xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision fca3aa16)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/clockchips.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 #include <linux/jiffies.h>
54 #include <linux/posix-timers.h>
55 #include <linux/irq.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 #include <linux/clk-provider.h>
59 #include <linux/suspend.h>
60 #include <linux/rtc.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/processor.h>
63 #include <asm/trace.h>
64 
65 #include <asm/io.h>
66 #include <asm/nvram.h>
67 #include <asm/cache.h>
68 #include <asm/machdep.h>
69 #include <linux/uaccess.h>
70 #include <asm/time.h>
71 #include <asm/prom.h>
72 #include <asm/irq.h>
73 #include <asm/div64.h>
74 #include <asm/smp.h>
75 #include <asm/vdso_datapage.h>
76 #include <asm/firmware.h>
77 #include <asm/asm-prototypes.h>
78 
79 /* powerpc clocksource/clockevent code */
80 
81 #include <linux/clockchips.h>
82 #include <linux/timekeeper_internal.h>
83 
84 static u64 rtc_read(struct clocksource *);
85 static struct clocksource clocksource_rtc = {
86 	.name         = "rtc",
87 	.rating       = 400,
88 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
89 	.mask         = CLOCKSOURCE_MASK(64),
90 	.read         = rtc_read,
91 };
92 
93 static u64 timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 	.name         = "timebase",
96 	.rating       = 400,
97 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
98 	.mask         = CLOCKSOURCE_MASK(64),
99 	.read         = timebase_read,
100 };
101 
102 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
103 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
104 
105 static int decrementer_set_next_event(unsigned long evt,
106 				      struct clock_event_device *dev);
107 static int decrementer_shutdown(struct clock_event_device *evt);
108 
109 struct clock_event_device decrementer_clockevent = {
110 	.name			= "decrementer",
111 	.rating			= 200,
112 	.irq			= 0,
113 	.set_next_event		= decrementer_set_next_event,
114 	.set_state_shutdown	= decrementer_shutdown,
115 	.tick_resume		= decrementer_shutdown,
116 	.features		= CLOCK_EVT_FEAT_ONESHOT |
117 				  CLOCK_EVT_FEAT_C3STOP,
118 };
119 EXPORT_SYMBOL(decrementer_clockevent);
120 
121 DEFINE_PER_CPU(u64, decrementers_next_tb);
122 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123 
124 #define XSEC_PER_SEC (1024*1024)
125 
126 #ifdef CONFIG_PPC64
127 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
128 #else
129 /* compute ((xsec << 12) * max) >> 32 */
130 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
131 #endif
132 
133 unsigned long tb_ticks_per_jiffy;
134 unsigned long tb_ticks_per_usec = 100; /* sane default */
135 EXPORT_SYMBOL(tb_ticks_per_usec);
136 unsigned long tb_ticks_per_sec;
137 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138 
139 DEFINE_SPINLOCK(rtc_lock);
140 EXPORT_SYMBOL_GPL(rtc_lock);
141 
142 static u64 tb_to_ns_scale __read_mostly;
143 static unsigned tb_to_ns_shift __read_mostly;
144 static u64 boot_tb __read_mostly;
145 
146 extern struct timezone sys_tz;
147 static long timezone_offset;
148 
149 unsigned long ppc_proc_freq;
150 EXPORT_SYMBOL_GPL(ppc_proc_freq);
151 unsigned long ppc_tb_freq;
152 EXPORT_SYMBOL_GPL(ppc_tb_freq);
153 
154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155 /*
156  * Factor for converting from cputime_t (timebase ticks) to
157  * microseconds. This is stored as 0.64 fixed-point binary fraction.
158  */
159 u64 __cputime_usec_factor;
160 EXPORT_SYMBOL(__cputime_usec_factor);
161 
162 #ifdef CONFIG_PPC_SPLPAR
163 void (*dtl_consumer)(struct dtl_entry *, u64);
164 #endif
165 
166 #ifdef CONFIG_PPC64
167 #define get_accounting(tsk)	(&get_paca()->accounting)
168 #else
169 #define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
170 #endif
171 
172 static void calc_cputime_factors(void)
173 {
174 	struct div_result res;
175 
176 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
177 	__cputime_usec_factor = res.result_low;
178 }
179 
180 /*
181  * Read the SPURR on systems that have it, otherwise the PURR,
182  * or if that doesn't exist return the timebase value passed in.
183  */
184 static unsigned long read_spurr(unsigned long tb)
185 {
186 	if (cpu_has_feature(CPU_FTR_SPURR))
187 		return mfspr(SPRN_SPURR);
188 	if (cpu_has_feature(CPU_FTR_PURR))
189 		return mfspr(SPRN_PURR);
190 	return tb;
191 }
192 
193 #ifdef CONFIG_PPC_SPLPAR
194 
195 /*
196  * Scan the dispatch trace log and count up the stolen time.
