1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 #include <linux/delay.h> 56 #include <linux/perf_event.h> 57 58 #include <asm/io.h> 59 #include <asm/processor.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <asm/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/cputime.h> 72 #ifdef CONFIG_PPC_ISERIES 73 #include <asm/iseries/it_lp_queue.h> 74 #include <asm/iseries/hv_call_xm.h> 75 #endif 76 77 /* powerpc clocksource/clockevent code */ 78 79 #include <linux/clockchips.h> 80 #include <linux/clocksource.h> 81 82 static cycle_t rtc_read(struct clocksource *); 83 static struct clocksource clocksource_rtc = { 84 .name = "rtc", 85 .rating = 400, 86 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 87 .mask = CLOCKSOURCE_MASK(64), 88 .shift = 22, 89 .mult = 0, /* To be filled in */ 90 .read = rtc_read, 91 }; 92 93 static cycle_t timebase_read(struct clocksource *); 94 static struct clocksource clocksource_timebase = { 95 .name = "timebase", 96 .rating = 400, 97 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 98 .mask = CLOCKSOURCE_MASK(64), 99 .shift = 22, 100 .mult = 0, /* To be filled in */ 101 .read = timebase_read, 102 }; 103 104 #define DECREMENTER_MAX 0x7fffffff 105 106 static int decrementer_set_next_event(unsigned long evt, 107 struct clock_event_device *dev); 108 static void decrementer_set_mode(enum clock_event_mode mode, 109 struct clock_event_device *dev); 110 111 static struct clock_event_device decrementer_clockevent = { 112 .name = "decrementer", 113 .rating = 200, 114 .shift = 0, /* To be filled in */ 115 .mult = 0, /* To be filled in */ 116 .irq = 0, 117 .set_next_event = decrementer_set_next_event, 118 .set_mode = decrementer_set_mode, 119 .features = CLOCK_EVT_FEAT_ONESHOT, 120 }; 121 122 struct decrementer_clock { 123 struct clock_event_device event; 124 u64 next_tb; 125 }; 126 127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers); 128 129 #ifdef CONFIG_PPC_ISERIES 130 static unsigned long __initdata iSeries_recal_titan; 131 static signed long __initdata iSeries_recal_tb; 132 133 /* Forward declaration is only needed for iSereis compiles */ 134 static void __init clocksource_init(void); 135 #endif 136 137 #define XSEC_PER_SEC (1024*1024) 138 139 #ifdef CONFIG_PPC64 140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 141 #else 142 /* compute ((xsec << 12) * max) >> 32 */ 143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 144 #endif 145 146 unsigned long tb_ticks_per_jiffy; 147 unsigned long tb_ticks_per_usec = 100; /* sane default */ 148 EXPORT_SYMBOL(tb_ticks_per_usec); 149 unsigned long tb_ticks_per_sec; 150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 151 u64 tb_to_xs; 152 unsigned tb_to_us; 153 154 #define TICKLEN_SCALE NTP_SCALE_SHIFT 155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 156 static u64 ticklen_to_xs; /* 0.64 fraction */ 157 158 /* If last_tick_len corresponds to about 1/HZ seconds, then 159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 161 162 DEFINE_SPINLOCK(rtc_lock); 163 EXPORT_SYMBOL_GPL(rtc_lock); 164 165 static u64 tb_to_ns_scale __read_mostly; 166 static unsigned tb_to_ns_shift __read_mostly; 167 static unsigned long boot_tb __read_mostly; 168 169 extern struct timezone sys_tz; 170 static long timezone_offset; 171 172 unsigned long ppc_proc_freq; 173 EXPORT_SYMBOL(ppc_proc_freq); 174 unsigned long ppc_tb_freq; 175 176 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 177 static DEFINE_PER_CPU(u64, last_jiffy); 178 179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 180 /* 181 * Factors for converting from cputime_t (timebase ticks) to 182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 183 * These are all stored as 0.64 fixed-point binary fractions. 