.h> 63 #include <asm/ppc-opcode.h> 64 #include <asm/rio.h> 65 #include <asm/fadump.h> 66 #include <asm/switch_to.h> 67 #include <asm/tm.h> 68 #include <asm/debug.h> 69 #include <asm/asm-prototypes.h> 70 #include <asm/hmi.h> 71 #include <sysdev/fsl_pci.h> 72 #include <asm/kprobes.h> 73 74 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) 75 int (*__debugger)(struct pt_regs *regs) __read_mostly; 76 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; 77 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; 78 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; 79 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; 80 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; 81 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; 82 83 EXPORT_SYMBOL(__debugger); 84 EXPORT_SYMBOL(__debugger_ipi); 85 EXPORT_SYMBOL(__debugger_bpt); 86 EXPORT_SYMBOL(__debugger_sstep); 87 EXPORT_SYMBOL(__debugger_iabr_match); 88 EXPORT_SYMBOL(__debugger_break_match); 89 EXPORT_SYMBOL(__debugger_fault_handler); 90 #endif 91 92 /* Transactional Memory trap debug */ 93 #ifdef TM_DEBUG_SW 94 #define TM_DEBUG(x...) printk(KERN_INFO x) 95 #else 96 #define TM_DEBUG(x...) do { } while(0) 97 #endif 98 99 /* 100 * Trap & Exception support 101 */ 102 103 #ifdef CONFIG_PMAC_BACKLIGHT 104 static void pmac_backlight_unblank(void) 105 { 106 mutex_lock(&pmac_backlight_mutex); 107 if (pmac_backlight) { 108 struct backlight_properties *props; 109 110 props = &pmac_backlight->props; 111 props->brightness = props->max_brightness; 112 props->power = FB_BLANK_UNBLANK; 113 backlight_update_status(pmac_backlight); 114 } 115 mutex_unlock(&pmac_backlight_mutex); 116 } 117 #else 118 static inline void pmac_backlight_unblank(void) { } 119 #endif 120 121 /* 122 * If oops/die is expected to crash the machine, return true here. 123 * 124 * This should not be expected to be 100% accurate, there may be 125 * notifiers registered or other unexpected conditions that may bring 126 * down the kernel. Or if the current process in the kernel is holding 127 * locks or has other critical state, the kernel may become effectively 128 * unusable anyway. 129 */ 130 bool die_will_crash(void) 131 { 132 if (should_fadump_crash()) 133 return true; 134 if (kexec_should_crash(current)) 135 return true; 136 if (in_interrupt() || panic_on_oops || 137 !current->pid || is_global_init(current)) 138 return true; 139 140 return false; 141 } 142 143 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 144 static int die_owner = -1; 145 static unsigned int die_nest_count; 146 static int die_counter; 147 148 extern void panic_flush_kmsg_start(void) 149 { 150 /* 151 * These are mostly taken from kernel/panic.c, but tries to do 152 * relatively minimal work. Don't use delay functions (TB may 153 * be broken), don't crash dump (need to set a firmware log), 154 * don't run notifiers. We do want to get some information to 155 * Linux console. 156 */ 157 console_verbose(); 158 bust_spinlocks(1); 159 } 160 161 extern void panic_flush_kmsg_end(void) 162 { 163 printk_safe_flush_on_panic(); 164 kmsg_dump(KMSG_DUMP_PANIC); 165 bust_spinlocks(0); 166 debug_locks_off(); 167 console_flush_on_panic(); 168 } 169 170 static unsigned long oops_begin(struct pt_regs *regs) 171 { 172 int cpu; 173 unsigned long flags; 174 175 oops_enter(); 176 177 /* racy, but better than risking deadlock. */ 178 raw_local_irq_save(flags); 179 cpu = smp_processor_id(); 180 if (!arch_spin_trylock(&die_lock)) { 181 if (cpu == die_owner) 182 /* nested oops. should stop eventually */; 183 else 184 arch_spin_lock(&die_lock); 185 } 186 die_nest_count++; 187 die_owner = cpu; 188 console_verbose(); 189 bust_spinlocks(1); 190 if (machine_is(powermac)) 191 pmac_backlight_unblank(); 192 return flags; 193 } 194 NOKPROBE_SYMBOL(oops_begin); 195 196 static void oops_end(unsigned long flags, struct pt_regs *regs, 197 int signr) 198 { 199 bust_spinlocks(0); 200 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 201 die_nest_count--; 202 oops_exit(); 203 printk("\n"); 204 if (!die_nest_count) { 205 /* Nest count reaches zero, release the lock. */ 206 die_owner = -1; 207 arch_spin_unlock(&die_lock); 208 } 209 raw_local_irq_restore(flags); 210 211 /* 212 * system_reset_excption handles debugger, crash dump, panic, for 0x100 213 */ 214 if (TRAP(regs) == 0x100) 215 return; 216 217 crash_fadump(regs, "die oops"); 218 219 if (kexec_should_crash(current)) 220 crash_kexec(regs); 221 222 if (!signr) 223 return; 224 225 /* 226 * While our oops output is serialised by a spinlock, output 227 * from panic() called below can race and corrupt it. If we 228 * know we are going to panic, delay for 1 second so we have a 229 * chance to get clean backtraces from all CPUs that are oopsing. 230 */ 231 if (in_interrupt() || panic_on_oops || !current->pid || 232 is_global_init(current)) { 233 mdelay(MSEC_PER_SEC); 234 } 235 236 if (in_interrupt()) 237 panic("Fatal exception in interrupt"); 238 if (panic_on_oops) 239 panic("Fatal exception"); 240 do_exit(signr); 241 } 242 NOKPROBE_SYMBOL(oops_end); 243 244 static int __die(const char *str, struct pt_regs *regs, long err) 245 { 246 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); 247 248 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN)) 249 printk("LE "); 250 else 251 printk("BE "); 252 253 if (IS_ENABLED(CONFIG_PREEMPT)) 254 pr_cont("PREEMPT "); 255 256 if (IS_ENABLED(CONFIG_SMP)) 257 pr_cont("SMP NR_CPUS=%d ", NR_CPUS); 258 259 if (debug_pagealloc_enabled()) 260 pr_cont("DEBUG_PAGEALLOC "); 261 262 if (IS_ENABLED(CONFIG_NUMA)) 263 pr_cont("NUMA "); 264 265 pr_cont("%s\n", ppc_md.name ? ppc_md.name : ""); 266 267 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) 268 return 1; 269 270 print_modules(); 271 show_regs(regs); 272 273 return 0; 274 } 275 NOKPROBE_SYMBOL(__die); 276 277 void die(const char *str, struct pt_regs *regs, long err) 278 { 279 unsigned long flags; 280 281 /* 282 * system_reset_excption handles debugger, crash dump, panic, for 0x100 283 */ 284 if (TRAP(regs) != 0x100) { 285 if (debugger(regs)) 286 return; 287 } 288 289 flags = oops_begin(regs); 290 if (__die(str, regs, err)) 291 err = 0; 292 oops_end(flags, regs, err); 293 } 294 NOKPROBE_SYMBOL(die); 295 296 void user_single_step_siginfo(struct task_struct *tsk, 297 struct pt_regs *regs, siginfo_t *info) 298 { 299 memset(info, 0, sizeof(*info)); 300 info->si_signo = SIGTRAP; 301 info->si_code = TRAP_TRACE; 302 info->si_addr = (void __user *)regs->nip; 303 } 304 305 306 void _exception_pkey(int signr, struct pt_regs *regs, int code, 307 unsigned long addr, int key) 308 { 309 siginfo_t info; 310 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \ 311 "at %08lx nip %08lx lr %08lx code %x\n"; 312 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \ 313 "at %016lx nip %016lx lr %016lx code %x\n"; 314 315 if (!user_mode(regs)) { 316 die("Exception in kernel mode", regs, signr); 317 return; 318 } 319 320 if (show_unhandled_signals && unhandled_signal(current, signr)) { 321 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, 322 current->comm, current->pid, signr, 323 addr, regs->nip, regs->link, code); 324 } 325 326 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs)) 327 local_irq_enable(); 328 329 current->thread.trap_nr = code; 330 331 /* 332 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need 333 * to capture the content, if the task gets killed. 