197  * Should be called with interrupts disabled.
198  */
199 static u64 scan_dispatch_log(u64 stop_tb)
200 {
201 	u64 i = local_paca->dtl_ridx;
202 	struct dtl_entry *dtl = local_paca->dtl_curr;
203 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
204 	struct lppaca *vpa = local_paca->lppaca_ptr;
205 	u64 tb_delta;
206 	u64 stolen = 0;
207 	u64 dtb;
208 
209 	if (!dtl)
210 		return 0;
211 
212 	if (i == be64_to_cpu(vpa->dtl_idx))
213 		return 0;
214 	while (i < be64_to_cpu(vpa->dtl_idx)) {
215 		dtb = be64_to_cpu(dtl->timebase);
216 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
217 			be32_to_cpu(dtl->ready_to_enqueue_time);
218 		barrier();
219 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
220 			/* buffer has overflowed */
221 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
222 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
223 			continue;
224 		}
225 		if (dtb > stop_tb)
226 			break;
227 		if (dtl_consumer)
228 			dtl_consumer(dtl, i);
229 		stolen += tb_delta;
230 		++i;
231 		++dtl;
232 		if (dtl == dtl_end)
233 			dtl = local_paca->dispatch_log;
234 	}
235 	local_paca->dtl_ridx = i;
236 	local_paca->dtl_curr = dtl;
237 	return stolen;
238 }
239 
240 /*
241  * Accumulate stolen time by scanning the dispatch trace log.
242  * Called on entry from user mode.
243  */
244 void accumulate_stolen_time(void)
245 {
246 	u64 sst, ust;
247 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
248 	struct cpu_accounting_data *acct = &local_paca->accounting;
249 
250 	/* We are called early in the exception entry, before
251 	 * soft/hard_enabled are sync'ed to the expected state
252 	 * for the exception. We are hard disabled but the PACA
253 	 * needs to reflect that so various debug stuff doesn't
254 	 * complain
255 	 */
256 	irq_soft_mask_set(IRQS_DISABLED);
257 
258 	sst = scan_dispatch_log(acct->starttime_user);
259 	ust = scan_dispatch_log(acct->starttime);
260 	acct->stime -= sst;
261 	acct->utime -= ust;
262 	acct->steal_time += ust + sst;
263 
264 	irq_soft_mask_set(save_irq_soft_mask);
265 }
266 
267 static inline u64 calculate_stolen_time(u64 stop_tb)
268 {
269 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
270 		return 0;
271 
272 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
273 		return scan_dispatch_log(stop_tb);
274 
275 	return 0;
276 }
277 
278 #else /* CONFIG_PPC_SPLPAR */
279 static inline u64 calculate_stolen_time(u64 stop_tb)
280 {
281 	return 0;
282 }
283 
284 #endif /* CONFIG_PPC_SPLPAR */
285 
286 /*
287  * Account time for a transition between system, hard irq
288  * or soft irq state.
289  */
290 static unsigned long vtime_delta(struct task_struct *tsk,
291 				 unsigned long *stime_scaled,
292 				 unsigned long *steal_time)
293 {
294 	unsigned long now, nowscaled, deltascaled;
295 	unsigned long stime;
296 	unsigned long utime, utime_scaled;
297 	struct cpu_accounting_data *acct = get_accounting(tsk);
298 
299 	WARN_ON_ONCE(!irqs_disabled());
300 
301 	now = mftb();
302 	nowscaled = read_spurr(now);
303 	stime = now - acct->starttime;
304 	acct->starttime = now;
305 	deltascaled = nowscaled - acct->startspurr;
306 	acct->startspurr = nowscaled;
307 
308 	*steal_time = calculate_stolen_time(now);
309 
310 	utime = acct->utime - acct->utime_sspurr;
311 	acct->utime_sspurr = acct->utime;
312 
313 	/*
314 	 * Because we don't read the SPURR on every kernel entry/exit,
315 	 * deltascaled includes both user and system SPURR ticks.
316 	 * Apportion these ticks to system SPURR ticks and user
317 	 * SPURR ticks in the same ratio as the system time (delta)
318 	 * and user time (udelta) values obtained from the timebase
319 	 * over the same interval.  The system ticks get accounted here;
320 	 * the user ticks get saved up in paca->user_time_scaled to be
321 	 * used by account_process_tick.