184 */ 185 u64 __cputime_jiffies_factor; 186 EXPORT_SYMBOL(__cputime_jiffies_factor); 187 u64 __cputime_msec_factor; 188 EXPORT_SYMBOL(__cputime_msec_factor); 189 u64 __cputime_sec_factor; 190 EXPORT_SYMBOL(__cputime_sec_factor); 191 u64 __cputime_clockt_factor; 192 EXPORT_SYMBOL(__cputime_clockt_factor); 193 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 195 196 cputime_t cputime_one_jiffy; 197 198 static void calc_cputime_factors(void) 199 { 200 struct div_result res; 201 202 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 203 __cputime_jiffies_factor = res.result_low; 204 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 205 __cputime_msec_factor = res.result_low; 206 div128_by_32(1, 0, tb_ticks_per_sec, &res); 207 __cputime_sec_factor = res.result_low; 208 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 209 __cputime_clockt_factor = res.result_low; 210 } 211 212 /* 213 * Read the PURR on systems that have it, otherwise the timebase. 214 */ 215 static u64 read_purr(void) 216 { 217 if (cpu_has_feature(CPU_FTR_PURR)) 218 return mfspr(SPRN_PURR); 219 return mftb(); 220 } 221 222 /* 223 * Read the SPURR on systems that have it, otherwise the purr 224 */ 225 static u64 read_spurr(u64 purr) 226 { 227 /* 228 * cpus without PURR won't have a SPURR 229 * We already know the former when we use this, so tell gcc 230 */ 231 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR)) 232 return mfspr(SPRN_SPURR); 233 return purr; 234 } 235 236 /* 237 * Account time for a transition between system, hard irq 238 * or soft irq state. 239 */ 240 void account_system_vtime(struct task_struct *tsk) 241 { 242 u64 now, nowscaled, delta, deltascaled, sys_time; 243 unsigned long flags; 244 245 local_irq_save(flags); 246 now = read_purr(); 247 nowscaled = read_spurr(now); 248 delta = now - get_paca()->startpurr; 249 deltascaled = nowscaled - get_paca()->startspurr; 250 get_paca()->startpurr = now; 251 get_paca()->startspurr = nowscaled; 252 if (!in_interrupt()) { 253 /* deltascaled includes both user and system time. 254 * Hence scale it based on the purr ratio to estimate 255 * the system time */ 256 sys_time = get_paca()->system_time; 257 if (get_paca()->user_time) 258 deltascaled = deltascaled * sys_time / 259 (sys_time + get_paca()->user_time); 260 delta += sys_time; 261 get_paca()->system_time = 0; 262 } 263 if (in_irq() || idle_task(smp_processor_id()) != tsk) 264 account_system_time(tsk, 0, delta, deltascaled); 265 else 266 account_idle_time(delta); 267 per_cpu(cputime_last_delta, smp_processor_id()) = delta; 268 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled; 269 local_irq_restore(flags); 270 } 271 272 /* 273 * Transfer the user and system times accumulated in the paca 274 * by the exception entry and exit code to the generic process 275 * user and system time records. 276 * Must be called with interrupts disabled. 277 */ 278 void account_process_tick(struct task_struct *tsk, int user_tick) 279 { 280 cputime_t utime, utimescaled; 281 282 utime = get_paca()->user_time; 283 get_paca()->user_time = 0; 284 utimescaled = cputime_to_scaled(utime); 285 account_user_time(tsk, utime, utimescaled); 286 } 287 288 /* 289 * Stuff for accounting stolen time. 290 */ 291 struct cpu_purr_data { 292 int initialized; /* thread is running */ 293 u64 tb; /* last TB value read */ 294 u64 purr; /* last PURR value read */ 295 u64 spurr; /* last SPURR value read */ 296 }; 297 298 /* 299 * Each entry in the cpu_purr_data array is manipulated only by its 300 * "owner" cpu -- usually in the timer interrupt but also occasionally 301 * in process context for cpu online. As long as cpus do not touch 302 * each others' cpu_purr_data, disabling local interrupts is 303 * sufficient to serialize accesses. 304 */ 305 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 306 307 static void snapshot_tb_and_purr(void *data) 308 { 309 unsigned long flags; 310 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 311 312 local_irq_save(flags); 313 p->tb = get_tb_or_rtc(); 314 p->purr = mfspr(SPRN_PURR); 315 wmb(); 316 p->initialized = 1; 317 local_irq_restore(flags); 318 } 319 320 /* 321 * Called during boot when all cpus have come up. 322 */ 323 void snapshot_timebases(void) 324 { 325 if (!cpu_has_feature(CPU_FTR_PURR)) 326 return; 327 on_each_cpu(snapshot_tb_and_purr, NULL, 1); 328 } 329 330 /* 331 * Must be called with interrupts disabled. 