xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision e8e0929d)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
76 
77 /* powerpc clocksource/clockevent code */
78 
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
81 
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 	.name         = "rtc",
85 	.rating       = 400,
86 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
87 	.mask         = CLOCKSOURCE_MASK(64),
88 	.shift        = 22,
89 	.mult         = 0,	/* To be filled in */
90 	.read         = rtc_read,
91 };
92 
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 	.name         = "timebase",
96 	.rating       = 400,
97 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
98 	.mask         = CLOCKSOURCE_MASK(64),
99 	.shift        = 22,
100 	.mult         = 0,	/* To be filled in */
101 	.read         = timebase_read,
102 };
103 
104 #define DECREMENTER_MAX	0x7fffffff
105 
106 static int decrementer_set_next_event(unsigned long evt,
107 				      struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 				 struct clock_event_device *dev);
110 
111 static struct clock_event_device decrementer_clockevent = {
112        .name           = "decrementer",
113        .rating         = 200,
114        .shift          = 0,	/* To be filled in */
115        .mult           = 0,	/* To be filled in */
116        .irq            = 0,
117        .set_next_event = decrementer_set_next_event,
118        .set_mode       = decrementer_set_mode,
119        .features       = CLOCK_EVT_FEAT_ONESHOT,
120 };
121 
122 struct decrementer_clock {
123 	struct clock_event_device event;
124 	u64 next_tb;
125 };
126 
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128 
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
132 
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
136 
137 #define XSEC_PER_SEC (1024*1024)
138 
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
144 #endif
145 
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
153 
154 #define TICKLEN_SCALE	NTP_SCALE_SHIFT
155 static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs;	/* 0.64 fraction */
157 
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
161 
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
164 
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
168 
169 extern struct timezone sys_tz;
170 static long timezone_offset;
171 
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
175 
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
178 
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 /*
181  * Factors for converting from cputime_t (timebase ticks) to
182  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183  * These are all stored as 0.64 fixed-point binary fractions.
184  */
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195 
196 cputime_t cputime_one_jiffy;
197 
198 static void calc_cputime_factors(void)
199 {
200 	struct div_result res;
201 
202 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
203 	__cputime_jiffies_factor = res.result_low;
204 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
205 	__cputime_msec_factor = res.result_low;
206 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
207 	__cputime_sec_factor = res.result_low;
208 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
209 	__cputime_clockt_factor = res.result_low;
210 }
211 
212 /*
213  * Read the PURR on systems that have it, otherwise the timebase.
214  */
215 static u64 read_purr(void)
216 {
217 	if (cpu_has_feature(CPU_FTR_PURR))
218 		return mfspr(SPRN_PURR);
219 	return mftb();
220 }
221 
222 /*
223  * Read the SPURR on systems that have it, otherwise the purr
224  */
225 static u64 read_spurr(u64 purr)
226 {
227 	/*
228 	 * cpus without PURR won't have a SPURR
229 	 * We already know the former when we use this, so tell gcc
230 	 */
231 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
232 		return mfspr(SPRN_SPURR);
233 	return purr;
234 }
235 
236 /*
237  * Account time for a transition between system, hard irq
238  * or soft irq state.
239  */
240 void account_system_vtime(struct task_struct *tsk)
241 {
242 	u64 now, nowscaled, delta, deltascaled, sys_time;
243 	unsigned long flags;
244 
245 	local_irq_save(flags);
246 	now = read_purr();
247 	nowscaled = read_spurr(now);
248 	delta = now - get_paca()->startpurr;
249 	deltascaled = nowscaled - get_paca()->startspurr;
250 	get_paca()->startpurr = now;
251 	get_paca()->startspurr = nowscaled;
252 	if (!in_interrupt()) {
253 		/* deltascaled includes both user and system time.
