xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision e657c18a)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/clockchips.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 #include <linux/jiffies.h>
54 #include <linux/posix-timers.h>
55 #include <linux/irq.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 #include <linux/clk-provider.h>
59 #include <linux/suspend.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/processor.h>
62 #include <asm/trace.h>
63 
64 #include <asm/io.h>
65 #include <asm/nvram.h>
66 #include <asm/cache.h>
67 #include <asm/machdep.h>
68 #include <linux/uaccess.h>
69 #include <asm/time.h>
70 #include <asm/prom.h>
71 #include <asm/irq.h>
72 #include <asm/div64.h>
73 #include <asm/smp.h>
74 #include <asm/vdso_datapage.h>
75 #include <asm/firmware.h>
76 #include <asm/asm-prototypes.h>
77 
78 /* powerpc clocksource/clockevent code */
79 
80 #include <linux/clockchips.h>
81 #include <linux/timekeeper_internal.h>
82 
83 static u64 rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 	.name         = "rtc",
86 	.rating       = 400,
87 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88 	.mask         = CLOCKSOURCE_MASK(64),
89 	.read         = rtc_read,
90 };
91 
92 static u64 timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94 	.name         = "timebase",
95 	.rating       = 400,
96 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
97 	.mask         = CLOCKSOURCE_MASK(64),
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
102 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
103 
104 static int decrementer_set_next_event(unsigned long evt,
105 				      struct clock_event_device *dev);
106 static int decrementer_shutdown(struct clock_event_device *evt);
107 
108 struct clock_event_device decrementer_clockevent = {
109 	.name			= "decrementer",
110 	.rating			= 200,
111 	.irq			= 0,
112 	.set_next_event		= decrementer_set_next_event,
113 	.set_state_oneshot_stopped = decrementer_shutdown,
114 	.set_state_shutdown	= decrementer_shutdown,
115 	.tick_resume		= decrementer_shutdown,
116 	.features		= CLOCK_EVT_FEAT_ONESHOT |
117 				  CLOCK_EVT_FEAT_C3STOP,
118 };
119 EXPORT_SYMBOL(decrementer_clockevent);
120 
121 DEFINE_PER_CPU(u64, decrementers_next_tb);
122 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123 
124 #define XSEC_PER_SEC (1024*1024)
125 
126 #ifdef CONFIG_PPC64
127 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
128 #else
129 /* compute ((xsec << 12) * max) >> 32 */
130 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
131 #endif
132 
133 unsigned long tb_ticks_per_jiffy;
134 unsigned long tb_ticks_per_usec = 100; /* sane default */
135 EXPORT_SYMBOL(tb_ticks_per_usec);
136 unsigned long tb_ticks_per_sec;
137 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138 
139 DEFINE_SPINLOCK(rtc_lock);
140 EXPORT_SYMBOL_GPL(rtc_lock);
141 
142 static u64 tb_to_ns_scale __read_mostly;
143 static unsigned tb_to_ns_shift __read_mostly;
144 static u64 boot_tb __read_mostly;
145 
146 extern struct timezone sys_tz;
147 static long timezone_offset;
148 
149 unsigned long ppc_proc_freq;
150 EXPORT_SYMBOL_GPL(ppc_proc_freq);
151 unsigned long ppc_tb_freq;
152 EXPORT_SYMBOL_GPL(ppc_tb_freq);
153 
154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155 /*
156  * Factor for converting from cputime_t (timebase ticks) to
157  * microseconds. This is stored as 0.64 fixed-point binary fraction.
158  */
159 u64 __cputime_usec_factor;
160 EXPORT_SYMBOL(__cputime_usec_factor);
161 
162 #ifdef CONFIG_PPC_SPLPAR
163 void (*dtl_consumer)(struct dtl_entry *, u64);
164 #endif
165 
166 static void calc_cputime_factors(void)
167 {
168 	struct div_result res;
169 
170 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
171 	__cputime_usec_factor = res.result_low;
172 }
173 
174 /*
175  * Read the SPURR on systems that have it, otherwise the PURR,
176  * or if that doesn't exist return the timebase value passed in.
177  */
178 static inline unsigned long read_spurr(unsigned long tb)
179 {
180 	if (cpu_has_feature(CPU_FTR_SPURR))
181 		return mfspr(SPRN_SPURR);
182 	if (cpu_has_feature(CPU_FTR_PURR))
183 		return mfspr(SPRN_PURR);
184 	return tb;
185 }
186 
187 #ifdef CONFIG_PPC_SPLPAR
188 
189 /*
190  * Scan the dispatch trace log and count up the stolen time.