334 */ 335 thread_pkey_regs_save(¤t->thread); 336 337 memset(&info, 0, sizeof(info)); 338 info.si_signo = signr; 339 info.si_code = code; 340 info.si_addr = (void __user *) addr; 341 info.si_pkey = key; 342 343 force_sig_info(signr, &info, current); 344 } 345 346 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) 347 { 348 _exception_pkey(signr, regs, code, addr, 0); 349 } 350 351 void system_reset_exception(struct pt_regs *regs) 352 { 353 /* 354 * Avoid crashes in case of nested NMI exceptions. Recoverability 355 * is determined by RI and in_nmi 356 */ 357 bool nested = in_nmi(); 358 if (!nested) 359 nmi_enter(); 360 361 __this_cpu_inc(irq_stat.sreset_irqs); 362 363 /* See if any machine dependent calls */ 364 if (ppc_md.system_reset_exception) { 365 if (ppc_md.system_reset_exception(regs)) 366 goto out; 367 } 368 369 if (debugger(regs)) 370 goto out; 371 372 /* 373 * A system reset is a request to dump, so we always send 374 * it through the crashdump code (if fadump or kdump are 375 * registered). 376 */ 377 crash_fadump(regs, "System Reset"); 378 379 crash_kexec(regs); 380 381 /* 382 * We aren't the primary crash CPU. We need to send it 383 * to a holding pattern to avoid it ending up in the panic 384 * code. 385 */ 386 crash_kexec_secondary(regs); 387 388 /* 389 * No debugger or crash dump registered, print logs then 390 * panic. 391 */ 392 die("System Reset", regs, SIGABRT); 393 394 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ 395 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 396 nmi_panic(regs, "System Reset"); 397 398 out: 399 #ifdef CONFIG_PPC_BOOK3S_64 400 BUG_ON(get_paca()->in_nmi == 0); 401 if (get_paca()->in_nmi > 1) 402 nmi_panic(regs, "Unrecoverable nested System Reset"); 403 #endif 404 /* Must die if the interrupt is not recoverable */ 405 if (!(regs->msr & MSR_RI)) 406 nmi_panic(regs, "Unrecoverable System Reset"); 407 408 if (!nested) 409 nmi_exit(); 410 411 /* What should we do here? We could issue a shutdown or hard reset. */ 412 } 413 414 /* 415 * I/O accesses can cause machine checks on powermacs. 416 * Check if the NIP corresponds to the address of a sync 417 * instruction for which there is an entry in the exception 418 * table. 419 * Note that the 601 only takes a machine check on TEA 420 * (transfer error ack) signal assertion, and does not 421 * set any of the top 16 bits of SRR1. 422 * -- paulus. 423 */ 424 static inline int check_io_access(struct pt_regs *regs) 425 { 426 #ifdef CONFIG_PPC32 427 unsigned long msr = regs->msr; 428 const struct exception_table_entry *entry; 429 unsigned int *nip = (unsigned int *)regs->nip; 430 431 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) 432 && (entry = search_exception_tables(regs->nip)) != NULL) { 433 /* 434 * Check that it's a sync instruction, or somewhere 435 * in the twi; isync; nop sequence that inb/inw/inl uses. 436 * As the address is in the exception table 437 * we should be able to read the instr there. 438 * For the debug message, we look at the preceding 439 * load or store. 440 */ 441 if (*nip == PPC_INST_NOP) 442 nip -= 2; 443 else if (*nip == PPC_INST_ISYNC) 444 --nip; 445 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) { 446 unsigned int rb; 447 448 --nip; 449 rb = (*nip >> 11) & 0x1f; 450 printk(KERN_DEBUG "%s bad port %lx at %p\n", 451 (*nip & 0x100)? "OUT to": "IN from", 452 regs->gpr[rb] - _IO_BASE, nip); 453 regs->msr |= MSR_RI; 454 regs->nip = extable_fixup(entry); 455 return 1; 456 } 457 } 458 #endif /* CONFIG_PPC32 */ 459 return 0; 460 } 461 462 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 463 /* On 4xx, the reason for the machine check or program exception 464 is in the ESR. */ 465 #define get_reason(regs) ((regs)->dsisr) 466 #define REASON_FP ESR_FP 467 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) 468 #define REASON_PRIVILEGED ESR_PPR 469 #define REASON_TRAP ESR_PTR 470 471 /* single-step stuff */ 472 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) 473 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) 474 #define clear_br_trace(regs) do {} while(0) 475 #else 476 /* On non-4xx, the reason for the machine check or program 477 exception is in the MSR. */ 478 #define get_reason(regs) ((regs)->msr) 479 #define REASON_TM SRR1_PROGTM 480 #define REASON_FP SRR1_PROGFPE 481 #define REASON_ILLEGAL SRR1_PROGILL 482 #define REASON_PRIVILEGED SRR1_PROGPRIV 483 #define REASON_TRAP SRR1_PROGTRAP 484 485 #define single_stepping(regs) ((regs)->msr & MSR_SE) 486 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE) 487 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE) 488 #endif 489 490 #if defined(CONFIG_E500) 491 int machine_check_e500mc(struct pt_regs *regs) 492 { 493 unsigned long mcsr = mfspr(SPRN_MCSR); 494 unsigned long pvr = mfspr(SPRN_PVR); 495 unsigned long reason = mcsr; 496 int recoverable = 1; 497 498 if (reason & MCSR_LD) { 499 recoverable = fsl_rio_mcheck_exception(regs); 500 if (recoverable == 1) 501 goto silent_out; 502 } 503 504 printk("Machine check in kernel mode.\n"); 505 printk("Caused by (from MCSR=%lx): ", reason); 506 507 if (reason & MCSR_MCP) 508 printk("Machine Check Signal\n"); 509 510 if (reason & MCSR_ICPERR) { 511 printk("Instruction Cache Parity Error\n"); 512 513 /* 514 * This is recoverable by invalidating the i-cache. 515 */ 516 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); 517 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) 518 ; 519 520 /* 521 * This will generally be accompanied by an instruction 522 * fetch error report -- only treat MCSR_IF as fatal 523 * if it wasn't due to an L1 parity error. 524 */ 525 reason &= ~MCSR_IF; 526 } 527 528 if (reason & MCSR_DCPERR_MC) { 529 printk("Data Cache Parity Error\n"); 530 531 /* 532 * In write shadow mode we auto-recover from the error, but it 533 * may still get logged and cause a machine check. We should 534 * only treat the non-write shadow case as non-recoverable. 535 */ 536 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit 537 * is not implemented but L1 data cache always runs in write 538 * shadow mode. Hence on data cache parity errors HW will 539 * automatically invalidate the L1 Data Cache. 540 */ 541 if (PVR_VER(pvr) != PVR_VER_E6500) { 542 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) 543 recoverable = 0; 544 } 545 } 546 547 if (reason & MCSR_L2MMU_MHIT) { 548 printk("Hit on multiple TLB entries\n"); 549 recoverable = 0; 550 } 551 552 if (reason & MCSR_NMI) 553 printk("Non-maskable interrupt\n"); 554 555 if (reason & MCSR_IF) { 556 printk("Instruction Fetch Error Report\n"); 557 recoverable = 0; 558 } 559 560 if (reason & MCSR_LD) { 561 printk("Load Error Report\n"); 562 recoverable = 0; 563 } 564 565 if (reason & MCSR_ST) { 566 printk("Store Error Report\n"); 567 recoverable = 0; 568 } 569 570 if (reason & MCSR_LDG) { 571 printk("Guarded Load Error Report\n"); 572 recoverable = 0; 573 } 574 575 if (reason & MCSR_TLBSYNC) 576 printk("Simultaneous tlbsync operations\n"); 577 578 if (reason & MCSR_BSL2_ERR) { 579 printk("Level 2 Cache Error\n"); 580 recoverable = 0; 581 } 582 583 if (reason & MCSR_MAV) { 584 u64 addr; 585 586 addr = mfspr(SPRN_MCAR); 587 addr |= (u64)mfspr(SPRN_MCARU) << 32; 588 589 printk("Machine Check %s Address: %#llx\n", 590 reason & MCSR_MEA ? "Effective" : "Physical", addr); 591 } 592 593 silent_out: 594 mtspr(SPRN_MCSR, mcsr); 595 return mfspr(SPRN_MCSR) == 0 && recoverable; 596 } 597 598 int machine_check_e500(struct pt_regs *regs) 599 { 600 unsigned long reason = mfspr(SPRN_MCSR); 601 602 if (reason & MCSR_BUS_RBERR) { 603 if (fsl_rio_mcheck_exception(regs)) 604 return 1; 605 if (fsl_pci_mcheck_exception(regs)) 606 return 1; 607 } 608 609 printk("Machine check in kernel mode.