254 		 * Hence scale it based on the purr ratio to estimate
255 		 * the system time */
256 		sys_time = get_paca()->system_time;
257 		if (get_paca()->user_time)
258 			deltascaled = deltascaled * sys_time /
259 			     (sys_time + get_paca()->user_time);
260 		delta += sys_time;
261 		get_paca()->system_time = 0;
262 	}
263 	if (in_irq() || idle_task(smp_processor_id()) != tsk)
264 		account_system_time(tsk, 0, delta, deltascaled);
265 	else
266 		account_idle_time(delta);
267 	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
268 	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
269 	local_irq_restore(flags);
270 }
271 
272 /*
273  * Transfer the user and system times accumulated in the paca
274  * by the exception entry and exit code to the generic process
275  * user and system time records.
276  * Must be called with interrupts disabled.
277  */
278 void account_process_tick(struct task_struct *tsk, int user_tick)
279 {
280 	cputime_t utime, utimescaled;
281 
282 	utime = get_paca()->user_time;
283 	get_paca()->user_time = 0;
284 	utimescaled = cputime_to_scaled(utime);
285 	account_user_time(tsk, utime, utimescaled);
286 }
287 
288 /*
289  * Stuff for accounting stolen time.
290  */
291 struct cpu_purr_data {
292 	int	initialized;			/* thread is running */
293 	u64	tb;			/* last TB value read */
294 	u64	purr;			/* last PURR value read */
295 	u64	spurr;			/* last SPURR value read */
296 };
297 
298 /*
299  * Each entry in the cpu_purr_data array is manipulated only by its
300  * "owner" cpu -- usually in the timer interrupt but also occasionally
301  * in process context for cpu online.  As long as cpus do not touch
302  * each others' cpu_purr_data, disabling local interrupts is
303  * sufficient to serialize accesses.
304  */
305 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
306 
307 static void snapshot_tb_and_purr(void *data)
308 {
309 	unsigned long flags;
310 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
311 
312 	local_irq_save(flags);
313 	p->tb = get_tb_or_rtc();
314 	p->purr = mfspr(SPRN_PURR);
315 	wmb();
316 	p->initialized = 1;
317 	local_irq_restore(flags);
318 }
319 
320 /*
321  * Called during boot when all cpus have come up.
322  */
323 void snapshot_timebases(void)
324 {
325 	if (!cpu_has_feature(CPU_FTR_PURR))
326 		return;
327 	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
328 }
329 
330 /*
331  * Must be called with interrupts disabled.
332  */
333 void calculate_steal_time(void)
334 {
335 	u64 tb, purr;
336 	s64 stolen;
337 	struct cpu_purr_data *pme;
338 
339 	pme = &__get_cpu_var(cpu_purr_data);
340 	if (!pme->initialized)
341 		return;		/* !CPU_FTR_PURR or early in early boot */
342 	tb = mftb();
343 	purr = mfspr(SPRN_PURR);
344 	stolen = (tb - pme->tb) - (purr - pme->purr);
345 	if (stolen > 0) {
346 		if (idle_task(smp_processor_id()) != current)
347 			account_steal_time(stolen);
348 		else
349 			account_idle_time(stolen);
350 	}
351 	pme->tb = tb;
352 	pme->purr = purr;
353 }
354 
355 #ifdef CONFIG_PPC_SPLPAR
356 /*
357  * Must be called before the cpu is added to the online map when
358  * a cpu is being brought up at runtime.
359  */
360 static void snapshot_purr(void)
361 {
362 	struct cpu_purr_data *pme;
363 	unsigned long flags;
364 
365 	if (!cpu_has_feature(CPU_FTR_PURR))
366 		return;
367 	local_irq_save(flags);
368 	pme = &__get_cpu_var(cpu_purr_data);
369 	pme->tb = mftb();
370 	pme->purr = mfspr(SPRN_PURR);
371 	pme->initialized = 1;
372 	local_irq_restore(flags);
373 }
374 
375 #endif /* CONFIG_PPC_SPLPAR */
376 
377 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
378 #define calc_cputime_factors()
379 #define calculate_steal_time()		do { } while (0)
380 #endif
381 
382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383 #define snapshot_purr()			do { } while (0)
384 #endif
385 
386 /*
387  * Called when a cpu comes up after the system has finished booting,
388  * i.e. as a result of a hotplug cpu action.