332 */ 333 void calculate_steal_time(void) 334 { 335 u64 tb, purr; 336 s64 stolen; 337 struct cpu_purr_data *pme; 338 339 pme = &__get_cpu_var(cpu_purr_data); 340 if (!pme->initialized) 341 return; /* !CPU_FTR_PURR or early in early boot */ 342 tb = mftb(); 343 purr = mfspr(SPRN_PURR); 344 stolen = (tb - pme->tb) - (purr - pme->purr); 345 if (stolen > 0) { 346 if (idle_task(smp_processor_id()) != current) 347 account_steal_time(stolen); 348 else 349 account_idle_time(stolen); 350 } 351 pme->tb = tb; 352 pme->purr = purr; 353 } 354 355 #ifdef CONFIG_PPC_SPLPAR 356 /* 357 * Must be called before the cpu is added to the online map when 358 * a cpu is being brought up at runtime. 359 */ 360 static void snapshot_purr(void) 361 { 362 struct cpu_purr_data *pme; 363 unsigned long flags; 364 365 if (!cpu_has_feature(CPU_FTR_PURR)) 366 return; 367 local_irq_save(flags); 368 pme = &__get_cpu_var(cpu_purr_data); 369 pme->tb = mftb(); 370 pme->purr = mfspr(SPRN_PURR); 371 pme->initialized = 1; 372 local_irq_restore(flags); 373 } 374 375 #endif /* CONFIG_PPC_SPLPAR */ 376 377 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 378 #define calc_cputime_factors() 379 #define calculate_steal_time() do { } while (0) 380 #endif 381 382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 383 #define snapshot_purr() do { } while (0) 384 #endif 385 386 /* 387 * Called when a cpu comes up after the system has finished booting, 388 * i.e. as a result of a hotplug cpu action. 389 */ 390 void snapshot_timebase(void) 391 { 392 __get_cpu_var(last_jiffy) = get_tb_or_rtc(); 393 snapshot_purr(); 394 } 395 396 void __delay(unsigned long loops) 397 { 398 unsigned long start; 399 int diff; 400 401 if (__USE_RTC()) { 402 start = get_rtcl(); 403 do { 404 /* the RTCL register wraps at 1000000000 */ 405 diff = get_rtcl() - start; 406 if (diff < 0) 407 diff += 1000000000; 408 } while (diff < loops); 409 } else { 410 start = get_tbl(); 411 while (get_tbl() - start < loops) 412 HMT_low(); 413 HMT_medium(); 414 } 415 } 416 EXPORT_SYMBOL(__delay); 417 418 void udelay(unsigned long usecs) 419 { 420 __delay(tb_ticks_per_usec * usecs); 421 } 422 EXPORT_SYMBOL(udelay); 423 424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 425 u64 new_tb_to_xs) 426 { 427 /* 428 * tb_update_count is used to allow the userspace gettimeofday code 429 * to assure itself that it sees a consistent view of the tb_to_xs and 430 * stamp_xsec variables. It reads the tb_update_count, then reads 431 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 432 * the two values of tb_update_count match and are even then the 433 * tb_to_xs and stamp_xsec values are consistent. If not, then it 434 * loops back and reads them again until this criteria is met. 435 * We expect the caller to have done the first increment of 436 * vdso_data->tb_update_count already. 437 */ 438 vdso_data->tb_orig_stamp = new_tb_stamp; 439 vdso_data->stamp_xsec = new_stamp_xsec; 440 vdso_data->tb_to_xs = new_tb_to_xs; 441 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 442 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 443 vdso_data->stamp_xtime = xtime; 444 smp_wmb(); 445 ++(vdso_data->tb_update_count); 446 } 447 448 #ifdef CONFIG_SMP 449 unsigned long profile_pc(struct pt_regs *regs) 450 { 451 unsigned long pc = instruction_pointer(regs); 452 453 if (in_lock_functions(pc)) 454 return regs->link; 455 456 return pc; 457 } 458 EXPORT_SYMBOL(profile_pc); 459 #endif 460 461 #ifdef CONFIG_PPC_ISERIES 462 463 /* 464 * This function recalibrates the timebase based on the 49-bit time-of-day 465 * value in the Titan chip. The Titan is much more accurate than the value 466 * returned by the service processor for the timebase frequency. 467 */ 468 469 static int __init iSeries_tb_recal(void) 470 { 471 struct div_result divres; 472 unsigned long titan, tb; 473 474 /* Make sure we only run on iSeries */ 475 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 476 return -ENODEV; 477 478 tb = get_tb(); 479 titan = HvCallXm_loadTod(); 480 if ( iSeries_recal_titan ) { 481 unsigned long tb_ticks = tb - iSeries_recal_tb; 482 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 483 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 484 unsigned long new_tb_ticks_per_jiffy = 485 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ); 486 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 487 char sign = '+'; 488 