322 	 */
323 	*stime_scaled = stime;
324 	utime_scaled = utime;
325 	if (deltascaled != stime + utime) {
326 		if (utime) {
327 			*stime_scaled = deltascaled * stime / (stime + utime);
328 			utime_scaled = deltascaled - *stime_scaled;
329 		} else {
330 			*stime_scaled = deltascaled;
331 		}
332 	}
333 	acct->utime_scaled += utime_scaled;
334 
335 	return stime;
336 }
337 
338 void vtime_account_system(struct task_struct *tsk)
339 {
340 	unsigned long stime, stime_scaled, steal_time;
341 	struct cpu_accounting_data *acct = get_accounting(tsk);
342 
343 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
344 
345 	stime -= min(stime, steal_time);
346 	acct->steal_time += steal_time;
347 
348 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
349 		acct->gtime += stime;
350 		acct->utime_scaled += stime_scaled;
351 	} else {
352 		if (hardirq_count())
353 			acct->hardirq_time += stime;
354 		else if (in_serving_softirq())
355 			acct->softirq_time += stime;
356 		else
357 			acct->stime += stime;
358 
359 		acct->stime_scaled += stime_scaled;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(vtime_account_system);
363 
364 void vtime_account_idle(struct task_struct *tsk)
365 {
366 	unsigned long stime, stime_scaled, steal_time;
367 	struct cpu_accounting_data *acct = get_accounting(tsk);
368 
369 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
370 	acct->idle_time += stime + steal_time;
371 }
372 
373 /*
374  * Account the whole cputime accumulated in the paca
375  * Must be called with interrupts disabled.
376  * Assumes that vtime_account_system/idle() has been called
377  * recently (i.e. since the last entry from usermode) so that
378  * get_paca()->user_time_scaled is up to date.
379  */
380 void vtime_flush(struct task_struct *tsk)
381 {
382 	struct cpu_accounting_data *acct = get_accounting(tsk);
383 
384 	if (acct->utime)
385 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
386 
387 	if (acct->utime_scaled)
388 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
389 
390 	if (acct->gtime)
391 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
392 
393 	if (acct->steal_time)
394 		account_steal_time(cputime_to_nsecs(acct->steal_time));
395 
396 	if (acct->idle_time)
397 		account_idle_time(cputime_to_nsecs(acct->idle_time));
398 
399 	if (acct->stime)
400 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
401 					  CPUTIME_SYSTEM);
402 	if (acct->stime_scaled)
403 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
404 
405 	if (acct->hardirq_time)
406 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
407 					  CPUTIME_IRQ);
408 	if (acct->softirq_time)
409 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
410 					  CPUTIME_SOFTIRQ);
411 
412 	acct->utime = 0;
413 	acct->utime_scaled = 0;
414 	acct->utime_sspurr = 0;
415 	acct->gtime = 0;
416 	acct->steal_time = 0;
417 	acct->idle_time = 0;
418 	acct->stime = 0;
419 	acct->stime_scaled = 0;
420 	acct->hardirq_time = 0;
421 	acct->softirq_time = 0;
422 }
423 
424 #ifdef CONFIG_PPC32
425 /*
426  * Called from the context switch with interrupts disabled, to charge all
427  * accumulated times to the current process, and to prepare accounting on
428  * the next process.
429  */
430 void arch_vtime_task_switch(struct task_struct *prev)
431 {
432 	struct cpu_accounting_data *acct = get_accounting(current);
433 
434 	acct->starttime = get_accounting(prev)->starttime;
435 	acct->startspurr = get_accounting(prev)->startspurr;
436 }
437 #endif /* CONFIG_PPC32 */
438 
439 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
440 #define calc_cputime_factors()
441 #endif
442 
443 void __delay(unsigned long loops)
444 {
445 	unsigned long start;
446 	int diff;
447 
448 	spin_begin();
449 	if (__USE_RTC()) {
450 		start = get_rtcl();
451 		do {
452 			/* the RTCL register wraps at 1000000000 */
453 			diff = get_rtcl() - start;
454 			if (diff < 0)
455 				diff += 1000000000;
456 			spin_cpu_relax();
457 		} while (diff < loops);
458 	} else {
459 		start = get_tbl();
460 		while (get_tbl() - start < loops)
461 			spin_cpu_relax();
462 	}
463 	spin_end();
464 }
465 EXPORT_SYMBOL(__delay);
466 
467 void udelay(unsigned long usecs)
468 {
469 	__delay(tb_ticks_per_usec * usecs);
470 }
471 EXPORT_SYMBOL(udelay);
472 
473 #ifdef CONFIG_SMP
474 unsigned long profile_pc(struct pt_regs *regs)
475 {
476 	unsigned long pc = instruction_pointer(regs);