\n"); 610 printk("Caused by (from MCSR=%lx): ", reason); 611 612 if (reason & MCSR_MCP) 613 printk("Machine Check Signal\n"); 614 if (reason & MCSR_ICPERR) 615 printk("Instruction Cache Parity Error\n"); 616 if (reason & MCSR_DCP_PERR) 617 printk("Data Cache Push Parity Error\n"); 618 if (reason & MCSR_DCPERR) 619 printk("Data Cache Parity Error\n"); 620 if (reason & MCSR_BUS_IAERR) 621 printk("Bus - Instruction Address Error\n"); 622 if (reason & MCSR_BUS_RAERR) 623 printk("Bus - Read Address Error\n"); 624 if (reason & MCSR_BUS_WAERR) 625 printk("Bus - Write Address Error\n"); 626 if (reason & MCSR_BUS_IBERR) 627 printk("Bus - Instruction Data Error\n"); 628 if (reason & MCSR_BUS_RBERR) 629 printk("Bus - Read Data Bus Error\n"); 630 if (reason & MCSR_BUS_WBERR) 631 printk("Bus - Write Data Bus Error\n"); 632 if (reason & MCSR_BUS_IPERR) 633 printk("Bus - Instruction Parity Error\n"); 634 if (reason & MCSR_BUS_RPERR) 635 printk("Bus - Read Parity Error\n"); 636 637 return 0; 638 } 639 640 int machine_check_generic(struct pt_regs *regs) 641 { 642 return 0; 643 } 644 #elif defined(CONFIG_E200) 645 int machine_check_e200(struct pt_regs *regs) 646 { 647 unsigned long reason = mfspr(SPRN_MCSR); 648 649 printk("Machine check in kernel mode.\n"); 650 printk("Caused by (from MCSR=%lx): ", reason); 651 652 if (reason & MCSR_MCP) 653 printk("Machine Check Signal\n"); 654 if (reason & MCSR_CP_PERR) 655 printk("Cache Push Parity Error\n"); 656 if (reason & MCSR_CPERR) 657 printk("Cache Parity Error\n"); 658 if (reason & MCSR_EXCP_ERR) 659 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n"); 660 if (reason & MCSR_BUS_IRERR) 661 printk("Bus - Read Bus Error on instruction fetch\n"); 662 if (reason & MCSR_BUS_DRERR) 663 printk("Bus - Read Bus Error on data load\n"); 664 if (reason & MCSR_BUS_WRERR) 665 printk("Bus - Write Bus Error on buffered store or cache line push\n"); 666 667 return 0; 668 } 669 #elif defined(CONFIG_PPC32) 670 int machine_check_generic(struct pt_regs *regs) 671 { 672 unsigned long reason = regs->msr; 673 674 printk("Machine check in kernel mode.\n"); 675 printk("Caused by (from SRR1=%lx): ", reason); 676 switch (reason & 0x601F0000) { 677 case 0x80000: 678 printk("Machine check signal\n"); 679 break; 680 case 0: /* for 601 */ 681 case 0x40000: 682 case 0x140000: /* 7450 MSS error and TEA */ 683 printk("Transfer error ack signal\n"); 684 break; 685 case 0x20000: 686 printk("Data parity error signal\n"); 687 break; 688 case 0x10000: 689 printk("Address parity error signal\n"); 690 break; 691 case 0x20000000: 692 printk("L1 Data Cache error\n"); 693 break; 694 case 0x40000000: 695 printk("L1 Instruction Cache error\n"); 696 break; 697 case 0x00100000: 698 printk("L2 data cache parity error\n"); 699 break; 700 default: 701 printk("Unknown values in msr\n"); 702 } 703 return 0; 704 } 705 #endif /* everything else */ 706 707 void machine_check_exception(struct pt_regs *regs) 708 { 709 int recover = 0; 710 bool nested = in_nmi(); 711 if (!nested) 712 nmi_enter(); 713 714 /* 64s accounts the mce in machine_check_early when in HVMODE */ 715 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE)) 716 __this_cpu_inc(irq_stat.mce_exceptions); 717 718 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 719 720 /* See if any machine dependent calls. In theory, we would want 721 * to call the CPU first, and call the ppc_md. one if the CPU 722 * one returns a positive number. However there is existing code 723 * that assumes the board gets a first chance, so let's keep it 724 * that way for now and fix things later. --BenH. 725 */ 726 if (ppc_md.machine_check_exception) 727 recover = ppc_md.machine_check_exception(regs); 728 else if (cur_cpu_spec->machine_check) 729 recover = cur_cpu_spec->machine_check(regs); 730 731 if (recover > 0) 732 goto bail; 733 734 if (debugger_fault_handler(regs)) 735 goto bail; 736 737 if (check_io_access(regs)) 738 goto bail; 739 740 die("Machine check", regs, SIGBUS); 741 742 /* Must die if the interrupt is not recoverable */ 743 if (!(regs->msr & MSR_RI)) 744 nmi_panic(regs, "Unrecoverable Machine check"); 745 746 bail: 747 if (!nested) 748 nmi_exit(); 749 } 750 751 void SMIException(struct pt_regs *regs) 752 { 753 die("System Management Interrupt", regs, SIGABRT); 754 } 755 756 #ifdef CONFIG_VSX 757 static void p9_hmi_special_emu(struct pt_regs *regs) 758 { 759 unsigned int ra, rb, t, i, sel, instr, rc; 760 const void __user *addr; 761 u8 vbuf[16], *vdst; 762 unsigned long ea, msr, msr_mask; 763 bool swap; 764 765 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip)) 766 return; 767 768 /* 769 * lxvb16x opcode: 0x7c0006d8 770 * lxvd2x opcode: 0x7c000698 771 * lxvh8x opcode: 0x7c000658 772 * lxvw4x opcode: 0x7c000618 773 */ 774 if ((instr & 0xfc00073e) != 0x7c000618) { 775 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" 776 " instr=%08x\n", 777 smp_processor_id(), current->comm, current->pid, 778 regs->nip, instr); 779 return; 780 } 781 782 /* Grab vector registers into the task struct */ 783 msr = regs->msr; /* Grab msr before we flush the bits */ 784 flush_vsx_to_thread(current); 785 enable_kernel_altivec(); 786 787 /* 788 * Is userspace running with a different endian (this is rare but 789 * not impossible) 790 */ 791 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 792 793 /* Decode the instruction */ 794 ra = (instr >> 16) & 0x1f; 795 rb = (instr >> 11) & 0x1f; 796 t = (instr >> 21) & 0x1f; 797 if (instr & 1) 798 vdst = (u8 *)¤t->thread.vr_state.vr[t]; 799 else 800 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; 801 802 /* Grab the vector address */ 803 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); 804 if (is_32bit_task()) 805 ea &= 0xfffffffful; 806 addr = (__force const void __user *)ea; 807 808 /* Check it */ 809 if (!access_ok(VERIFY_READ, addr, 16)) { 810 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" 811 " instr=%08x addr=%016lx\n", 812 smp_processor_id(), current->comm, current->pid, 813 regs->nip, instr, (unsigned long)addr); 814 return; 815 } 816 817 /* Read the vector */ 818 rc = 0; 819 if ((unsigned long)addr & 0xfUL) 820 /* unaligned case */ 821 rc = __copy_from_user_inatomic(vbuf, addr, 16); 822 else 823 __get_user_atomic_128_aligned(vbuf, addr, rc); 824 if (rc) { 825 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" 826 " instr=%08x addr=%016lx\n", 827 smp_processor_id(), current->comm, current->pid, 828 regs->nip, instr, (unsigned long)addr); 829 return; 830 } 831 832 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" 833 " instr=%08x addr=%016lx\n", 834 smp_processor_id(), current->comm, current->pid, regs->nip, 835 instr, (unsigned long) addr); 836 837 /* Grab instruction "selector" */ 838 sel = (instr >> 6) & 3; 839 840 /* 841 * Check to make sure the facility is actually enabled. This 842 * could happen if we get a false positive hit. 843 * 844 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 845 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 846 */ 847 msr_mask = MSR_VSX; 848 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ 849 msr_mask = MSR_VEC; 850 if (!(msr & msr_mask)) { 851 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" 852 " instr=%08x msr:%016lx\n", 853 smp_processor_id(), current->comm, current->pid, 854 regs->nip, instr, msr); 855 return; 856 } 857 858 /* Do logging here before we modify sel based on endian */ 859 switch (sel) { 860 case 0: /* lxvw4x */ 861 PPC_WARN_EMULATED(lxvw4x, regs); 862 break; 863 case 1: /* lxvh8x */ 864 PPC_WARN_EMULATED(lxvh8x, regs); 865 break; 866 case 2: /* lxvd2x */ 867 PPC_WARN_EMULATED(lxvd2x, regs); 868 break; 869 case 3: /* lxvb16x */ 870 PPC_WARN_EMULATED(lxvb16x, regs); 871 break; 872 } 873 874 #ifdef __LITTLE_ENDIAN__ 875 /* 876 * An LE kernel stores the vector in the task struct as an LE 877 * byte array (effectively swapping both the components and 878 * the content of the components). Those instructions expect 879 * the components to remain in ascending address order, so we 880 * swap them back. 881 * 882 * If we are running a BE user space, the expectation is that 883 * of a simple memcpy, so forcing the emulation to look like 884 * a lxvb16x should do the trick. 