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 489 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 490 491 if ( tick_diff < 0 ) { 492 tick_diff = -tick_diff; 493 sign = '-'; 494 } 495 if ( tick_diff ) { 496 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 497 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 498 new_tb_ticks_per_jiffy, sign, tick_diff ); 499 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 500 tb_ticks_per_sec = new_tb_ticks_per_sec; 501 calc_cputime_factors(); 502 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 503 tb_to_xs = divres.result_low; 504 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 505 vdso_data->tb_to_xs = tb_to_xs; 506 setup_cputime_one_jiffy(); 507 } 508 else { 509 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 510 " new tb_ticks_per_jiffy = %lu\n" 511 " old tb_ticks_per_jiffy = %lu\n", 512 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 513 } 514 } 515 } 516 iSeries_recal_titan = titan; 517 iSeries_recal_tb = tb; 518 519 /* Called here as now we know accurate values for the timebase */ 520 clocksource_init(); 521 return 0; 522 } 523 late_initcall(iSeries_tb_recal); 524 525 /* Called from platform early init */ 526 void __init iSeries_time_init_early(void) 527 { 528 iSeries_recal_tb = get_tb(); 529 iSeries_recal_titan = HvCallXm_loadTod(); 530 } 531 #endif /* CONFIG_PPC_ISERIES */ 532 533 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32) 534 DEFINE_PER_CPU(u8, perf_event_pending); 535 536 void set_perf_event_pending(void) 537 { 538 get_cpu_var(perf_event_pending) = 1; 539 set_dec(1); 540 put_cpu_var(perf_event_pending); 541 } 542 543 #define test_perf_event_pending() __get_cpu_var(perf_event_pending) 544 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0 545 546 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */ 547 548 #define test_perf_event_pending() 0 549 #define clear_perf_event_pending() 550 551 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */ 552 553 /* 554 * For iSeries shared processors, we have to let the hypervisor 555 * set the hardware decrementer. We set a virtual decrementer 556 * in the lppaca and call the hypervisor if the virtual 557 * decrementer is less than the current value in the hardware 558 * decrementer. (almost always the new decrementer value will 559 * be greater than the current hardware decementer so the hypervisor 560 * call will not be needed) 561 */ 562 563 /* 564 * timer_interrupt - gets called when the decrementer overflows, 565 * with interrupts disabled. 566 */ 567 void timer_interrupt(struct pt_regs * regs) 568 { 569 struct pt_regs *old_regs; 570 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers); 571 struct clock_event_device *evt = &decrementer->event; 572 u64 now; 573 574 /* Ensure a positive value is written to the decrementer, or else 575 * some CPUs will continuue to take decrementer exceptions */ 576 set_dec(DECREMENTER_MAX); 577 578 #ifdef CONFIG_PPC32 579 if (test_perf_event_pending()) { 580 clear_perf_event_pending(); 581 perf_event_do_pending(); 582 } 583 if (atomic_read(&ppc_n_lost_interrupts) != 0) 584 do_IRQ(regs); 585 #endif 586 587 now = get_tb_or_rtc(); 588 if (now < decrementer->next_tb) { 589 /* not time for this event yet */ 590 now = decrementer->next_tb - now; 591 if (now <= DECREMENTER_MAX) 592 set_dec((int)now); 593 return; 594 } 595 old_regs = set_irq_regs(regs); 596 irq_enter(); 597 598 calculate_steal_time(); 599 600 #ifdef CONFIG_PPC_ISERIES 601 if (firmware_has_feature(FW_FEATURE_ISERIES)) 602 get_lppaca()->int_dword.fields.decr_int = 0; 603 #endif 604 605 if (evt->event_handler) 606 evt->event_handler(evt); 607 608 #ifdef CONFIG_PPC_ISERIES 609 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 610 process_hvlpevents(); 611 #endif 612 613 #ifdef CONFIG_PPC64 614 /* collect purr register values often, for accurate calculations */ 615 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 616 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 617 cu->current_tb = mfspr(SPRN_PURR); 618 } 619 #endif 620 621 irq_exit(); 622 set_irq_regs(old_regs); 623 } 624 625 void wakeup_decrementer(void) 626 { 627 unsigned long ticks; 628 629 /* 630 * The timebase gets saved on sleep and restored on wakeup, 631 * so all we need to do is to reset the decrementer. 