477 
478 	if (in_lock_functions(pc))
479 		return regs->link;
480 
481 	return pc;
482 }
483 EXPORT_SYMBOL(profile_pc);
484 #endif
485 
486 #ifdef CONFIG_IRQ_WORK
487 
488 /*
489  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
490  */
491 #ifdef CONFIG_PPC64
492 static inline unsigned long test_irq_work_pending(void)
493 {
494 	unsigned long x;
495 
496 	asm volatile("lbz %0,%1(13)"
497 		: "=r" (x)
498 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
499 	return x;
500 }
501 
502 static inline void set_irq_work_pending_flag(void)
503 {
504 	asm volatile("stb %0,%1(13)" : :
505 		"r" (1),
506 		"i" (offsetof(struct paca_struct, irq_work_pending)));
507 }
508 
509 static inline void clear_irq_work_pending(void)
510 {
511 	asm volatile("stb %0,%1(13)" : :
512 		"r" (0),
513 		"i" (offsetof(struct paca_struct, irq_work_pending)));
514 }
515 
516 #else /* 32-bit */
517 
518 DEFINE_PER_CPU(u8, irq_work_pending);
519 
520 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
521 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
522 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
523 
524 #endif /* 32 vs 64 bit */
525 
526 void arch_irq_work_raise(void)
527 {
528 	preempt_disable();
529 	set_irq_work_pending_flag();
530 	set_dec(1);
531 	preempt_enable();
532 }
533 
534 #else  /* CONFIG_IRQ_WORK */
535 
536 #define test_irq_work_pending()	0
537 #define clear_irq_work_pending()
538 
539 #endif /* CONFIG_IRQ_WORK */
540 
541 static void __timer_interrupt(void)
542 {
543 	struct pt_regs *regs = get_irq_regs();
544 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
545 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
546 	u64 now;
547 
548 	trace_timer_interrupt_entry(regs);
549 
550 	if (test_irq_work_pending()) {
551 		clear_irq_work_pending();
552 		irq_work_run();
553 	}
554 
555 	now = get_tb_or_rtc();
556 	if (now >= *next_tb) {
557 		*next_tb = ~(u64)0;
558 		if (evt->event_handler)
559 			evt->event_handler(evt);
560 		__this_cpu_inc(irq_stat.timer_irqs_event);
561 	} else {
562 		now = *next_tb - now;
563 		if (now <= decrementer_max)
564 			set_dec(now);
565 		/* We may have raced with new irq work */
566 		if (test_irq_work_pending())
567 			set_dec(1);
568 		__this_cpu_inc(irq_stat.timer_irqs_others);
569 	}
570 
571 #ifdef CONFIG_PPC64
572 	/* collect purr register values often, for accurate calculations */
573 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
574 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
575 		cu->current_tb = mfspr(SPRN_PURR);
576 	}
577 #endif
578 
579 	trace_timer_interrupt_exit(regs);
580 }
581 
582 /*
583  * timer_interrupt - gets called when the decrementer overflows,
584  * with interrupts disabled.
585  */
586 void timer_interrupt(struct pt_regs * regs)
587 {
588 	struct pt_regs *old_regs;
589 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
590 
591 	/* Ensure a positive value is written to the decrementer, or else
592 	 * some CPUs will continue to take decrementer exceptions.
593 	 */
594 	set_dec(decrementer_max);
595 
596 	/* Some implementations of hotplug will get timer interrupts while
597 	 * offline, just ignore these and we also need to set
598 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
599 	 * don't replay timer interrupt when return, otherwise we'll trap
600 	 * here infinitely :(
601 	 */
602 	if (!cpu_online(smp_processor_id())) {
603 		*next_tb = ~(u64)0;
604 		return;
605 	}
606 
607 	/* Conditionally hard-enable interrupts now that the DEC has been
608 	 * bumped to its maximum value
609 	 */
610 	may_hard_irq_enable();
611 
612 
613 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
614 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
615 		do_IRQ(regs);
616 #endif
617 
618 	old_regs = set_irq_regs(regs);
619 	irq_enter();
620 
621 	__timer_interrupt();
622 	irq_exit();
623 	set_irq_regs(old_regs);
624 }
625 EXPORT_SYMBOL(timer_interrupt);
626 
627 /*
628  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
629  * left pending on exit from a KVM guest.  We don't need to do anything
630  * to clear them, as they are edge-triggered.
631  */
632 void hdec_interrupt(struct pt_regs *regs)
633 {
634 }
635 
636 #ifdef CONFIG_SUSPEND
637 static void generic_suspend_disable_irqs(void)
638 {
639 	/* Disable the decrementer, so that it doesn't interfere
640 	 * with suspending.