389  */
390 void snapshot_timebase(void)
391 {
392 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 	snapshot_purr();
394 }
395 
396 void __delay(unsigned long loops)
397 {
398 	unsigned long start;
399 	int diff;
400 
401 	if (__USE_RTC()) {
402 		start = get_rtcl();
403 		do {
404 			/* the RTCL register wraps at 1000000000 */
405 			diff = get_rtcl() - start;
406 			if (diff < 0)
407 				diff += 1000000000;
408 		} while (diff < loops);
409 	} else {
410 		start = get_tbl();
411 		while (get_tbl() - start < loops)
412 			HMT_low();
413 		HMT_medium();
414 	}
415 }
416 EXPORT_SYMBOL(__delay);
417 
418 void udelay(unsigned long usecs)
419 {
420 	__delay(tb_ticks_per_usec * usecs);
421 }
422 EXPORT_SYMBOL(udelay);
423 
424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
425 			       u64 new_tb_to_xs)
426 {
427 	/*
428 	 * tb_update_count is used to allow the userspace gettimeofday code
429 	 * to assure itself that it sees a consistent view of the tb_to_xs and
430 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
431 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
432 	 * the two values of tb_update_count match and are even then the
433 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
434 	 * loops back and reads them again until this criteria is met.
435 	 * We expect the caller to have done the first increment of
436 	 * vdso_data->tb_update_count already.
437 	 */
438 	vdso_data->tb_orig_stamp = new_tb_stamp;
439 	vdso_data->stamp_xsec = new_stamp_xsec;
440 	vdso_data->tb_to_xs = new_tb_to_xs;
441 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
442 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
443 	vdso_data->stamp_xtime = xtime;
444 	smp_wmb();
445 	++(vdso_data->tb_update_count);
446 }
447 
448 #ifdef CONFIG_SMP
449 unsigned long profile_pc(struct pt_regs *regs)
450 {
451 	unsigned long pc = instruction_pointer(regs);
452 
453 	if (in_lock_functions(pc))
454 		return regs->link;
455 
456 	return pc;
457 }
458 EXPORT_SYMBOL(profile_pc);
459 #endif
460 
461 #ifdef CONFIG_PPC_ISERIES
462 
463 /*
464  * This function recalibrates the timebase based on the 49-bit time-of-day
465  * value in the Titan chip.  The Titan is much more accurate than the value
466  * returned by the service processor for the timebase frequency.
467  */
468 
469 static int __init iSeries_tb_recal(void)
470 {
471 	struct div_result divres;
472 	unsigned long titan, tb;
473 
474 	/* Make sure we only run on iSeries */
475 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
476 		return -ENODEV;
477 
478 	tb = get_tb();
479 	titan = HvCallXm_loadTod();
480 	if ( iSeries_recal_titan ) {
481 		unsigned long tb_ticks = tb - iSeries_recal_tb;
482 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
483 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
484 		unsigned long new_tb_ticks_per_jiffy =
485 			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
486 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
487 		char sign = '+';
488 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
489 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
490 
491 		if ( tick_diff < 0 ) {
492 			tick_diff = -tick_diff;
493 			sign = '-';
494 		}
495 		if ( tick_diff ) {
496 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
497 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
498 						new_tb_ticks_per_jiffy, sign, tick_diff );
499 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
500 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
501 				calc_cputime_factors();
502 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
503 				tb_to_xs = divres.result_low;
504 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
505 				vdso_data->tb_to_xs = tb_to_xs;
506 				setup_cputime_one_jiffy();
507 			}
508 			else {
509 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
510 					"                   new tb_ticks_per_jiffy = %lu\n"
511 					"                   old tb_ticks_per_jiffy = %lu\n",
512 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
513 			}
514 		}
515 	}
516 	iSeries_recal_titan = titan;
517 	iSeries_recal_tb = tb;
518 
519 	/* Called here as now we know accurate values for the timebase */
520 	clocksource_init();
521 	return 0;
522 }
523 late_initcall(iSeries_tb_recal);
524 
525 /* Called from platform early init */
526 void __init iSeries_time_init_early(void)
527 {
528 	iSeries_recal_tb = get_tb();
529 	iSeries_recal_titan = HvCallXm_loadTod();
530 }
531 #endif /* CONFIG_PPC_ISERIES */
532 
533 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
534 DEFINE_PER_CPU(u8, perf_event_pending);
535 
536 void set_perf_event_pending(void)
537 {
538 	get_cpu_var(perf_event_pending) = 1;
539 	set_dec(1);
540 	put_cpu_var(perf_event_pending);
541 }
542 
543 #define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
544 #define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
545 
546 #else  /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
547 
548 #define test_perf_event_pending()	0
549 #define clear_perf_event_pending()
550 
551 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
552 
553 /*
554  * For iSeries shared processors, we have to let the hypervisor
555  * set the hardware decrementer.  We set a virtual decrementer
556  * in the lppaca and call the hypervisor if the virtual
557  * decrementer is less than the current value in the hardware
558  * decrementer. (almost always the new decrementer value will
559  * be greater than the current hardware decementer so the hypervisor
560  * call will not be needed)
561  */
562 
563 /*
564  * timer_interrupt - gets called when the decrementer overflows,
565  * with interrupts disabled.