632 */ 633 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 634 if (ticks < tb_ticks_per_jiffy) 635 ticks = tb_ticks_per_jiffy - ticks; 636 else 637 ticks = 1; 638 set_dec(ticks); 639 } 640 641 #ifdef CONFIG_SUSPEND 642 void generic_suspend_disable_irqs(void) 643 { 644 preempt_disable(); 645 646 /* Disable the decrementer, so that it doesn't interfere 647 * with suspending. 648 */ 649 650 set_dec(0x7fffffff); 651 local_irq_disable(); 652 set_dec(0x7fffffff); 653 } 654 655 void generic_suspend_enable_irqs(void) 656 { 657 wakeup_decrementer(); 658 659 local_irq_enable(); 660 preempt_enable(); 661 } 662 663 /* Overrides the weak version in kernel/power/main.c */ 664 void arch_suspend_disable_irqs(void) 665 { 666 if (ppc_md.suspend_disable_irqs) 667 ppc_md.suspend_disable_irqs(); 668 generic_suspend_disable_irqs(); 669 } 670 671 /* Overrides the weak version in kernel/power/main.c */ 672 void arch_suspend_enable_irqs(void) 673 { 674 generic_suspend_enable_irqs(); 675 if (ppc_md.suspend_enable_irqs) 676 ppc_md.suspend_enable_irqs(); 677 } 678 #endif 679 680 #ifdef CONFIG_SMP 681 void __init smp_space_timers(unsigned int max_cpus) 682 { 683 int i; 684 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 685 686 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 687 previous_tb -= tb_ticks_per_jiffy; 688 689 for_each_possible_cpu(i) { 690 if (i == boot_cpuid) 691 continue; 692 per_cpu(last_jiffy, i) = previous_tb; 693 } 694 } 695 #endif 696 697 /* 698 * Scheduler clock - returns current time in nanosec units. 699 * 700 * Note: mulhdu(a, b) (multiply high double unsigned) returns 701 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 702 * are 64-bit unsigned numbers. 703 */ 704 unsigned long long sched_clock(void) 705 { 706 if (__USE_RTC()) 707 return get_rtc(); 708 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 709 } 710 711 static int __init get_freq(char *name, int cells, unsigned long *val) 712 { 713 struct device_node *cpu; 714 const unsigned int *fp; 715 int found = 0; 716 717 /* The cpu node should have timebase and clock frequency properties */ 718 cpu = of_find_node_by_type(NULL, "cpu"); 719 720 if (cpu) { 721 fp = of_get_property(cpu, name, NULL); 722 if (fp) { 723 found = 1; 724 *val = of_read_ulong(fp, cells); 725 } 726 727 of_node_put(cpu); 728 } 729 730 return found; 731 } 732 733 /* should become __cpuinit when secondary_cpu_time_init also is */ 734 void start_cpu_decrementer(void) 735 { 736 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 737 /* Clear any pending timer interrupts */ 738 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 739 740 /* Enable decrementer interrupt */ 741 mtspr(SPRN_TCR, TCR_DIE); 742 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ 743 } 744 745 void __init generic_calibrate_decr(void) 746 { 747 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 748 749 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 750 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 751 752 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 753 "(not found)\n"); 754 } 755 756 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 757 758 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 759 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 760 761 printk(KERN_ERR "WARNING: Estimating processor frequency " 762 "(not found)\n"); 763 } 764 } 765 766 int update_persistent_clock(struct timespec now) 767 { 768 struct rtc_time tm; 769 770 if (!ppc_md.set_rtc_time) 771 return 0; 772 773 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 774 tm.tm_year -= 1900; 775 tm.tm_mon -= 1; 776 777 return ppc_md.set_rtc_time(&tm); 778 } 779 780 void read_persistent_clock(struct timespec *ts) 781 { 782 struct rtc_time tm; 783 static int first = 1; 784 785 ts->tv_nsec = 0; 786 /* XXX this is a litle fragile but will work okay in the short term */ 787 if (first) { 788 first = 0; 789 if (ppc_md.time_init) 790 timezone_offset = ppc_md.time_init(); 791 792 /* get_boot_time() isn't guaranteed to be safe to call late */ 793 if (ppc_md.get_boot_time) { 