641 	 */
642 
643 	set_dec(decrementer_max);
644 	local_irq_disable();
645 	set_dec(decrementer_max);
646 }
647 
648 static void generic_suspend_enable_irqs(void)
649 {
650 	local_irq_enable();
651 }
652 
653 /* Overrides the weak version in kernel/power/main.c */
654 void arch_suspend_disable_irqs(void)
655 {
656 	if (ppc_md.suspend_disable_irqs)
657 		ppc_md.suspend_disable_irqs();
658 	generic_suspend_disable_irqs();
659 }
660 
661 /* Overrides the weak version in kernel/power/main.c */
662 void arch_suspend_enable_irqs(void)
663 {
664 	generic_suspend_enable_irqs();
665 	if (ppc_md.suspend_enable_irqs)
666 		ppc_md.suspend_enable_irqs();
667 }
668 #endif
669 
670 unsigned long long tb_to_ns(unsigned long long ticks)
671 {
672 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
673 }
674 EXPORT_SYMBOL_GPL(tb_to_ns);
675 
676 /*
677  * Scheduler clock - returns current time in nanosec units.
678  *
679  * Note: mulhdu(a, b) (multiply high double unsigned) returns
680  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
681  * are 64-bit unsigned numbers.
682  */
683 notrace unsigned long long sched_clock(void)
684 {
685 	if (__USE_RTC())
686 		return get_rtc();
687 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
688 }
689 
690 
691 #ifdef CONFIG_PPC_PSERIES
692 
693 /*
694  * Running clock - attempts to give a view of time passing for a virtualised
695  * kernels.
696  * Uses the VTB register if available otherwise a next best guess.
697  */
698 unsigned long long running_clock(void)
699 {
700 	/*
701 	 * Don't read the VTB as a host since KVM does not switch in host
702 	 * timebase into the VTB when it takes a guest off the CPU, reading the
703 	 * VTB would result in reading 'last switched out' guest VTB.
704 	 *
705 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
706 	 * would be unsafe to rely only on the #ifdef above.
707 	 */
708 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
709 	    cpu_has_feature(CPU_FTR_ARCH_207S))
710 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
711 
712 	/*
713 	 * This is a next best approximation without a VTB.
714 	 * On a host which is running bare metal there should never be any stolen
715 	 * time and on a host which doesn't do any virtualisation TB *should* equal
716 	 * VTB so it makes no difference anyway.
717 	 */
718 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
719 }
720 #endif
721 
722 static int __init get_freq(char *name, int cells, unsigned long *val)
723 {
724 	struct device_node *cpu;
725 	const __be32 *fp;
726 	int found = 0;
727 
728 	/* The cpu node should have timebase and clock frequency properties */
729 	cpu = of_find_node_by_type(NULL, "cpu");
730 
731 	if (cpu) {
732 		fp = of_get_property(cpu, name, NULL);
733 		if (fp) {
734 			found = 1;
735 			*val = of_read_ulong(fp, cells);
736 		}
737 
738 		of_node_put(cpu);
739 	}
740 
741 	return found;
742 }
743 
744 static void start_cpu_decrementer(void)
745 {
746 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
747 	unsigned int tcr;
748 
749 	/* Clear any pending timer interrupts */
750 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
751 
752 	tcr = mfspr(SPRN_TCR);
753 	/*
754 	 * The watchdog may have already been enabled by u-boot. So leave
755 	 * TRC[WP] (Watchdog Period) alone.
756 	 */
757 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
758 	tcr |= TCR_DIE;		/* Enable decrementer */
759 	mtspr(SPRN_TCR, tcr);
760 #endif
761 }
762 
763 void __init generic_calibrate_decr(void)
764 {
765 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
766 
767 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
768 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
769 
770 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
771 				"(not found)\n");
772 	}
773 
774 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
775 
776 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
777 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
778 
779 		printk(KERN_ERR "WARNING: Estimating processor frequency "
780 				"(not found)\n");
781 	}
782 }
783 
784 int update_persistent_clock(struct timespec now)
785 {
786 	struct rtc_time tm;
787 
788 	if (!ppc_md.set_rtc_time)
789 		return -ENODEV;
790 
791 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
792 	tm.tm_year -= 1900;
793 	tm.tm_mon -= 1;
794 
795 	return ppc_md.set_rtc_time(&tm);
796 }
797 
798 static void __read_persistent_clock(struct timespec *ts)
799 {
800 	struct rtc_time tm;
801 	static int first = 1;
802 
803 	ts->tv_nsec = 0;
804 	/* XXX this is a litle fragile but will work okay in the short term */
805 	if (first) {
806 		first = 0;
807 		if (ppc_md.time_init)
808 			timezone_offset = ppc_md.time_init();
809 
810 		/* get_boot_time() isn't guaranteed to be safe to call late */
811 		if (ppc_md.get_boot_time) {
812 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
813 			return;
814 		}
815 	}
816 	if (!ppc_md.get_rtc_time) {
817 		ts->tv_sec = 0;
818 		return;
819 	}
820 	ppc_md.get_rtc_time(&tm);
821 
822 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
823 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
824 }
825 
826 void read_persistent_clock(struct timespec *ts)
827 {
828 	__read_persistent_clock(ts);
829 
830 	/* Sanitize it in case real time clock is set below EPOCH */
831 	if (ts->tv_sec < 0) {
832 		ts->tv_sec = 0;
833 		ts->tv_nsec = 0;
834 	}
835 
836 }
837 
838 /* clocksource code */
839 static notrace u64 rtc_read(struct clocksource *cs)
840 {