566  */
567 void timer_interrupt(struct pt_regs * regs)
568 {
569 	struct pt_regs *old_regs;
570 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
571 	struct clock_event_device *evt = &decrementer->event;
572 	u64 now;
573 
574 	/* Ensure a positive value is written to the decrementer, or else
575 	 * some CPUs will continuue to take decrementer exceptions */
576 	set_dec(DECREMENTER_MAX);
577 
578 #ifdef CONFIG_PPC32
579 	if (test_perf_event_pending()) {
580 		clear_perf_event_pending();
581 		perf_event_do_pending();
582 	}
583 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
584 		do_IRQ(regs);
585 #endif
586 
587 	now = get_tb_or_rtc();
588 	if (now < decrementer->next_tb) {
589 		/* not time for this event yet */
590 		now = decrementer->next_tb - now;
591 		if (now <= DECREMENTER_MAX)
592 			set_dec((int)now);
593 		return;
594 	}
595 	old_regs = set_irq_regs(regs);
596 	irq_enter();
597 
598 	calculate_steal_time();
599 
600 #ifdef CONFIG_PPC_ISERIES
601 	if (firmware_has_feature(FW_FEATURE_ISERIES))
602 		get_lppaca()->int_dword.fields.decr_int = 0;
603 #endif
604 
605 	if (evt->event_handler)
606 		evt->event_handler(evt);
607 
608 #ifdef CONFIG_PPC_ISERIES
609 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
610 		process_hvlpevents();
611 #endif
612 
613 #ifdef CONFIG_PPC64
614 	/* collect purr register values often, for accurate calculations */
615 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
616 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
617 		cu->current_tb = mfspr(SPRN_PURR);
618 	}
619 #endif
620 
621 	irq_exit();
622 	set_irq_regs(old_regs);
623 }
624 
625 void wakeup_decrementer(void)
626 {
627 	unsigned long ticks;
628 
629 	/*
630 	 * The timebase gets saved on sleep and restored on wakeup,
631 	 * so all we need to do is to reset the decrementer.
632 	 */
633 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
634 	if (ticks < tb_ticks_per_jiffy)
635 		ticks = tb_ticks_per_jiffy - ticks;
636 	else
637 		ticks = 1;
638 	set_dec(ticks);
639 }
640 
641 #ifdef CONFIG_SUSPEND
642 void generic_suspend_disable_irqs(void)
643 {
644 	preempt_disable();
645 
646 	/* Disable the decrementer, so that it doesn't interfere
647 	 * with suspending.