191  * Should be called with interrupts disabled.
192  */
193 static u64 scan_dispatch_log(u64 stop_tb)
194 {
195 	u64 i = local_paca->dtl_ridx;
196 	struct dtl_entry *dtl = local_paca->dtl_curr;
197 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
198 	struct lppaca *vpa = local_paca->lppaca_ptr;
199 	u64 tb_delta;
200 	u64 stolen = 0;
201 	u64 dtb;
202 
203 	if (!dtl)
204 		return 0;
205 
206 	if (i == be64_to_cpu(vpa->dtl_idx))
207 		return 0;
208 	while (i < be64_to_cpu(vpa->dtl_idx)) {
209 		dtb = be64_to_cpu(dtl->timebase);
210 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
211 			be32_to_cpu(dtl->ready_to_enqueue_time);
212 		barrier();
213 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
214 			/* buffer has overflowed */
215 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
216 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
217 			continue;
218 		}
219 		if (dtb > stop_tb)
220 			break;
221 		if (dtl_consumer)
222 			dtl_consumer(dtl, i);
223 		stolen += tb_delta;
224 		++i;
225 		++dtl;
226 		if (dtl == dtl_end)
227 			dtl = local_paca->dispatch_log;
228 	}
229 	local_paca->dtl_ridx = i;
230 	local_paca->dtl_curr = dtl;
231 	return stolen;
232 }
233 
234 /*
235  * Accumulate stolen time by scanning the dispatch trace log.
236  * Called on entry from user mode.
237  */
238 void accumulate_stolen_time(void)
239 {
240 	u64 sst, ust;
241 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
242 	struct cpu_accounting_data *acct = &local_paca->accounting;
243 
244 	/* We are called early in the exception entry, before
245 	 * soft/hard_enabled are sync'ed to the expected state
246 	 * for the exception. We are hard disabled but the PACA
247 	 * needs to reflect that so various debug stuff doesn't
248 	 * complain
249 	 */
250 	irq_soft_mask_set(IRQS_DISABLED);
251 
252 	sst = scan_dispatch_log(acct->starttime_user);
253 	ust = scan_dispatch_log(acct->starttime);
254 	acct->stime -= sst;
255 	acct->utime -= ust;
256 	acct->steal_time += ust + sst;
257 
258 	irq_soft_mask_set(save_irq_soft_mask);
259 }
260 
261 static inline u64 calculate_stolen_time(u64 stop_tb)
262 {
263 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
264 		return 0;
265 
266 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
267 		return scan_dispatch_log(stop_tb);
268 
269 	return 0;
270 }
271 
272 #else /* CONFIG_PPC_SPLPAR */
273 static inline u64 calculate_stolen_time(u64 stop_tb)
274 {
275 	return 0;
276 }
277 
278 #endif /* CONFIG_PPC_SPLPAR */
279 
280 /*
281  * Account time for a transition between system, hard irq
282  * or soft irq state.
283  */
284 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
285 					unsigned long now, unsigned long stime)
286 {
287 	unsigned long stime_scaled = 0;
288 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
289 	unsigned long nowscaled, deltascaled;
290 	unsigned long utime, utime_scaled;
291 
292 	nowscaled = read_spurr(now);
293 	deltascaled = nowscaled - acct->startspurr;
294 	acct->startspurr = nowscaled;
295 	utime = acct->utime - acct->utime_sspurr;
296 	acct->utime_sspurr = acct->utime;
297 
298 	/*
299 	 * Because we don't read the SPURR on every kernel entry/exit,
300 	 * deltascaled includes both user and system SPURR ticks.
301 	 * Apportion these ticks to system SPURR ticks and user
302 	 * SPURR ticks in the same ratio as the system time (delta)
303 	 * and user time (udelta) values obtained from the timebase
304 	 * over the same interval.  The system ticks get accounted here;
305 	 * the user ticks get saved up in paca->user_time_scaled to be
306 	 * used by account_process_tick.