841 	return (u64)get_rtc();
842 }
843 
844 static notrace u64 timebase_read(struct clocksource *cs)
845 {
846 	return (u64)get_tb();
847 }
848 
849 
850 void update_vsyscall(struct timekeeper *tk)
851 {
852 	struct timespec xt;
853 	struct clocksource *clock = tk->tkr_mono.clock;
854 	u32 mult = tk->tkr_mono.mult;
855 	u32 shift = tk->tkr_mono.shift;
856 	u64 cycle_last = tk->tkr_mono.cycle_last;
857 	u64 new_tb_to_xs, new_stamp_xsec;
858 	u64 frac_sec;
859 
860 	if (clock != &clocksource_timebase)
861 		return;
862 
863 	xt.tv_sec = tk->xtime_sec;
864 	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
865 
866 	/* Make userspace gettimeofday spin until we're done. */
867 	++vdso_data->tb_update_count;
868 	smp_mb();
869 
870 	/*
871 	 * This computes ((2^20 / 1e9) * mult) >> shift as a
872 	 * 0.64 fixed-point fraction.
873 	 * The computation in the else clause below won't overflow
874 	 * (as long as the timebase frequency is >= 1.049 MHz)
875 	 * but loses precision because we lose the low bits of the constant
876 	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
877 	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
878 	 * over a second.  (Shift values are usually 22, 23 or 24.)
879 	 * For high frequency clocks such as the 512MHz timebase clock
880 	 * on POWER[6789], the mult value is small (e.g. 32768000)
881 	 * and so we can shift the constant by 16 initially
882 	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
883 	 * remaining shifts after the multiplication, which gives a
884 	 * more accurate result (e.g. with mult = 32768000, shift = 24,
885 	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
886 	 */
887 	if (mult <= 62500000 && clock->shift >= 16)
888 		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
889 	else
890 		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
891 
892 	/*
893 	 * Compute the fractional second in units of 2^-32 seconds.
894 	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
895 	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
896 	 * it in units of 2^-32 seconds.
897 	 * We assume shift <= 32 because clocks_calc_mult_shift()
898 	 * generates shift values in the range 0 - 32.
899 	 */
900 	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
901 	do_div(frac_sec, NSEC_PER_SEC);
902 
903 	/*
904 	 * Work out new stamp_xsec value for any legacy users of systemcfg.
905 	 * stamp_xsec is in units of 2^-20 seconds.
906 	 */
907 	new_stamp_xsec = frac_sec >> 12;
908 	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
909 
910 	/*
911 	 * tb_update_count is used to allow the userspace gettimeofday code
912 	 * to assure itself that it sees a consistent view of the tb_to_xs and
913 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
914 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
915 	 * the two values of tb_update_count match and are even then the
916 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
917 	 * loops back and reads them again until this criteria is met.
918 	 */
919 	vdso_data->tb_orig_stamp = cycle_last;
920 	vdso_data->stamp_xsec = new_stamp_xsec;
921 	vdso_data->tb_to_xs = new_tb_to_xs;
922 	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
923 	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
924 	vdso_data->stamp_xtime = xt;
925 	vdso_data->stamp_sec_fraction = frac_sec;
926 	smp_wmb();
927 	++(vdso_data->tb_update_count);
928 }
929 
930 void update_vsyscall_tz(void)
931 {
932 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
933 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
934 }
935 
936 static void __init clocksource_init(void)
937 {
938 	struct clocksource *clock;
939 
940 	if (__USE_RTC())
941 		clock = &clocksource_rtc;
942 	else
943 		clock = &clocksource_timebase;
944 
945 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
946 		printk(KERN_ERR "clocksource: %s is already registered\n",
947 		       clock->name);
948 		return;
949 	}
950 
951 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
952 	       clock->name, clock->mult, clock->shift);
953 }
954 
955 static int decrementer_set_next_event(unsigned long evt,
956 				      struct clock_event_device *dev)
957 {
958 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
959 	set_dec(evt);
960 
961 	/* We may have raced with new irq work */
962 	if (test_irq_work_pending())
963 		set_dec(1);
964 
965 	return 0;
966 }
967 
968 static int decrementer_shutdown(struct clock_event_device *dev)
969 {
970 	decrementer_set_next_event(decrementer_max, dev);
971 	return 0;
972 }
973 
974 /* Interrupt handler for the timer broadcast IPI */
975 void tick_broadcast_ipi_handler(void)
976 {
977 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
978 
979 	*next_tb = get_tb_or_rtc();
980 	__timer_interrupt();
981 }
982 
983 static void register_decrementer_clockevent(int cpu)
984 {
985 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
986 
987 	*dec = decrementer_clockevent;
988 	dec->cpumask = cpumask_of(cpu);
989 
990 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
991 		    dec->name, dec->mult, dec->shift, cpu);
992 
993 	clockevents_register_device(dec);
994 }
995 
996 static void enable_large_decrementer(void)
997 {
998 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
999 		return;
1000 
1001 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1002 		return;
1003 
1004 	/*
1005 	 * If we're running as the hypervisor we need to enable the LD manually
1006 	 * otherwise firmware should have done it for us.