648 	 */
649 
650 	set_dec(0x7fffffff);
651 	local_irq_disable();
652 	set_dec(0x7fffffff);
653 }
654 
655 void generic_suspend_enable_irqs(void)
656 {
657 	wakeup_decrementer();
658 
659 	local_irq_enable();
660 	preempt_enable();
661 }
662 
663 /* Overrides the weak version in kernel/power/main.c */
664 void arch_suspend_disable_irqs(void)
665 {
666 	if (ppc_md.suspend_disable_irqs)
667 		ppc_md.suspend_disable_irqs();
668 	generic_suspend_disable_irqs();
669 }
670 
671 /* Overrides the weak version in kernel/power/main.c */
672 void arch_suspend_enable_irqs(void)
673 {
674 	generic_suspend_enable_irqs();
675 	if (ppc_md.suspend_enable_irqs)
676 		ppc_md.suspend_enable_irqs();
677 }
678 #endif
679 
680 #ifdef CONFIG_SMP
681 void __init smp_space_timers(unsigned int max_cpus)
682 {
683 	int i;
684 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
685 
686 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
687 	previous_tb -= tb_ticks_per_jiffy;
688 
689 	for_each_possible_cpu(i) {
690 		if (i == boot_cpuid)
691 			continue;
692 		per_cpu(last_jiffy, i) = previous_tb;
693 	}
694 }
695 #endif
696 
697 /*
698  * Scheduler clock - returns current time in nanosec units.
699  *
700  * Note: mulhdu(a, b) (multiply high double unsigned) returns
701  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
702  * are 64-bit unsigned numbers.
703  */
704 unsigned long long sched_clock(void)
705 {
706 	if (__USE_RTC())
707 		return get_rtc();
708 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
709 }
710 
711 static int __init get_freq(char *name, int cells, unsigned long *val)
712 {
713 	struct device_node *cpu;
714 	const unsigned int *fp;
715 	int found = 0;
716 
717 	/* The cpu node should have timebase and clock frequency properties */
718 	cpu = of_find_node_by_type(NULL, "cpu");
719 
720 	if (cpu) {
721 		fp = of_get_property(cpu, name, NULL);
722 		if (fp) {
723 			found = 1;
724 			*val = of_read_ulong(fp, cells);
725 		}
726 
727 		of_node_put(cpu);
728 	}
729 
730 	return found;
731 }
732 
733 /* should become __cpuinit when secondary_cpu_time_init also is */
734 void start_cpu_decrementer(void)
735 {
736 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
737 	/* Clear any pending timer interrupts */
738 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
739 
740 	/* Enable decrementer interrupt */
741 	mtspr(SPRN_TCR, TCR_DIE);
742 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
743 }
744 
745 void __init generic_calibrate_decr(void)
746 {
747 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
748 
749 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
750 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
751 
752 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
753 				"(not found)\n");
754 	}
755 
756 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
757 
758 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
759 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
760 
761 		printk(KERN_ERR "WARNING: Estimating processor frequency "
762 				"(not found)\n");
763 	}
764 }
765 
766 int update_persistent_clock(struct timespec now)
767 {
768 	struct rtc_time tm;
769 
770 	if (!ppc_md.set_rtc_time)
771 		return 0;
772 
773 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
774 	tm.tm_year -= 1900;
775 	tm.tm_mon -= 1;
776 
777 	return ppc_md.set_rtc_time(&tm);
778 }
779 
780 void read_persistent_clock(struct timespec *ts)
781 {
782 	struct rtc_time tm;
783 	static int first = 1;
784 
785 	ts->tv_nsec = 0;
786 	/* XXX this is a litle fragile but will work okay in the short term */
787 	if (first) {
788 		first = 0;
789 		if (ppc_md.time_init)
790 			timezone_offset = ppc_md.time_init();
791 
792 		/* get_boot_time() isn't guaranteed to be safe to call late */
793 		if (ppc_md.get_boot_time) {
794 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
795 			return;
796 		}
797 	}
798 	if (!ppc_md.get_rtc_time) {
799 		ts->tv_sec = 0;
800 		return;
801 	}
802 	ppc_md.get_rtc_time(&tm);
803 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
804 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
805 }
806 
807 /* clocksource code */
808 static cycle_t rtc_read(struct clocksource *cs)
809 {
810 	return (cycle_t)get_rtc();
811 }
812 
813 static cycle_t timebase_read(struct clocksource *cs)
814 {
815 	return (cycle_t)get_tb();
816 }
817 
818 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
819 {
820 	u64 t2x, stamp_xsec;
821 
822 	if (clock != &clocksource_timebase)