885 */ 886 if (swap) 887 sel = 3; 888 889 switch (sel) { 890 case 0: /* lxvw4x */ 891 for (i = 0; i < 4; i++) 892 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; 893 break; 894 case 1: /* lxvh8x */ 895 for (i = 0; i < 8; i++) 896 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; 897 break; 898 case 2: /* lxvd2x */ 899 for (i = 0; i < 2; i++) 900 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; 901 break; 902 case 3: /* lxvb16x */ 903 for (i = 0; i < 16; i++) 904 vdst[i] = vbuf[15-i]; 905 break; 906 } 907 #else /* __LITTLE_ENDIAN__ */ 908 /* On a big endian kernel, a BE userspace only needs a memcpy */ 909 if (!swap) 910 sel = 3; 911 912 /* Otherwise, we need to swap the content of the components */ 913 switch (sel) { 914 case 0: /* lxvw4x */ 915 for (i = 0; i < 4; i++) 916 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); 917 break; 918 case 1: /* lxvh8x */ 919 for (i = 0; i < 8; i++) 920 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); 921 break; 922 case 2: /* lxvd2x */ 923 for (i = 0; i < 2; i++) 924 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); 925 break; 926 case 3: /* lxvb16x */ 927 memcpy(vdst, vbuf, 16); 928 break; 929 } 930 #endif /* !__LITTLE_ENDIAN__ */ 931 932 /* Go to next instruction */ 933 regs->nip += 4; 934 } 935 #endif /* CONFIG_VSX */ 936 937 void handle_hmi_exception(struct pt_regs *regs) 938 { 939 struct pt_regs *old_regs; 940 941 old_regs = set_irq_regs(regs); 942 irq_enter(); 943 944 #ifdef CONFIG_VSX 945 /* Real mode flagged P9 special emu is needed */ 946 if (local_paca->hmi_p9_special_emu) { 947 local_paca->hmi_p9_special_emu = 0; 948 949 /* 950 * We don't want to take page faults while doing the 951 * emulation, we just replay the instruction if necessary. 952 */ 953 pagefault_disable(); 954 p9_hmi_special_emu(regs); 955 pagefault_enable(); 956 } 957 #endif /* CONFIG_VSX */ 958 959 if (ppc_md.handle_hmi_exception) 960 ppc_md.handle_hmi_exception(regs); 961 962 irq_exit(); 963 set_irq_regs(old_regs); 964 } 965 966 void unknown_exception(struct pt_regs *regs) 967 { 968 enum ctx_state prev_state = exception_enter(); 969 970 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 971 regs->nip, regs->msr, regs->trap); 972 973 _exception(SIGTRAP, regs, TRAP_FIXME, 0); 974 975 exception_exit(prev_state); 976 } 977 978 void instruction_breakpoint_exception(struct pt_regs *regs) 979 { 980 enum ctx_state prev_state = exception_enter(); 981 982 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, 983 5, SIGTRAP) == NOTIFY_STOP) 984 goto bail; 985 if (debugger_iabr_match(regs)) 986 goto bail; 987 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 988 989 bail: 990 exception_exit(prev_state); 991 } 992 993 void RunModeException(struct pt_regs *regs) 994 { 995 _exception(SIGTRAP, regs, TRAP_FIXME, 0); 996 } 997 998 void single_step_exception(struct pt_regs *regs) 999 { 1000 enum ctx_state prev_state = exception_enter(); 1001 1002 clear_single_step(regs); 1003 clear_br_trace(regs); 1004 1005 if (kprobe_post_handler(regs)) 1006 return; 1007 1008 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 1009 5, SIGTRAP) == NOTIFY_STOP) 1010 goto bail; 1011 if (debugger_sstep(regs)) 1012 goto bail; 1013 1014 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 1015 1016 bail: 1017 exception_exit(prev_state); 1018 } 1019 NOKPROBE_SYMBOL(single_step_exception); 1020 1021 /* 1022 * After we have successfully emulated an instruction, we have to 1023 * check if the instruction was being single-stepped, and if so, 1024 * pretend we got a single-step exception. This was pointed out 1025 * by Kumar Gala. -- paulus 1026 */ 1027 static void emulate_single_step(struct pt_regs *regs) 1028 { 1029 if (single_stepping(regs)) 1030 single_step_exception(regs); 1031 } 1032 1033 static inline int __parse_fpscr(unsigned long fpscr) 1034 { 1035 int ret = FPE_FIXME; 1036 1037 /* Invalid operation */ 1038 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) 1039 ret = FPE_FLTINV; 1040 1041 /* Overflow */ 1042 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) 1043 ret = FPE_FLTOVF; 1044 1045 /* Underflow */ 1046 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) 1047 ret = FPE_FLTUND; 1048 1049 /* Divide by zero */ 1050 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) 1051 ret = FPE_FLTDIV; 1052 1053 /* Inexact result */ 1054 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) 1055 ret = FPE_FLTRES; 1056 1057 return ret; 1058 } 1059 1060 static void parse_fpe(struct pt_regs *regs) 1061 { 1062 int code = 0; 1063 1064 flush_fp_to_thread(current); 1065 1066 code = __parse_fpscr(current->thread.fp_state.fpscr); 1067 1068 _exception(SIGFPE, regs, code, regs->nip); 1069 } 1070 1071 /* 1072 * Illegal instruction emulation support. Originally written to 1073 * provide the PVR to user applications using the mfspr rd, PVR. 1074 * Return non-zero if we can't emulate, or -EFAULT if the associated 1075 * memory access caused an access fault. Return zero on success. 1076 * 1077 * There are a couple of ways to do this, either "decode" the instruction 1078 * or directly match lots of bits. In this case, matching lots of 1079 * bits is faster and easier. 1080 * 1081 */ 1082 static int emulate_string_inst(struct pt_regs *regs, u32 instword) 1083 { 1084 u8 rT = (instword >> 21) & 0x1f; 1085 u8 rA = (instword >> 16) & 0x1f; 1086 u8 NB_RB = (instword >> 11) & 0x1f; 1087 u32 num_bytes; 1088 unsigned long EA; 1089 int pos = 0; 1090 1091 /* Early out if we are an invalid form of lswx */ 1092 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) 1093 if ((rT == rA) || (rT == NB_RB)) 1094 return -EINVAL; 1095 1096 EA = (rA == 0) ? 0 : regs->gpr[rA]; 1097 1098 switch (instword & PPC_INST_STRING_MASK) { 1099 case PPC_INST_LSWX: 1100 case PPC_INST_STSWX: 1101 EA += NB_RB; 1102 num_bytes = regs->xer & 0x7f; 1103 break; 1104 case PPC_INST_LSWI: 1105 case PPC_INST_STSWI: 1106 num_bytes = (NB_RB == 0) ? 32 : NB_RB; 1107 break; 1108 default: 1109 return -EINVAL; 1110 } 1111 1112 while (num_bytes != 0) 1113 { 1114 u8 val; 1115 u32 shift = 8 * (3 - (pos & 0x3)); 1116 1117 /* if process is 32-bit, clear upper 32 bits of EA */ 1118 if ((regs->msr & MSR_64BIT) == 0) 1119 EA &= 0xFFFFFFFF; 1120 1121 switch ((instword & PPC_INST_STRING_MASK)) { 1122 case PPC_INST_LSWX: 1123 case PPC_INST_LSWI: 1124 if (get_user(val, (u8 __user *)EA)) 1125 return -EFAULT; 1126 /* first time updating this reg, 1127 * zero it out */ 1128 if (pos == 0) 1129 regs->gpr[rT] = 0; 1130 regs->gpr[rT] |= val << shift; 1131 break; 1132 case PPC_INST_STSWI: 1133 case PPC_INST_STSWX: 1134 val = regs->gpr[rT] >> shift; 1135 if (put_user(val, (u8 __user *)EA)) 1136 return -EFAULT; 1137 break; 1138 } 1139 /* move EA to next address */ 1140 EA += 1; 1141 num_bytes--; 1142 1143 /* manage our position within the register */ 1144 if (++pos == 4) { 1145 pos = 0; 1146 if (++rT == 32) 1147 rT = 0; 1148 } 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) 1155 { 1156 u32 ra,rs; 1157 unsigned long tmp; 1158 1159 ra = (instword >> 16) & 0x1f; 1160 rs = (instword >> 21) & 0x1f; 1161 1162 tmp = regs->gpr[rs]; 1163 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); 1164 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); 1165 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1166 regs->gpr[ra] = tmp; 1167 1168 return 0; 1169 } 1170 1171 static int emulate_isel(struct pt_regs *regs, u32 instword) 1172 { 1173 u8 rT = (instword >> 21) & 0x1f; 1174 u8 rA = (instword >> 16) & 0x1f; 1175 u8 rB = (instword >> 11) & 0x1f; 1176 u8 BC = (instword >> 6) & 0x1f; 1177 u8 bit; 1178 unsigned long tmp; 1179 1180 tmp = (rA == 0) ? 