794 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 795 return; 796 } 797 } 798 if (!ppc_md.get_rtc_time) { 799 ts->tv_sec = 0; 800 return; 801 } 802 ppc_md.get_rtc_time(&tm); 803 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 804 tm.tm_hour, tm.tm_min, tm.tm_sec); 805 } 806 807 /* clocksource code */ 808 static cycle_t rtc_read(struct clocksource *cs) 809 { 810 return (cycle_t)get_rtc(); 811 } 812 813 static cycle_t timebase_read(struct clocksource *cs) 814 { 815 return (cycle_t)get_tb(); 816 } 817 818 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) 819 { 820 u64 t2x, stamp_xsec; 821 822 if (clock != &clocksource_timebase) 823 return; 824 825 /* Make userspace gettimeofday spin until we're done. */ 826 ++vdso_data->tb_update_count; 827 smp_mb(); 828 829 /* XXX this assumes clock->shift == 22 */ 830 /* 4611686018 ~= 2^(20+64-22) / 1e9 */ 831 t2x = (u64) clock->mult * 4611686018ULL; 832 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 833 do_div(stamp_xsec, 1000000000); 834 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 835 update_gtod(clock->cycle_last, stamp_xsec, t2x); 836 } 837 838 void update_vsyscall_tz(void) 839 { 840 /* Make userspace gettimeofday spin until we're done. */ 841 ++vdso_data->tb_update_count; 842 smp_mb(); 843 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 844 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 845 smp_mb(); 846 ++vdso_data->tb_update_count; 847 } 848 849 static void __init clocksource_init(void) 850 { 851 struct clocksource *clock; 852 853 if (__USE_RTC()) 854 clock = &clocksource_rtc; 855 else 856 clock = &clocksource_timebase; 857 858 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); 859 860 if (clocksource_register(clock)) { 861 printk(KERN_ERR "clocksource: %s is already registered\n", 862 clock->name); 863 return; 864 } 865 866 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 867 clock->name, clock->mult, clock->shift); 868 } 869 870 static int decrementer_set_next_event(unsigned long evt, 871 struct clock_event_device *dev) 872 { 873 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt; 874 set_dec(evt); 875 return 0; 876 } 877 878 static void decrementer_set_mode(enum clock_event_mode mode, 879 struct clock_event_device *dev) 880 { 881 if (mode != CLOCK_EVT_MODE_ONESHOT) 882 decrementer_set_next_event(DECREMENTER_MAX, dev); 883 } 884 885 static void __init setup_clockevent_multiplier(unsigned long hz) 886 { 887 u64 mult, shift = 32; 888 889 while (1) { 890 mult = div_sc(hz, NSEC_PER_SEC, shift); 891 if (mult && (mult >> 32UL) == 0UL) 892 break; 893 894 shift--; 895 } 896 897 decrementer_clockevent.shift = shift; 898 decrementer_clockevent.mult = mult; 899 } 900 901 static void register_decrementer_clockevent(int cpu) 902 { 903 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event; 904 905 *dec = decrementer_clockevent; 906 dec->cpumask = cpumask_of(cpu); 907 908 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", 909 dec->name, dec->mult, dec->shift, cpu); 910 911 clockevents_register_device(dec); 912 } 913 914 static void __init init_decrementer_clockevent(void) 915 { 916 int cpu = smp_processor_id(); 917 918 setup_clockevent_multiplier(ppc_tb_freq); 919 decrementer_clockevent.max_delta_ns = 920 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 921 decrementer_clockevent.min_delta_ns = 922 clockevent_delta2ns(2, &decrementer_clockevent); 923 924 register_decrementer_clockevent(cpu); 925 } 926 927 void secondary_cpu_time_init(void) 928 { 929 /* Start the decrementer on CPUs that have manual control 930 * such as BookE 931 */ 932 start_cpu_decrementer(); 933 934 /* FIME: Should make unrelatred change to move snapshot_timebase 935 * call here ! */ 936 register_decrementer_clockevent(smp_processor_id()); 937 } 938 939 /* This function is only called on the boot processor */ 940 void __init time_init(void) 941 { 942 unsigned long flags; 943 struct div_result res; 944 u64 scale, x; 945 unsigned shift; 946 947 if (__USE_RTC()) { 948 /* 601 processor: dec counts down by 128 every 128ns */ 949 ppc_tb_freq = 1000000000; 950 tb_last_jiffy = get_rtcl(); 951 } else { 952 /* Normal PowerPC with