823 		return;
824 
825 	/* Make userspace gettimeofday spin until we're done. */
826 	++vdso_data->tb_update_count;
827 	smp_mb();
828 
829 	/* XXX this assumes clock->shift == 22 */
830 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
831 	t2x = (u64) clock->mult * 4611686018ULL;
832 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
833 	do_div(stamp_xsec, 1000000000);
834 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
835 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
836 }
837 
838 void update_vsyscall_tz(void)
839 {
840 	/* Make userspace gettimeofday spin until we're done. */
841 	++vdso_data->tb_update_count;
842 	smp_mb();
843 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
844 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
845 	smp_mb();
846 	++vdso_data->tb_update_count;
847 }
848 
849 static void __init clocksource_init(void)
850 {
851 	struct clocksource *clock;
852 
853 	if (__USE_RTC())
854 		clock = &clocksource_rtc;
855 	else
856 		clock = &clocksource_timebase;
857 
858 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
859 
860 	if (clocksource_register(clock)) {
861 		printk(KERN_ERR "clocksource: %s is already registered\n",
862 		       clock->name);
863 		return;
864 	}
865 
866 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
867 	       clock->name, clock->mult, clock->shift);
868 }
869 
870 static int decrementer_set_next_event(unsigned long evt,
871 				      struct clock_event_device *dev)
872 {
873 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
874 	set_dec(evt);
875 	return 0;
876 }
877 
878 static void decrementer_set_mode(enum clock_event_mode mode,
879 				 struct clock_event_device *dev)
880 {
881 	if (mode != CLOCK_EVT_MODE_ONESHOT)
882 		decrementer_set_next_event(DECREMENTER_MAX, dev);
883 }
884 
885 static void __init setup_clockevent_multiplier(unsigned long hz)
886 {
887 	u64 mult, shift = 32;
888 
889 	while (1) {
890 		mult = div_sc(hz, NSEC_PER_SEC, shift);
891 		if (mult && (mult >> 32UL) == 0UL)
892 			break;
893 
894 		shift--;
895 	}
896 
897 	decrementer_clockevent.shift = shift;
898 	decrementer_clockevent.mult = mult;
899 }
900 
901 static void register_decrementer_clockevent(int cpu)
902 {
903 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
904 
905 	*dec = decrementer_clockevent;
906 	dec->cpumask = cpumask_of(cpu);
907 
908 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
909 	       dec->name, dec->mult, dec->shift, cpu);
910 
911 	clockevents_register_device(dec);
912 }
913 
914 static void __init init_decrementer_clockevent(void)
915 {
916 	int cpu = smp_processor_id();
917 
918 	setup_clockevent_multiplier(ppc_tb_freq);
919 	decrementer_clockevent.max_delta_ns =
920 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
921 	decrementer_clockevent.min_delta_ns =
922 		clockevent_delta2ns(2, &decrementer_clockevent);
923 
924 	register_decrementer_clockevent(cpu);
925 }
926 
927 void secondary_cpu_time_init(void)
928 {
929 	/* Start the decrementer on CPUs that have manual control
930 	 * such as BookE
931 	 */
932 	start_cpu_decrementer();
933 
934 	/* FIME: Should make unrelatred change to move snapshot_timebase
935 	 * call here ! */
936 	register_decrementer_clockevent(smp_processor_id());
937 }
938 
939 /* This function is only called on the boot processor */
940 void __init time_init(void)
941 {
942 	unsigned long flags;
943 	struct div_result res;
944 	u64 scale, x;
945 	unsigned shift;
946 
947 	if (__USE_RTC()) {
948 		/* 601 processor: dec counts down by 128 every 128ns */
949 		ppc_tb_freq = 1000000000;
950 		tb_last_jiffy = get_rtcl();
951 	} else {
952 		/* Normal PowerPC with timebase register */
953 		ppc_md.calibrate_decr();
954 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
955 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
956 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
957 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
958 		tb_last_jiffy = get_tb();
959 	}
960 
961 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
962 	tb_ticks_per_sec = ppc_tb_freq;
963 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
964 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
965 	calc_cputime_factors();
966 	setup_cputime_one_jiffy();
967 
968 	/*
969 	 * Calculate the length of each tick in ns.  It will not be
970 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
971 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
972 	 * rounded up.