0 : regs->gpr[rA]; 1181 bit = (regs->ccr >> (31 - BC)) & 0x1; 1182 1183 regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; 1184 1185 return 0; 1186 } 1187 1188 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1189 static inline bool tm_abort_check(struct pt_regs *regs, int cause) 1190 { 1191 /* If we're emulating a load/store in an active transaction, we cannot 1192 * emulate it as the kernel operates in transaction suspended context. 1193 * We need to abort the transaction. This creates a persistent TM 1194 * abort so tell the user what caused it with a new code. 1195 */ 1196 if (MSR_TM_TRANSACTIONAL(regs->msr)) { 1197 tm_enable(); 1198 tm_abort(cause); 1199 return true; 1200 } 1201 return false; 1202 } 1203 #else 1204 static inline bool tm_abort_check(struct pt_regs *regs, int reason) 1205 { 1206 return false; 1207 } 1208 #endif 1209 1210 static int emulate_instruction(struct pt_regs *regs) 1211 { 1212 u32 instword; 1213 u32 rd; 1214 1215 if (!user_mode(regs)) 1216 return -EINVAL; 1217 CHECK_FULL_REGS(regs); 1218 1219 if (get_user(instword, (u32 __user *)(regs->nip))) 1220 return -EFAULT; 1221 1222 /* Emulate the mfspr rD, PVR. */ 1223 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { 1224 PPC_WARN_EMULATED(mfpvr, regs); 1225 rd = (instword >> 21) & 0x1f; 1226 regs->gpr[rd] = mfspr(SPRN_PVR); 1227 return 0; 1228 } 1229 1230 /* Emulating the dcba insn is just a no-op. */ 1231 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { 1232 PPC_WARN_EMULATED(dcba, regs); 1233 return 0; 1234 } 1235 1236 /* Emulate the mcrxr insn. */ 1237 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { 1238 int shift = (instword >> 21) & 0x1c; 1239 unsigned long msk = 0xf0000000UL >> shift; 1240 1241 PPC_WARN_EMULATED(mcrxr, regs); 1242 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); 1243 regs->xer &= ~0xf0000000UL; 1244 return 0; 1245 } 1246 1247 /* Emulate load/store string insn. */ 1248 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { 1249 if (tm_abort_check(regs, 1250 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) 1251 return -EINVAL; 1252 PPC_WARN_EMULATED(string, regs); 1253 return emulate_string_inst(regs, instword); 1254 } 1255 1256 /* Emulate the popcntb (Population Count Bytes) instruction. */ 1257 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { 1258 PPC_WARN_EMULATED(popcntb, regs); 1259 return emulate_popcntb_inst(regs, instword); 1260 } 1261 1262 /* Emulate isel (Integer Select) instruction */ 1263 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { 1264 PPC_WARN_EMULATED(isel, regs); 1265 return emulate_isel(regs, instword); 1266 } 1267 1268 /* Emulate sync instruction variants */ 1269 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { 1270 PPC_WARN_EMULATED(sync, regs); 1271 asm volatile("sync"); 1272 return 0; 1273 } 1274 1275 #ifdef CONFIG_PPC64 1276 /* Emulate the mfspr rD, DSCR. */ 1277 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == 1278 PPC_INST_MFSPR_DSCR_USER) || 1279 ((instword & PPC_INST_MFSPR_DSCR_MASK) == 1280 PPC_INST_MFSPR_DSCR)) && 1281 cpu_has_feature(CPU_FTR_DSCR)) { 1282 PPC_WARN_EMULATED(mfdscr, regs); 1283 rd = (instword >> 21) & 0x1f; 1284 regs->gpr[rd] = mfspr(SPRN_DSCR); 1285 return 0; 1286 } 1287 /* Emulate the mtspr DSCR, rD. */ 1288 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == 1289 PPC_INST_MTSPR_DSCR_USER) || 1290 ((instword & PPC_INST_MTSPR_DSCR_MASK) == 1291 PPC_INST_MTSPR_DSCR)) && 1292 cpu_has_feature(CPU_FTR_DSCR)) { 1293 PPC_WARN_EMULATED(mtdscr, regs); 1294 rd = (instword >> 21) & 0x1f; 1295 current->thread.dscr = regs->gpr[rd]; 1296 current->thread.dscr_inherit = 1; 1297 mtspr(SPRN_DSCR, current->thread.dscr); 1298 return 0; 1299 } 1300 #endif 1301 1302 return -EINVAL; 1303 } 1304 1305 int is_valid_bugaddr(unsigned long addr) 1306 { 1307 return is_kernel_addr(addr); 1308 } 1309 1310 #ifdef CONFIG_MATH_EMULATION 1311 static int emulate_math(struct pt_regs *regs) 1312 { 1313 int ret; 1314 extern int do_mathemu(struct pt_regs *regs); 1315 1316 ret = do_mathemu(regs); 1317 if (ret >= 0) 1318 PPC_WARN_EMULATED(math, regs); 1319 1320 switch (ret) { 1321 case 0: 1322 emulate_single_step(regs); 1323 return 0; 1324 case 1: { 1325 int code = 0; 1326 code = __parse_fpscr(current->thread.fp_state.fpscr); 1327 _exception(SIGFPE, regs, code, regs->nip); 1328 return 0; 1329 } 1330 case -EFAULT: 1331 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1332 return 0; 1333 } 1334 1335 return -1; 1336 } 1337 #else 1338 static inline int emulate_math(struct pt_regs *regs) { return -1; } 1339 #endif 1340 1341 void program_check_exception(struct pt_regs *regs) 1342 { 1343 enum ctx_state prev_state = exception_enter(); 1344 unsigned int reason = get_reason(regs); 1345 1346 /* We can now get here via a FP Unavailable exception if the core 1347 * has no FPU, in that case the reason flags will be 0 */ 1348 1349 if (reason & REASON_FP) { 1350 /* IEEE FP exception */ 1351 parse_fpe(regs); 1352 goto bail; 1353 } 1354 if (reason & REASON_TRAP) { 1355 unsigned long bugaddr; 1356 /* Debugger is first in line to stop recursive faults in 1357 * rcu_lock, notify_die, or atomic_notifier_call_chain */ 1358 if (debugger_bpt(regs)) 1359 goto bail; 1360 1361 if (kprobe_handler(regs)) 1362 goto bail; 1363 1364 /* trap exception */ 1365 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) 1366 == NOTIFY_STOP) 1367 goto bail; 1368 1369 bugaddr = regs->nip; 1370 /* 1371 * Fixup bugaddr for BUG_ON() in real mode 1372 */ 1373 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) 1374 bugaddr += PAGE_OFFSET; 1375 1376 if (!(regs->msr & MSR_PR) && /* not user-mode */ 1377 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { 1378 regs->nip += 4; 1379 goto bail; 1380 } 1381 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1382 goto bail; 1383 } 1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1385 if (reason & REASON_TM) { 1386 /* This is a TM "Bad Thing Exception" program check. 1387 * This occurs when: 1388 * - An rfid/hrfid/mtmsrd attempts to cause an illegal 1389 * transition in TM states. 1390 * - A trechkpt is attempted when transactional. 1391 * - A treclaim is attempted when non transactional. 1392 * - A tend is illegally attempted. 1393 * - writing a TM SPR when transactional. 1394 * 1395 * If usermode caused this, it's done something illegal and 1396 * gets a SIGILL slap on the wrist. We call it an illegal 1397 * operand to distinguish from the instruction just being bad 1398 * (e.g. executing a 'tend' on a CPU without TM!); it's an 1399 * illegal /placement/ of a valid instruction. 1400 */ 1401 if (user_mode(regs)) { 1402 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); 1403 goto bail; 1404 } else { 1405 printk(KERN_EMERG "Unexpected TM Bad Thing exception " 1406 "at %lx (msr 0x%x)\n", regs->nip, reason); 1407 die("Unrecoverable exception", regs, SIGABRT); 1408 } 1409 } 1410 #endif 1411 1412 /* 1413 * If we took the program check in the kernel skip down to sending a 1414 * SIGILL. The subsequent cases all relate to emulating instructions 1415 * which we should only do for userspace. We also do not want to enable 1416 * interrupts for kernel faults because that might lead to further 1417 * faults, and loose the context of the original exception. 