307 	 */
308 	stime_scaled = stime;
309 	utime_scaled = utime;
310 	if (deltascaled != stime + utime) {
311 		if (utime) {
312 			stime_scaled = deltascaled * stime / (stime + utime);
313 			utime_scaled = deltascaled - stime_scaled;
314 		} else {
315 			stime_scaled = deltascaled;
316 		}
317 	}
318 	acct->utime_scaled += utime_scaled;
319 #endif
320 
321 	return stime_scaled;
322 }
323 
324 static unsigned long vtime_delta(struct task_struct *tsk,
325 				 unsigned long *stime_scaled,
326 				 unsigned long *steal_time)
327 {
328 	unsigned long now, stime;
329 	struct cpu_accounting_data *acct = get_accounting(tsk);
330 
331 	WARN_ON_ONCE(!irqs_disabled());
332 
333 	now = mftb();
334 	stime = now - acct->starttime;
335 	acct->starttime = now;
336 
337 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
338 
339 	*steal_time = calculate_stolen_time(now);
340 
341 	return stime;
342 }
343 
344 void vtime_account_system(struct task_struct *tsk)
345 {
346 	unsigned long stime, stime_scaled, steal_time;
347 	struct cpu_accounting_data *acct = get_accounting(tsk);
348 
349 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
350 
351 	stime -= min(stime, steal_time);
352 	acct->steal_time += steal_time;
353 
354 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
355 		acct->gtime += stime;
356 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
357 		acct->utime_scaled += stime_scaled;
358 #endif
359 	} else {
360 		if (hardirq_count())
361 			acct->hardirq_time += stime;
362 		else if (in_serving_softirq())
363 			acct->softirq_time += stime;
364 		else
365 			acct->stime += stime;
366 
367 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
368 		acct->stime_scaled += stime_scaled;
369 #endif
370 	}
371 }
372 EXPORT_SYMBOL_GPL(vtime_account_system);
373 
374 void vtime_account_idle(struct task_struct *tsk)
375 {
376 	unsigned long stime, stime_scaled, steal_time;
377 	struct cpu_accounting_data *acct = get_accounting(tsk);
378 
379 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
380 	acct->idle_time += stime + steal_time;
381 }
382 
383 static void vtime_flush_scaled(struct task_struct *tsk,
384 			       struct cpu_accounting_data *acct)
385 {
386 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
387 	if (acct->utime_scaled)
388 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
389 	if (acct->stime_scaled)
390 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
391 
392 	acct->utime_scaled = 0;
393 	acct->utime_sspurr = 0;
394 	acct->stime_scaled = 0;
395 #endif
396 }
397 
398 /*
399  * Account the whole cputime accumulated in the paca
400  * Must be called with interrupts disabled.
401  * Assumes that vtime_account_system/idle() has been called
402  * recently (i.e. since the last entry from usermode) so that
403  * get_paca()->user_time_scaled is up to date.
404  */
405 void vtime_flush(struct task_struct *tsk)
406 {
407 	struct cpu_accounting_data *acct = get_accounting(tsk);
408 
409 	if (acct->utime)
410 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
411 
412 	if (acct->gtime)
413 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
414 
415 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
416 		account_steal_time(cputime_to_nsecs(acct->steal_time));
417 		acct->steal_time = 0;
418 	}
419 
420 	if (acct->idle_time)
421 		account_idle_time(cputime_to_nsecs(acct->idle_time));
422 
423 	if (acct->stime)
424 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
425 					  CPUTIME_SYSTEM);
426 
427 	if (acct->hardirq_time)
428 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
429 					  CPUTIME_IRQ);
430 	if (acct->softirq_time)
431 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
432 					  CPUTIME_SOFTIRQ);
433 
434 	vtime_flush_scaled(tsk, acct);
435 
436 	acct->utime = 0;
437 	acct->gtime = 0;
438 	acct->idle_time = 0;
439 	acct->stime = 0;
440 	acct->hardirq_time = 0;
441 	acct->softirq_time = 0;
442 }
443 
444 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
445 #define calc_cputime_factors()
446 #endif
447 
448 void __delay(unsigned long loops)
449 {
450 	unsigned long start;
451 	int diff;
452 
453 	spin_begin();
454 	if (__USE_RTC()) {
455 		start = get_rtcl();
456 		do {