1007 	 */
1008 	if (cpu_has_feature(CPU_FTR_HVMODE))
1009 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1010 }
1011 
1012 static void __init set_decrementer_max(void)
1013 {
1014 	struct device_node *cpu;
1015 	u32 bits = 32;
1016 
1017 	/* Prior to ISAv3 the decrementer is always 32 bit */
1018 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1019 		return;
1020 
1021 	cpu = of_find_node_by_type(NULL, "cpu");
1022 
1023 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1024 		if (bits > 64 || bits < 32) {
1025 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1026 			bits = 32;
1027 		}
1028 
1029 		/* calculate the signed maximum given this many bits */
1030 		decrementer_max = (1ul << (bits - 1)) - 1;
1031 	}
1032 
1033 	of_node_put(cpu);
1034 
1035 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1036 		bits, decrementer_max);
1037 }
1038 
1039 static void __init init_decrementer_clockevent(void)
1040 {
1041 	int cpu = smp_processor_id();
1042 
1043 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1044 
1045 	decrementer_clockevent.max_delta_ns =
1046 		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1047 	decrementer_clockevent.max_delta_ticks = decrementer_max;
1048 	decrementer_clockevent.min_delta_ns =
1049 		clockevent_delta2ns(2, &decrementer_clockevent);
1050 	decrementer_clockevent.min_delta_ticks = 2;
1051 
1052 	register_decrementer_clockevent(cpu);
1053 }
1054 
1055 void secondary_cpu_time_init(void)
1056 {
1057 	/* Enable and test the large decrementer for this cpu */
1058 	enable_large_decrementer();
1059 
1060 	/* Start the decrementer on CPUs that have manual control
1061 	 * such as BookE
1062 	 */
1063 	start_cpu_decrementer();
1064 
1065 	/* FIME: Should make unrelatred change to move snapshot_timebase
1066 	 * call here ! */
1067 	register_decrementer_clockevent(smp_processor_id());
1068 }
1069 
1070 /* This function is only called on the boot processor */
1071 void __init time_init(void)
1072 {
1073 	struct div_result res;
1074 	u64 scale;
1075 	unsigned shift;
1076 
1077 	if (__USE_RTC()) {
1078 		/* 601 processor: dec counts down by 128 every 128ns */
1079 		ppc_tb_freq = 1000000000;
1080 	} else {
1081 		/* Normal PowerPC with timebase register */
1082 		ppc_md.calibrate_decr();
1083 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1084 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1085 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1086 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1087 	}
1088 
1089 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1090 	tb_ticks_per_sec = ppc_tb_freq;
1091 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1092 	calc_cputime_factors();
1093 
1094 	/*
1095 	 * Compute scale factor for sched_clock.
1096 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1097 	 * which is the timebase frequency.
1098 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1099 	 * the 128-bit result as a 64.64 fixed-point number.
1100 	 * We then shift that number right until it is less than 1.0,
1101 	 * giving us the scale factor and shift count to use in
1102 	 * sched_clock().