1418 */ 1419 if (!user_mode(regs)) 1420 goto sigill; 1421 1422 /* We restore the interrupt state now */ 1423 if (!arch_irq_disabled_regs(regs)) 1424 local_irq_enable(); 1425 1426 /* (reason & REASON_ILLEGAL) would be the obvious thing here, 1427 * but there seems to be a hardware bug on the 405GP (RevD) 1428 * that means ESR is sometimes set incorrectly - either to 1429 * ESR_DST (!?) or 0. In the process of chasing this with the 1430 * hardware people - not sure if it can happen on any illegal 1431 * instruction or only on FP instructions, whether there is a 1432 * pattern to occurrences etc. -dgibson 31/Mar/2003 1433 */ 1434 if (!emulate_math(regs)) 1435 goto bail; 1436 1437 /* Try to emulate it if we should. */ 1438 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { 1439 switch (emulate_instruction(regs)) { 1440 case 0: 1441 regs->nip += 4; 1442 emulate_single_step(regs); 1443 goto bail; 1444 case -EFAULT: 1445 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1446 goto bail; 1447 } 1448 } 1449 1450 sigill: 1451 if (reason & REASON_PRIVILEGED) 1452 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 1453 else 1454 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1455 1456 bail: 1457 exception_exit(prev_state); 1458 } 1459 NOKPROBE_SYMBOL(program_check_exception); 1460 1461 /* 1462 * This occurs when running in hypervisor mode on POWER6 or later 1463 * and an illegal instruction is encountered. 1464 */ 1465 void emulation_assist_interrupt(struct pt_regs *regs) 1466 { 1467 regs->msr |= REASON_ILLEGAL; 1468 program_check_exception(regs); 1469 } 1470 NOKPROBE_SYMBOL(emulation_assist_interrupt); 1471 1472 void alignment_exception(struct pt_regs *regs) 1473 { 1474 enum ctx_state prev_state = exception_enter(); 1475 int sig, code, fixed = 0; 1476 1477 /* We restore the interrupt state now */ 1478 if (!arch_irq_disabled_regs(regs)) 1479 local_irq_enable(); 1480 1481 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) 1482 goto bail; 1483 1484 /* we don't implement logging of alignment exceptions */ 1485 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 1486 fixed = fix_alignment(regs); 1487 1488 if (fixed == 1) { 1489 regs->nip += 4; /* skip over emulated instruction */ 1490 emulate_single_step(regs); 1491 goto bail; 1492 } 1493 1494 /* Operand address was bad */ 1495 if (fixed == -EFAULT) { 1496 sig = SIGSEGV; 1497 code = SEGV_ACCERR; 1498 } else { 1499 sig = SIGBUS; 1500 code = BUS_ADRALN; 1501 } 1502 if (user_mode(regs)) 1503 _exception(sig, regs, code, regs->dar); 1504 else 1505 bad_page_fault(regs, regs->dar, sig); 1506 1507 bail: 1508 exception_exit(prev_state); 1509 } 1510 1511 void StackOverflow(struct pt_regs *regs) 1512 { 1513 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n", 1514 current, regs->gpr[1]); 1515 debugger(regs); 1516 show_regs(regs); 1517 panic("kernel stack overflow"); 1518 } 1519 1520 void nonrecoverable_exception(struct pt_regs *regs) 1521 { 1522 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n", 1523 regs->nip, regs->msr); 1524 debugger(regs); 1525 die("nonrecoverable exception", regs, SIGKILL); 1526 } 1527 1528 void kernel_fp_unavailable_exception(struct pt_regs *regs) 1529 { 1530 enum ctx_state prev_state = exception_enter(); 1531 1532 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " 1533 "%lx at %lx\n", regs->trap, regs->nip); 1534 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); 1535 1536 exception_exit(prev_state); 1537 } 1538 1539 void altivec_unavailable_exception(struct pt_regs *regs) 1540 { 1541 enum ctx_state prev_state = exception_enter(); 1542 1543 if (user_mode(regs)) { 1544 /* A user program has executed an altivec instruction, 1545 but this kernel doesn't support altivec. */ 1546 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1547 goto bail; 1548 } 1549 1550 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " 1551 "%lx at %lx\n", regs->trap, regs->nip); 1552 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); 1553 1554 bail: 1555 exception_exit(prev_state); 1556 } 1557 1558 void vsx_unavailable_exception(struct pt_regs *regs) 1559 { 1560 if (user_mode(regs)) { 1561 /* A user program has executed an vsx instruction, 1562 but this kernel doesn't support vsx. */ 1563 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1564 return; 1565 } 1566 1567 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " 1568 "%lx at %lx\n", regs->trap, regs->nip); 1569 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); 1570 } 1571 1572 #ifdef CONFIG_PPC64 1573 static void tm_unavailable(struct pt_regs *regs) 1574 { 1575 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1576 if (user_mode(regs)) { 1577 current->thread.load_tm++; 1578 regs->msr |= MSR_TM; 1579 tm_enable(); 1580 tm_restore_sprs(¤t->thread); 1581 return; 1582 } 1583 #endif 1584 pr_emerg("Unrecoverable TM Unavailable Exception " 1585 "%lx at %lx\n", regs->trap, regs->nip); 1586 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); 1587 } 1588 1589 void facility_unavailable_exception(struct pt_regs *regs) 1590 { 1591 static char *facility_strings[] = { 1592 [FSCR_FP_LG] = "FPU", 1593 [FSCR_VECVSX_LG] = "VMX/VSX", 1594 [FSCR_DSCR_LG] = "DSCR", 1595 [FSCR_PM_LG] = "PMU SPRs", 1596 [FSCR_BHRB_LG] = "BHRB", 1597 [FSCR_TM_LG] = "TM", 1598 [FSCR_EBB_LG] = "EBB", 1599 [FSCR_TAR_LG] = "TAR", 1600 [FSCR_MSGP_LG] = "MSGP", 1601 [FSCR_SCV_LG] = "SCV", 1602 }; 1603 char *facility = "unknown"; 1604 u64 value; 1605 u32 instword, rd; 1606 u8 status; 1607 bool hv; 1608 1609 hv = (TRAP(regs) == 0xf80); 1610 if (hv) 1611 value = mfspr(SPRN_HFSCR); 1612 else 1613 value = mfspr(SPRN_FSCR); 1614 1615 status = value >> 56; 1616 if ((hv || status >= 2) && 1617 (status < ARRAY_SIZE(facility_strings)) && 1618 facility_strings[status]) 1619 facility = facility_strings[status]; 1620 1621 /* We should not have taken this interrupt in kernel */ 1622 if (!user_mode(regs)) { 1623 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", 1624 facility, status, regs->nip); 1625 die("Unexpected facility unavailable exception", regs, SIGABRT); 1626 } 1627 1628 /* We restore the interrupt state now */ 1629 if (!arch_irq_disabled_regs(regs)) 1630 local_irq_enable(); 1631 1632 if (status == FSCR_DSCR_LG) { 1633 /* 1634 * User is accessing the DSCR register using the problem 1635 * state only SPR number (0x03) either through a mfspr or 1636 * a mtspr instruction. If it is a write attempt through 1637 * a mtspr, then we set the inherit bit. This also allows 1638 * the user to write or read the register directly in the 1639 * future by setting via the FSCR DSCR bit. But in case it 1640 * is a read DSCR attempt through a mfspr instruction, we 1641 * just emulate the instruction instead. This code path will 1642 * always emulate all the mfspr instructions till the user 1643 * has attempted at least one mtspr instruction. This way it 1644 * preserves the same behaviour when the user is accessing 1645 * the DSCR through privilege level only SPR number (0x11) 1646 * which is emulated through illegal instruction exception. 1647 * We always leave HFSCR DSCR set. 1648 */ 1649 if (get_user(instword, (u32 __user *)(regs->nip))) { 1650 pr_err("Failed to fetch the user instruction\n"); 1651 return; 1652 } 1653 1654 /* Write into DSCR (mtspr 0x03, RS) */ 1655 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) 1656 == PPC_INST_MTSPR_DSCR_USER) { 1657 rd = (instword >> 21) & 0x1f; 1658 current->thread.dscr = regs->gpr[rd]; 1659 current->thread.dscr_inherit = 1; 1660 current->thread.fscr |= FSCR_DSCR; 1661 mtspr(SPRN_FSCR, current->thread.fscr); 1662 } 1663 1664 /* Read from DSCR (mfspr RT, 0x03) */ 1665 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) 1666 == PPC_INST_MFSPR_DSCR_USER) { 1667 if (emulate_instruction(regs)) { 1668 pr_err("DSCR based mfspr emulation failed\n"); 1669 return; 1670 } 1671 regs->nip += 4; 1672 emulate_single_step(regs); 1673 } 1674 return; 1675 } 1676 1677 if (status == FSCR_TM_LG) { 1678 /* 1679 * If we're here then the hardware is TM aware because it 1680 * generated an exception with FSRM_TM set. 1681 * 1682 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware 1683 * told us not to do TM, or the kernel is not built with TM 1684 * support. 