457 			/* the RTCL register wraps at 1000000000 */
458 			diff = get_rtcl() - start;
459 			if (diff < 0)
460 				diff += 1000000000;
461 			spin_cpu_relax();
462 		} while (diff < loops);
463 	} else {
464 		start = get_tbl();
465 		while (get_tbl() - start < loops)
466 			spin_cpu_relax();
467 	}
468 	spin_end();
469 }
470 EXPORT_SYMBOL(__delay);
471 
472 void udelay(unsigned long usecs)
473 {
474 	__delay(tb_ticks_per_usec * usecs);
475 }
476 EXPORT_SYMBOL(udelay);
477 
478 #ifdef CONFIG_SMP
479 unsigned long profile_pc(struct pt_regs *regs)
480 {
481 	unsigned long pc = instruction_pointer(regs);
482 
483 	if (in_lock_functions(pc))
484 		return regs->link;
485 
486 	return pc;
487 }
488 EXPORT_SYMBOL(profile_pc);
489 #endif
490 
491 #ifdef CONFIG_IRQ_WORK
492 
493 /*
494  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
495  */
496 #ifdef CONFIG_PPC64
497 static inline unsigned long test_irq_work_pending(void)
498 {
499 	unsigned long x;
500 
501 	asm volatile("lbz %0,%1(13)"
502 		: "=r" (x)
503 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
504 	return x;
505 }
506 
507 static inline void set_irq_work_pending_flag(void)
508 {
509 	asm volatile("stb %0,%1(13)" : :
510 		"r" (1),
511 		"i" (offsetof(struct paca_struct, irq_work_pending)));
512 }
513 
514 static inline void clear_irq_work_pending(void)
515 {
516 	asm volatile("stb %0,%1(13)" : :
517 		"r" (0),
518 		"i" (offsetof(struct paca_struct, irq_work_pending)));
519 }
520 
521 void arch_irq_work_raise(void)
522 {
523 	preempt_disable();
524 	set_irq_work_pending_flag();
525 	/*
526 	 * Non-nmi code running with interrupts disabled will replay
527 	 * irq_happened before it re-enables interrupts, so setthe
528 	 * decrementer there instead of causing a hardware exception
529 	 * which would immediately hit the masked interrupt handler
530 	 * and have the net effect of setting the decrementer in
531 	 * irq_happened.
532 	 *
533 	 * NMI interrupts can not check this when they return, so the
534 	 * decrementer hardware exception is raised, which will fire
535 	 * when interrupts are next enabled.
536 	 *
537 	 * BookE does not support this yet, it must audit all NMI
538 	 * interrupt handlers to ensure they call nmi_enter() so this
539 	 * check would be correct.
540 	 */
541 	if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
542 		set_dec(1);
543 	} else {
544 		hard_irq_disable();
545 		local_paca->irq_happened |= PACA_IRQ_DEC;
546 	}
547 	preempt_enable();
548 }
549 
550 #else /* 32-bit */
551 
552 DEFINE_PER_CPU(u8, irq_work_pending);
553 
554 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
555 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
556 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
557 
558 void arch_irq_work_raise(void)
559 {
560 	preempt_disable();
561 	set_irq_work_pending_flag();
562 	set_dec(1);
563 	preempt_enable();
564 }
565 
566 #endif /* 32 vs 64 bit */
567 
568 #else  /* CONFIG_IRQ_WORK */
569 
570 #define test_irq_work_pending()	0
571 #define clear_irq_work_pending()
572 
573 #endif /* CONFIG_IRQ_WORK */
574 
575 /*
576  * timer_interrupt - gets called when the decrementer overflows,
577  * with interrupts disabled.
578  */
579 void timer_interrupt(struct pt_regs *regs)
580 {
581 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
582 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
583 	struct pt_regs *old_regs;
584 	u64 now;
585 
586 	/* Some implementations of hotplug will get timer interrupts while
587 	 * offline, just ignore these and we also need to set
588 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
589 	 * don't replay timer interrupt when return, otherwise we'll trap
590 	 * here infinitely :(
591 	 */
592 	if (unlikely(!cpu_online(smp_processor_id()))) {
593 		*next_tb = ~(u64)0;
594 		set_dec(decrementer_max);
595 		return;
596 	}
597 
598 	/* Ensure a positive value is written to the decrementer, or else
599 	 * some CPUs will continue to take decrementer exceptions. When the
600 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
601 	 * 31 bits, which is about 4 seconds on most systems, which gives
602 	 * the watchdog a chance of catching timer interrupt hard lockups.