timebase register */ 953 ppc_md.calibrate_decr(); 954 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 955 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 956 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 957 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 958 tb_last_jiffy = get_tb(); 959 } 960 961 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 962 tb_ticks_per_sec = ppc_tb_freq; 963 tb_ticks_per_usec = ppc_tb_freq / 1000000; 964 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 965 calc_cputime_factors(); 966 setup_cputime_one_jiffy(); 967 968 /* 969 * Calculate the length of each tick in ns. It will not be 970 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 971 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 972 * rounded up. 973 */ 974 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 975 do_div(x, ppc_tb_freq); 976 tick_nsec = x; 977 last_tick_len = x << TICKLEN_SCALE; 978 979 /* 980 * Compute ticklen_to_xs, which is a factor which gets multiplied 981 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 982 * It is computed as: 983 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 984 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 985 * which turns out to be N = 51 - SHIFT_HZ. 986 * This gives the result as a 0.64 fixed-point fraction. 987 * That value is reduced by an offset amounting to 1 xsec per 988 * 2^31 timebase ticks to avoid problems with time going backwards 989 * by 1 xsec when we do timer_recalc_offset due to losing the 990 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 991 * since there are 2^20 xsec in a second. 992 */ 993 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 994 tb_ticks_per_jiffy << SHIFT_HZ, &res); 995 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 996 ticklen_to_xs = res.result_low; 997 998 /* Compute tb_to_xs from tick_nsec */ 999 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 1000 1001 /* 1002 * Compute scale factor for sched_clock. 1003 * The calibrate_decr() function has set tb_ticks_per_sec, 1004 * which is the timebase frequency. 1005 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1006 * the 128-bit result as a 64.64 fixed-point number. 1007 * We then shift that number right until it is less than 1.0, 1008 * giving us the scale factor and shift count to use in 1009 * sched_clock(). 1010 */ 1011 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1012 scale = res.result_low; 1013 for (shift = 0; res.result_high != 0; ++shift) { 1014 scale = (scale >> 1) | (res.result_high << 63); 1015 res.result_high >>= 1; 1016 } 1017 tb_to_ns_scale = scale; 1018 tb_to_ns_shift = shift; 1019 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1020 boot_tb = get_tb_or_rtc(); 1021 1022 write_seqlock_irqsave(&xtime_lock, flags); 1023 1024 /* If platform provided a timezone (pmac), we correct the time */ 1025 if (timezone_offset) { 1026 sys_tz.tz_minuteswest = -timezone_offset / 60; 1027 sys_tz.tz_dsttime = 0; 1028 } 1029 1030 vdso_data->tb_orig_stamp = tb_last_jiffy; 1031 vdso_data->tb_update_count = 0; 1032 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1033 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1034 vdso_data->tb_to_xs = tb_to_xs; 1035 1036 write_sequnlock_irqrestore(&xtime_lock, flags); 1037 1038 /* Start the decrementer on CPUs that have manual control 1039 * such as BookE 1040 */ 1041 start_cpu_decrementer(); 1042 1043 /* Register the clocksource, if we're not running on iSeries */ 1044 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 1045 clocksource_init(); 1046 1047 init_decrementer_clockevent(); 1048 } 1049 1050 1051 #define FEBRUARY 2 1052 #define STARTOFTIME 1970 1053 #define SECDAY 86400L 1054 #define SECYR (SECDAY * 365) 1055 #define leapyear(year) ((year) % 4 == 0 && \ 1056 ((year) % 100 != 0 || (year) % 400 == 0)) 1057 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1058 #define days_in_month(a) (month_days[(a) - 1]) 1059 1060 static int month_days[12] = { 1061 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1062 }; 1063 1064 /* 1065 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1066 */ 1067 void GregorianDay(struct rtc_time * tm) 1068 { 1069 int leapsToDate; 1070 int lastYear; 1071 int day; 1072 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1073 1074 lastYear = tm->tm_year - 1; 1075 1076 /* 1077 * Number of leap corrections to apply up to end of last year 1078 */ 1079 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1080 1081 /* 1082 * This year is a leap year if it is divisible by 4 except when it is 1083 * divisible by 100 unless it is divisible by 400 1084 * 1085 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1086 */ 1087 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1088 1089 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1090 tm->tm_mday; 1091 1092 tm->tm_wday = day % 7; 1093 } 1094 1095 void to_tm(int tim, struct rtc_time * tm) 1096 { 1097 register int i; 1098 register long hms, day; 1099 1100 day = tim / SECDAY; 1101 hms = tim % SECDAY; 1102 1103 /* Hours, minutes, seconds are easy */ 1104 tm->tm_hour = hms / 3600; 1105 tm->tm_min = (hms % 3600) / 60; 1106 tm->tm_sec = (hms % 3600) % 60; 1107 1108 /* Number of years in days */ 1109 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1110 day -= days_in_year(i); 1111 tm->tm_year = i; 1112 1113 /* Number of months in days left */ 1114 if (leapyear(tm->tm_year)) 1115 days_in_month(FEBRUARY) = 29; 1116 for (i = 1; day >= days_in_month(i); i++) 1117 day -= days_in_month(i); 1118 days_in_month(FEBRUARY) = 28; 1119 tm->tm_mon = i; 1120 1121 /* Days are what is left over (+1) from all that. */ 1122 tm->tm_mday = day + 1; 1123 1124 /* 1125 * Determine the day of week 1126 */ 1127 GregorianDay(tm); 1128 } 1129 1130 /* Auxiliary function to compute scaling factors */ 1131 /* Actually the choice of a timebase running at 1/4 the of the bus 1132 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1133 * It makes this computation very precise (27-28 bits typically) which 1134 * is optimistic considering the stability of most processor clock 1135 * oscillators and the precision with which the timebase frequency 1136 * is measured but does not harm. 1137 */ 1138 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1139 { 1140 unsigned mlt=0, tmp, err; 1141 /* No concern for performance, it's done once: use a stupid 1142 * but safe and compact method to find the multiplier. 1143 */ 1144 1145 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1146 if (mulhwu(inscale, mlt|tmp) < outscale) 1147 mlt |= tmp; 1148 } 1149 1150 /* We might still be off by 1 for the best approximation. 1151 * A side effect of this is that if outscale is too large 1152 * the returned value will be zero. 1153 * Many corner cases have been checked and seem to work, 1154 * some might have been forgotten in the test however. 1155 */ 1156 1157 err = inscale * (mlt+1); 1158 if (err <= inscale/2) 1159 mlt++; 1160 return mlt; 1161 } 1162 1163 /* 1164 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1165 * result. 1166 */ 1167 void div128_by_32(u64 dividend_high, u64 dividend_low, 1168 unsigned divisor, struct div_result *dr) 1169 { 1170 unsigned long a, b, c, d; 1171 unsigned long w, x, y, z; 1172 u64 ra, rb, rc; 1173 1174 a = dividend_high >> 32; 1175 b = dividend_high & 0xffffffff; 1176 c = dividend_low >> 32; 1177 d = dividend_low & 0xffffffff; 1178 1179 w = a / divisor; 1180 ra = ((u64)(a - (w * divisor)) << 32) + b; 1181 1182 rb = ((u64) do_div(ra, divisor) << 32) + c; 1183 x = ra; 1184 1185 rc = ((u64) do_div(rb, divisor) << 32) + d; 1186 y = rb; 1187 1188 do_div(rc, divisor); 1189 z = rc; 1190 1191 dr->result_high = ((u64)w << 32) + x; 1192 dr->result_low = ((u64)y << 32) + z; 1193 1194 } 1195 1196 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1197 void calibrate_delay(void) 1198 { 1199 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1200 * as the number of __delay(1) in a jiffy, so make it so 1201 */ 1202 loops_per_jiffy = tb_ticks_per_jiffy; 1203 } 1204 1205 static int __init rtc_init(void) 1206 { 1207 struct platform_device *pdev; 1208 1209 if (!ppc_md.get_rtc_time) 1210 return -ENODEV; 1211 1212 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1213 if (IS_ERR(pdev)) 1214 return PTR_ERR(pdev); 1215 1216 return 0; 1217 } 1218 1219 module_init(rtc_init); 1220