1685 * 1686 * If both of those things are true, then userspace can spam the 1687 * console by triggering the printk() below just by continually 1688 * doing tbegin (or any TM instruction). So in that case just 1689 * send the process a SIGILL immediately. 1690 */ 1691 if (!cpu_has_feature(CPU_FTR_TM)) 1692 goto out; 1693 1694 tm_unavailable(regs); 1695 return; 1696 } 1697 1698 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", 1699 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); 1700 1701 out: 1702 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1703 } 1704 #endif 1705 1706 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1707 1708 void fp_unavailable_tm(struct pt_regs *regs) 1709 { 1710 /* Note: This does not handle any kind of FP laziness. */ 1711 1712 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", 1713 regs->nip, regs->msr); 1714 1715 /* We can only have got here if the task started using FP after 1716 * beginning the transaction. So, the transactional regs are just a 1717 * copy of the checkpointed ones. But, we still need to recheckpoint 1718 * as we're enabling FP for the process; it will return, abort the 1719 * transaction, and probably retry but now with FP enabled. So the 1720 * checkpointed FP registers need to be loaded. 1721 */ 1722 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1723 /* Reclaim didn't save out any FPRs to transact_fprs. */ 1724 1725 /* Enable FP for the task: */ 1726 current->thread.load_fp = 1; 1727 1728 /* This loads and recheckpoints the FP registers from 1729 * thread.fpr[]. They will remain in registers after the 1730 * checkpoint so we don't need to reload them after. 1731 * If VMX is in use, the VRs now hold checkpointed values, 1732 * so we don't want to load the VRs from the thread_struct. 1733 */ 1734 tm_recheckpoint(¤t->thread); 1735 } 1736 1737 void altivec_unavailable_tm(struct pt_regs *regs) 1738 { 1739 /* See the comments in fp_unavailable_tm(). This function operates 1740 * the same way. 1741 */ 1742 1743 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," 1744 "MSR=%lx\n", 1745 regs->nip, regs->msr); 1746 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1747 current->thread.load_vec = 1; 1748 tm_recheckpoint(¤t->thread); 1749 current->thread.used_vr = 1; 1750 } 1751 1752 void vsx_unavailable_tm(struct pt_regs *regs) 1753 { 1754 /* See the comments in fp_unavailable_tm(). This works similarly, 1755 * though we're loading both FP and VEC registers in here. 1756 * 1757 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC 1758 * regs. Either way, set MSR_VSX. 1759 */ 1760 1761 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," 1762 "MSR=%lx\n", 1763 regs->nip, regs->msr); 1764 1765 current->thread.used_vsr = 1; 1766 1767 /* This reclaims FP and/or VR regs if they're already enabled */ 1768 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1769 1770 current->thread.load_vec = 1; 1771 current->thread.load_fp = 1; 1772 1773 tm_recheckpoint(¤t->thread); 1774 } 1775 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1776 1777 void performance_monitor_exception(struct pt_regs *regs) 1778 { 1779 __this_cpu_inc(irq_stat.pmu_irqs); 1780 1781 perf_irq(regs); 1782 } 1783 1784 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1785 static void handle_debug(struct pt_regs *regs, unsigned long debug_status) 1786 { 1787 int changed = 0; 1788 /* 1789 * Determine the cause of the debug event, clear the 1790 * event flags and send a trap to the handler. Torez 1791 */ 1792 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { 1793 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); 1794 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE 1795 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; 1796 #endif 1797 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, 1798 5); 1799 changed |= 0x01; 1800 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { 1801 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); 1802 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, 1803 6); 1804 changed |= 0x01; 1805 } else if (debug_status & DBSR_IAC1) { 1806 current->thread.debug.dbcr0 &= ~DBCR0_IAC1; 1807 dbcr_iac_range(current) &= ~DBCR_IAC12MODE; 1808 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, 1809 1); 1810 changed |= 0x01; 1811 } else if (debug_status & DBSR_IAC2) { 1812 current->thread.debug.dbcr0 &= ~DBCR0_IAC2; 1813 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, 1814 2); 1815 changed |= 0x01; 1816 } else if (debug_status & DBSR_IAC3) { 1817 current->thread.debug.dbcr0 &= ~DBCR0_IAC3; 1818 dbcr_iac_range(current) &= ~DBCR_IAC34MODE; 1819 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, 1820 3); 1821 changed |= 0x01; 1822 } else if (debug_status & DBSR_IAC4) { 1823 current->thread.debug.dbcr0 &= ~DBCR0_IAC4; 1824 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, 1825 4); 1826 changed |= 0x01; 1827 } 1828 /* 1829 * At the point this routine was called, the MSR(DE) was turned off. 1830 * Check all other debug flags and see if that bit needs to be turned 1831 * back on or not. 1832 */ 1833 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 1834 current->thread.debug.dbcr1)) 1835 regs->msr |= MSR_DE; 1836 else 1837 /* Make sure the IDM flag is off */ 1838 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 1839 1840 if (changed & 0x01) 1841 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); 1842 } 1843 1844 void DebugException(struct pt_regs *regs, unsigned long debug_status) 1845 { 1846 current->thread.debug.dbsr = debug_status; 1847 1848 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while 1849 * on server, it stops on the target of the branch. In order to simulate 1850 * the server behaviour, we thus restart right away with a single step 1851 * instead of stopping here when hitting a BT 1852 */ 1853 if (debug_status & DBSR_BT) { 1854 regs->msr &= ~MSR_DE; 1855 1856 /* Disable BT */ 1857 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); 1858 /* Clear the BT event */ 1859 mtspr(SPRN_DBSR, DBSR_BT); 1860 1861 /* Do the single step trick only when coming from userspace */ 1862 if (user_mode(regs)) { 1863 current->thread.debug.dbcr0 &= ~DBCR0_BT; 1864 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; 1865 regs->msr |= MSR_DE; 1866 return; 1867 } 1868 1869 if (kprobe_post_handler(regs)) 1870 return; 1871 1872 if (notify_die(DIE_SSTEP, "block_step", regs, 5, 1873 5, SIGTRAP) == NOTIFY_STOP) { 1874 return; 1875 } 1876 if (debugger_sstep(regs)) 1877 return; 1878 } else if (debug_status & DBSR_IC) { /* Instruction complete */ 1879 regs->msr &= ~MSR_DE; 1880 1881 /* Disable instruction completion */ 1882 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); 1883 /* Clear the instruction completion event */ 1884 mtspr(SPRN_DBSR, DBSR_IC); 1885 1886 if (kprobe_post_handler(regs)) 1887 return; 1888 1889 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 1890 5, SIGTRAP) == NOTIFY_STOP) { 1891 return; 1892 } 1893 1894 if (debugger_sstep(regs)) 1895 return; 1896 1897 if (user_mode(regs)) { 1898 current->thread.debug.dbcr0 &= ~DBCR0_IC; 1899 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 1900 current->thread.debug.dbcr1)) 1901 regs->msr |= MSR_DE; 1902 else 1903 /* Make sure the IDM bit is off */ 1904 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 1905 } 1906 1907 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 1908 } else 1909 handle_debug(regs, debug_status); 1910 } 1911 NOKPROBE_SYMBOL(DebugException); 1912 