1103 	 */
1104 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1105 	scale = res.result_low;
1106 	for (shift = 0; res.result_high != 0; ++shift) {
1107 		scale = (scale >> 1) | (res.result_high << 63);
1108 		res.result_high >>= 1;
1109 	}
1110 	tb_to_ns_scale = scale;
1111 	tb_to_ns_shift = shift;
1112 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1113 	boot_tb = get_tb_or_rtc();
1114 
1115 	/* If platform provided a timezone (pmac), we correct the time */
1116 	if (timezone_offset) {
1117 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1118 		sys_tz.tz_dsttime = 0;
1119 	}
1120 
1121 	vdso_data->tb_update_count = 0;
1122 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1123 
1124 	/* initialise and enable the large decrementer (if we have one) */
1125 	set_decrementer_max();
1126 	enable_large_decrementer();
1127 
1128 	/* Start the decrementer on CPUs that have manual control
1129 	 * such as BookE
1130 	 */
1131 	start_cpu_decrementer();
1132 
1133 	/* Register the clocksource */
1134 	clocksource_init();
1135 
1136 	init_decrementer_clockevent();
1137 	tick_setup_hrtimer_broadcast();
1138 
1139 #ifdef CONFIG_COMMON_CLK
1140 	of_clk_init(NULL);
1141 #endif
1142 }
1143 
1144 
1145 #define FEBRUARY	2
1146 #define	STARTOFTIME	1970
1147 #define SECDAY		86400L
1148 #define SECYR		(SECDAY * 365)
1149 #define	leapyear(year)		((year) % 4 == 0 && \
1150 				 ((year) % 100 != 0 || (year) % 400 == 0))
1151 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1152 #define	days_in_month(a) 	(month_days[(a) - 1])
1153 
1154 static int month_days[12] = {
1155 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1156 };
1157 
1158 void to_tm(int tim, struct rtc_time * tm)
1159 {
1160 	register int    i;
1161 	register long   hms, day;
1162 
1163 	day = tim / SECDAY;
1164 	hms = tim % SECDAY;
1165 
1166 	/* Hours, minutes, seconds are easy */
1167 	tm->tm_hour = hms / 3600;
1168 	tm->tm_min = (hms % 3600) / 60;
1169 	tm->tm_sec = (hms % 3600) % 60;
1170 
1171 	/* Number of years in days */
1172 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173 		day -= days_in_year(i);
1174 	tm->tm_year = i;
1175 
1176 	/* Number of months in days left */
1177 	if (leapyear(tm->tm_year))
1178 		days_in_month(FEBRUARY) = 29;
1179 	for (i = 1; day >= days_in_month(i); i++)
1180 		day -= days_in_month(i);
1181 	days_in_month(FEBRUARY) = 28;
1182 	tm->tm_mon = i;
1183 
1184 	/* Days are what is left over (+1) from all that. */
1185 	tm->tm_mday = day + 1;
1186 
1187 	/*
1188 	 * No-one uses the day of the week.
1189 	 */
1190 	tm->tm_wday = -1;
1191 }
1192 EXPORT_SYMBOL(to_tm);
1193 
1194 /*
1195  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1196  * result.
1197  */
1198 void div128_by_32(u64 dividend_high, u64 dividend_low,
1199 		  unsigned divisor, struct div_result *dr)
1200 {
1201 	unsigned long a, b, c, d;
1202 	unsigned long w, x, y, z;
1203 	u64 ra, rb, rc;
1204 
1205 	a = dividend_high >> 32;
1206 	b = dividend_high & 0xffffffff;
1207 	c = dividend_low >> 32;
1208 	d = dividend_low & 0xffffffff;
1209 
1210 	w = a / divisor;
1211 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1212 
1213 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1214 	x = ra;
1215 
1216 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1217 	y = rb;
1218 
1219 	do_div(rc, divisor);
1220 	z = rc;
1221 
1222 	dr->result_high = ((u64)w << 32) + x;
1223 	dr->result_low  = ((u64)y << 32) + z;
1224 
1225 }
1226 
1227 /* We don't need to calibrate delay, we use the CPU timebase for that */
1228 void calibrate_delay(void)
1229 {
1230 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1231 	 * as the number of __delay(1) in a jiffy, so make it so
1232 	 */
1233 	loops_per_jiffy = tb_ticks_per_jiffy;
1234 }
1235 
1236 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1237 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1238 {
1239 	ppc_md.get_rtc_time(tm);
1240 	return 0;
1241 }
1242 
1243 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1244 {
1245 	if (!ppc_md.set_rtc_time)
1246 		return -EOPNOTSUPP;
1247 
1248 	if (ppc_md.set_rtc_time(tm) < 0)
1249 		return -EOPNOTSUPP;
1250 
1251 	return 0;
1252 }
1253 
1254 static const struct rtc_class_ops rtc_generic_ops = {
1255 	.read_time = rtc_generic_get_time,
1256 	.set_time = rtc_generic_set_time,
1257 };
1258 
1259 static int __init rtc_init(void)
1260 {
1261 	struct platform_device *pdev;
1262 
1263 	if (!ppc_md.get_rtc_time)
1264 		return -ENODEV;
1265 
1266 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1267 					     &rtc_generic_ops,
1268 					     sizeof(rtc_generic_ops));
1269 
1270 	return PTR_ERR_OR_ZERO(pdev);
1271 }
1272 
1273 device_initcall(rtc_init);
1274 #endif
1275