973 	 */
974 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
975 	do_div(x, ppc_tb_freq);
976 	tick_nsec = x;
977 	last_tick_len = x << TICKLEN_SCALE;
978 
979 	/*
980 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
981 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
982 	 * It is computed as:
983 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
984 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
985 	 * which turns out to be N = 51 - SHIFT_HZ.
986 	 * This gives the result as a 0.64 fixed-point fraction.
987 	 * That value is reduced by an offset amounting to 1 xsec per
988 	 * 2^31 timebase ticks to avoid problems with time going backwards
989 	 * by 1 xsec when we do timer_recalc_offset due to losing the
990 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
991 	 * since there are 2^20 xsec in a second.
992 	 */
993 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
994 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
995 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
996 	ticklen_to_xs = res.result_low;
997 
998 	/* Compute tb_to_xs from tick_nsec */
999 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1000 
1001 	/*
1002 	 * Compute scale factor for sched_clock.
1003 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1004 	 * which is the timebase frequency.
1005 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1006 	 * the 128-bit result as a 64.64 fixed-point number.
1007 	 * We then shift that number right until it is less than 1.0,
1008 	 * giving us the scale factor and shift count to use in
1009 	 * sched_clock().
1010 	 */
1011 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1012 	scale = res.result_low;
1013 	for (shift = 0; res.result_high != 0; ++shift) {
1014 		scale = (scale >> 1) | (res.result_high << 63);
1015 		res.result_high >>= 1;
1016 	}
1017 	tb_to_ns_scale = scale;
1018 	tb_to_ns_shift = shift;
1019 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1020 	boot_tb = get_tb_or_rtc();
1021 
1022 	write_seqlock_irqsave(&xtime_lock, flags);
1023 
1024 	/* If platform provided a timezone (pmac), we correct the time */
1025         if (timezone_offset) {
1026 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1027 		sys_tz.tz_dsttime = 0;
1028         }
1029 
1030 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1031 	vdso_data->tb_update_count = 0;
1032 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1033 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1034 	vdso_data->tb_to_xs = tb_to_xs;
1035 
1036 	write_sequnlock_irqrestore(&xtime_lock, flags);
1037 
1038 	/* Start the decrementer on CPUs that have manual control
1039 	 * such as BookE
1040 	 */
1041 	start_cpu_decrementer();
1042 
1043 	/* Register the clocksource, if we're not running on iSeries */
1044 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
1045 		clocksource_init();
1046 
1047 	init_decrementer_clockevent();
1048 }
1049 
1050 
1051 #define FEBRUARY	2
1052 #define	STARTOFTIME	1970
1053 #define SECDAY		86400L
1054 #define SECYR		(SECDAY * 365)
1055 #define	leapyear(year)		((year) % 4 == 0 && \
1056 				 ((year) % 100 != 0 || (year) % 400 == 0))
1057 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1058 #define	days_in_month(a) 	(month_days[(a) - 1])
1059 
1060 static int month_days[12] = {
1061 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1062 };
1063 
1064 /*
1065  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1066  */
1067 void GregorianDay(struct rtc_time * tm)
1068 {
1069 	int leapsToDate;
1070 	int lastYear;
1071 	int day;
1072 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1073 
1074 	lastYear = tm->tm_year - 1;
1075 
1076 	/*
1077 	 * Number of leap corrections to apply up to end of last year
1078 	 */
1079 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1080 
1081 	/*
1082 	 * This year is a leap year if it is divisible by 4 except when it is
1083 	 * divisible by 100 unless it is divisible by 400
1084 	 *