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 1913 1914 #if !defined(CONFIG_TAU_INT) 1915 void TAUException(struct pt_regs *regs) 1916 { 1917 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n", 1918 regs->nip, regs->msr, regs->trap, print_tainted()); 1919 } 1920 #endif /* CONFIG_INT_TAU */ 1921 1922 #ifdef CONFIG_ALTIVEC 1923 void altivec_assist_exception(struct pt_regs *regs) 1924 { 1925 int err; 1926 1927 if (!user_mode(regs)) { 1928 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" 1929 " at %lx\n", regs->nip); 1930 die("Kernel VMX/Altivec assist exception", regs, SIGILL); 1931 } 1932 1933 flush_altivec_to_thread(current); 1934 1935 PPC_WARN_EMULATED(altivec, regs); 1936 err = emulate_altivec(regs); 1937 if (err == 0) { 1938 regs->nip += 4; /* skip emulated instruction */ 1939 emulate_single_step(regs); 1940 return; 1941 } 1942 1943 if (err == -EFAULT) { 1944 /* got an error reading the instruction */ 1945 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 1946 } else { 1947 /* didn't recognize the instruction */ 1948 /* XXX quick hack for now: set the non-Java bit in the VSCR */ 1949 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " 1950 "in %s at %lx\n", current->comm, regs->nip); 1951 current->thread.vr_state.vscr.u[3] |= 0x10000; 1952 } 1953 } 1954 #endif /* CONFIG_ALTIVEC */ 1955 1956 #ifdef CONFIG_FSL_BOOKE 1957 void CacheLockingException(struct pt_regs *regs, unsigned long address, 1958 unsigned long error_code) 1959 { 1960 /* We treat cache locking instructions from the user 1961 * as priv ops, in the future we could try to do 1962 * something smarter 1963 */ 1964 if (error_code & (ESR_DLK|ESR_ILK)) 1965 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 1966 return; 1967 } 1968 #endif /* CONFIG_FSL_BOOKE */ 1969 1970 #ifdef CONFIG_SPE 1971 void SPEFloatingPointException(struct pt_regs *regs) 1972 { 1973 extern int do_spe_mathemu(struct pt_regs *regs); 1974 unsigned long spefscr; 1975 int fpexc_mode; 1976 int code = FPE_FIXME; 1977 int err; 1978 1979 flush_spe_to_thread(current); 1980 1981 spefscr = current->thread.spefscr; 1982 fpexc_mode = current->thread.fpexc_mode; 1983 1984 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { 1985 code = FPE_FLTOVF; 1986 } 1987 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { 1988 code = FPE_FLTUND; 1989 } 1990 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) 1991 code = FPE_FLTDIV; 1992 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { 1993 code = FPE_FLTINV; 1994 } 1995 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) 1996 code = FPE_FLTRES; 1997 1998 err = do_spe_mathemu(regs); 1999 if (err == 0) { 2000 regs->nip += 4; /* skip emulated instruction */ 2001 emulate_single_step(regs); 2002 return; 2003 } 2004 2005 if (err == -EFAULT) { 2006 /* got an error reading the instruction */ 2007 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2008 } else if (err == -EINVAL) { 2009 /* didn't recognize the instruction */ 2010 printk(KERN_ERR "unrecognized spe instruction " 2011 "in %s at %lx\n", current->comm, regs->nip); 2012 } else { 2013 _exception(SIGFPE, regs, code, regs->nip); 2014 } 2015 2016 return; 2017 } 2018 2019 void SPEFloatingPointRoundException(struct pt_regs *regs) 2020 { 2021 extern int speround_handler(struct pt_regs *regs); 2022 int err; 2023 2024 preempt_disable(); 2025 if (regs->msr & MSR_SPE) 2026 giveup_spe(current); 2027 preempt_enable(); 2028 2029 regs->nip -= 4; 2030 err = speround_handler(regs); 2031 if (err == 0) { 2032 regs->nip += 4; /* skip emulated instruction */ 2033 emulate_single_step(regs); 2034 return; 2035 } 2036 2037 if (err == -EFAULT) { 2038 /* got an error reading the instruction */ 2039 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2040 } else if (err == -EINVAL) { 2041 /* didn't recognize the instruction */ 2042 printk(KERN_ERR "unrecognized spe instruction " 2043 "in %s at %lx\n", current->comm, regs->nip); 2044 } else { 2045 _exception(SIGFPE, regs, FPE_FIXME, regs->nip); 2046 return; 2047 } 2048 } 2049 #endif 2050 2051 /* 2052 * We enter here if we get an unrecoverable exception, that is, one 2053 * that happened at a point where the RI (recoverable interrupt) bit 2054 * in the MSR is 0. This indicates that SRR0/1 are live, and that 2055 * we therefore lost state by taking this exception. 2056 */ 2057 void unrecoverable_exception(struct pt_regs *regs) 2058 { 2059 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n", 2060 regs->trap, regs->nip); 2061 die("Unrecoverable exception", regs, SIGABRT); 2062 } 2063 NOKPROBE_SYMBOL(unrecoverable_exception); 2064 2065 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) 2066 /* 2067 * Default handler for a Watchdog exception, 2068 * spins until a reboot occurs 2069 */ 2070 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) 2071 { 2072 /* Generic WatchdogHandler, implement your own */ 2073 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); 2074 return; 2075 } 2076 2077 void WatchdogException(struct pt_regs *regs) 2078 { 2079 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); 2080 WatchdogHandler(regs); 2081 } 2082 #endif 2083 2084 /* 2085 * We enter here if we discover during exception entry that we are 2086 * running in supervisor mode with a userspace value in the stack pointer. 2087 */ 2088 void kernel_bad_stack(struct pt_regs *regs) 2089 { 2090 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", 2091 regs->gpr[1], regs->nip); 2092 die("Bad kernel stack pointer", regs, SIGABRT); 2093 } 2094 NOKPROBE_SYMBOL(kernel_bad_stack); 2095 2096 void __init trap_init(void) 2097 { 2098 } 2099 2100 2101 #ifdef CONFIG_PPC_EMULATED_STATS 2102 2103 #define WARN_EMULATED_SETUP(type) .type = { .name = #type } 2104 2105 struct ppc_emulated ppc_emulated = { 2106 #ifdef CONFIG_ALTIVEC 2107 WARN_EMULATED_SETUP(altivec), 2108 #endif 2109 WARN_EMULATED_SETUP(dcba), 2110 WARN_EMULATED_SETUP(dcbz), 2111 WARN_EMULATED_SETUP(fp_pair), 2112 WARN_EMULATED_SETUP(isel), 2113 WARN_EMULATED_SETUP(mcrxr), 2114 WARN_EMULATED_SETUP(mfpvr), 2115 WARN_EMULATED_SETUP(multiple), 2116 WARN_EMULATED_SETUP(popcntb), 2117 WARN_EMULATED_SETUP(spe), 2118 WARN_EMULATED_SETUP(string), 2119 WARN_EMULATED_SETUP(sync), 2120 WARN_EMULATED_SETUP(unaligned), 2121 #ifdef CONFIG_MATH_EMULATION 2122 WARN_EMULATED_SETUP(math), 2123 #endif 2124 #ifdef CONFIG_VSX 2125 WARN_EMULATED_SETUP(vsx), 2126 #endif 2127 #ifdef CONFIG_PPC64 2128 WARN_EMULATED_SETUP(mfdscr), 2129 WARN_EMULATED_SETUP(mtdscr), 2130 WARN_EMULATED_SETUP(lq_stq), 2131 WARN_EMULATED_SETUP(lxvw4x), 2132 WARN_EMULATED_SETUP(lxvh8x), 2133 WARN_EMULATED_SETUP(lxvd2x), 2134 WARN_EMULATED_SETUP(lxvb16x), 2135 #endif 2136 }; 2137 2138 u32 ppc_warn_emulated; 2139 2140 void ppc_warn_emulated_print(const char *type) 2141 { 2142 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, 2143 type); 2144 } 2145 2146 static int __init ppc_warn_emulated_init(void) 2147 { 2148 struct dentry *dir, *d; 2149 unsigned int i; 2150 struct ppc_emulated_entry *entries = (void *)&ppc_emulated; 2151 2152 if (!powerpc_debugfs_root) 2153 return -ENODEV; 2154 2155 dir = debugfs_create_dir("emulated_instructions", 2156 powerpc_debugfs_root); 2157 if (!dir) 2158 return -ENOMEM; 2159 2160 d = debugfs_create_u32("do_warn", 0644, dir, 2161 &ppc_warn_emulated); 2162 if (!d) 2163 goto fail; 2164 2165 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) { 2166 d = debugfs_create_u32(entries[i].name, 0644, dir, 2167 (u32 *)&entries[i].val.counter); 2168 if (!d) 2169 goto fail; 2170 } 2171 2172 return 0; 2173 2174 fail: 2175 debugfs_remove_recursive(dir); 2176 return -ENOMEM; 2177 } 2178 2179 device_initcall(ppc_warn_emulated_init); 2180 2181 #endif /* CONFIG_PPC_EMULATED_STATS */ 2182