1085 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1086 	 */
1087 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1088 
1089 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1090 		   tm->tm_mday;
1091 
1092 	tm->tm_wday = day % 7;
1093 }
1094 
1095 void to_tm(int tim, struct rtc_time * tm)
1096 {
1097 	register int    i;
1098 	register long   hms, day;
1099 
1100 	day = tim / SECDAY;
1101 	hms = tim % SECDAY;
1102 
1103 	/* Hours, minutes, seconds are easy */
1104 	tm->tm_hour = hms / 3600;
1105 	tm->tm_min = (hms % 3600) / 60;
1106 	tm->tm_sec = (hms % 3600) % 60;
1107 
1108 	/* Number of years in days */
1109 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1110 		day -= days_in_year(i);
1111 	tm->tm_year = i;
1112 
1113 	/* Number of months in days left */
1114 	if (leapyear(tm->tm_year))
1115 		days_in_month(FEBRUARY) = 29;
1116 	for (i = 1; day >= days_in_month(i); i++)
1117 		day -= days_in_month(i);
1118 	days_in_month(FEBRUARY) = 28;
1119 	tm->tm_mon = i;
1120 
1121 	/* Days are what is left over (+1) from all that. */
1122 	tm->tm_mday = day + 1;
1123 
1124 	/*
1125 	 * Determine the day of week
1126 	 */
1127 	GregorianDay(tm);
1128 }
1129 
1130 /* Auxiliary function to compute scaling factors */
1131 /* Actually the choice of a timebase running at 1/4 the of the bus
1132  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1133  * It makes this computation very precise (27-28 bits typically) which
1134  * is optimistic considering the stability of most processor clock
1135  * oscillators and the precision with which the timebase frequency
1136  * is measured but does not harm.
1137  */
1138 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1139 {
1140         unsigned mlt=0, tmp, err;
1141         /* No concern for performance, it's done once: use a stupid
1142          * but safe and compact method to find the multiplier.
1143          */
1144 
1145         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1146                 if (mulhwu(inscale, mlt|tmp) < outscale)
1147 			mlt |= tmp;
1148         }
1149 
1150         /* We might still be off by 1 for the best approximation.
1151          * A side effect of this is that if outscale is too large
1152          * the returned value will be zero.
1153          * Many corner cases have been checked and seem to work,
1154          * some might have been forgotten in the test however.
1155          */
1156 
1157         err = inscale * (mlt+1);
1158         if (err <= inscale/2)
1159 		mlt++;
1160         return mlt;
1161 }
1162 
1163 /*
1164  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1165  * result.
1166  */
1167 void div128_by_32(u64 dividend_high, u64 dividend_low,
1168 		  unsigned divisor, struct div_result *dr)
1169 {
1170 	unsigned long a, b, c, d;
1171 	unsigned long w, x, y, z;
1172 	u64 ra, rb, rc;
1173 
1174 	a = dividend_high >> 32;
1175 	b = dividend_high & 0xffffffff;
1176 	c = dividend_low >> 32;
1177 	d = dividend_low & 0xffffffff;
1178 
1179 	w = a / divisor;
1180 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1181 
1182 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1183 	x = ra;
1184 
1185 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1186 	y = rb;
1187 
1188 	do_div(rc, divisor);
1189 	z = rc;
1190 
1191 	dr->result_high = ((u64)w << 32) + x;
1192 	dr->result_low  = ((u64)y << 32) + z;
1193 
1194 }
1195 
1196 /* We don't need to calibrate delay, we use the CPU timebase for that */
1197 void calibrate_delay(void)
1198 {
1199 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1200 	 * as the number of __delay(1) in a jiffy, so make it so
1201 	 */
1202 	loops_per_jiffy = tb_ticks_per_jiffy;
1203 }
1204 
1205 static int __init rtc_init(void)
1206 {
1207 	struct platform_device *pdev;
1208 
1209 	if (!ppc_md.get_rtc_time)
1210 		return -ENODEV;
1211 
1212 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1213 	if (IS_ERR(pdev))
1214 		return PTR_ERR(pdev);
1215 
1216 	return 0;
1217 }
1218 
1219 module_init(rtc_init);
1220