603 	 */
604 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
605 		set_dec(0x7fffffff);
606 	else
607 		set_dec(decrementer_max);
608 
609 	/* Conditionally hard-enable interrupts now that the DEC has been
610 	 * bumped to its maximum value
611 	 */
612 	may_hard_irq_enable();
613 
614 
615 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
616 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
617 		do_IRQ(regs);
618 #endif
619 
620 	old_regs = set_irq_regs(regs);
621 	irq_enter();
622 	trace_timer_interrupt_entry(regs);
623 
624 	if (test_irq_work_pending()) {
625 		clear_irq_work_pending();
626 		irq_work_run();
627 	}
628 
629 	now = get_tb_or_rtc();
630 	if (now >= *next_tb) {
631 		*next_tb = ~(u64)0;
632 		if (evt->event_handler)
633 			evt->event_handler(evt);
634 		__this_cpu_inc(irq_stat.timer_irqs_event);
635 	} else {
636 		now = *next_tb - now;
637 		if (now <= decrementer_max)
638 			set_dec(now);
639 		/* We may have raced with new irq work */
640 		if (test_irq_work_pending())
641 			set_dec(1);
642 		__this_cpu_inc(irq_stat.timer_irqs_others);
643 	}
644 
645 	trace_timer_interrupt_exit(regs);
646 	irq_exit();
647 	set_irq_regs(old_regs);
648 }
649 EXPORT_SYMBOL(timer_interrupt);
650 
651 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
652 void timer_broadcast_interrupt(void)
653 {
654 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
655 
656 	*next_tb = ~(u64)0;
657 	tick_receive_broadcast();
658 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
659 }
660 #endif
661 
662 /*
663  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
664  * left pending on exit from a KVM guest.  We don't need to do anything
665  * to clear them, as they are edge-triggered.
666  */
667 void hdec_interrupt(struct pt_regs *regs)
668 {
669 }
670 
671 #ifdef CONFIG_SUSPEND
672 static void generic_suspend_disable_irqs(void)
673 {
674 	/* Disable the decrementer, so that it doesn't interfere
675 	 * with suspending.
676 	 */
677 
678 	set_dec(decrementer_max);
679 	local_irq_disable();
680 	set_dec(decrementer_max);
681 }
682 
683 static void generic_suspend_enable_irqs(void)
684 {
685 	local_irq_enable();
686 }
687 
688 /* Overrides the weak version in kernel/power/main.c */
689 void arch_suspend_disable_irqs(void)
690 {
691 	if (ppc_md.suspend_disable_irqs)
692 		ppc_md.suspend_disable_irqs();
693 	generic_suspend_disable_irqs();
694 }
695 
696 /* Overrides the weak version in kernel/power/main.c */
697 void arch_suspend_enable_irqs(void)
698 {
699 	generic_suspend_enable_irqs();
700 	if (ppc_md.suspend_enable_irqs)
701 		ppc_md.suspend_enable_irqs();
702 }
703 #endif
704 
705 unsigned long long tb_to_ns(unsigned long long ticks)
706 {
707 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
708 }
709 EXPORT_SYMBOL_GPL(tb_to_ns);
710 
711 /*
712  * Scheduler clock - returns current time in nanosec units.
713  *
714  * Note: mulhdu(a, b) (multiply high double unsigned) returns
715  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
716  * are 64-bit unsigned numbers.
717  */
718 notrace unsigned long long sched_clock(void)
719 {
720 	if (__USE_RTC())
721 		return get_rtc();
722 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
723 }
724 
725 
726 #ifdef CONFIG_PPC_PSERIES
727 
728 /*
729  * Running clock - attempts to give a view of time passing for a virtualised
730  * kernels.
731  * Uses the VTB register if available otherwise a next best guess.
732  */
733 unsigned long long running_clock(void)
734 {
735 	/*
736 	 * Don't read the VTB as a host since KVM does not switch in host
737 	 * timebase into the VTB when it takes a guest off the CPU, reading the
738 	 * VTB would result in reading 'last switched out' guest VTB.
739 	 *
740 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
741 	 * would be unsafe to rely only on the #ifdef above.
742 	 */
743 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
744 	    cpu_has_feature(CPU_FTR_ARCH_207S))
745 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
746 
747 	/*
748 	 * This is a next best approximation without a VTB.
749 	 * On a host which is running bare metal there should never be any stolen
750 	 * time and on a host which doesn't do any virtualisation TB *should* equal
751 	 * VTB so it makes no difference anyway.
752 	 */
753 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
754 }
755 #endif
756 
757 static int __init get_freq(char *name, int cells, unsigned long *val)
758 {
759 	struct device_node *cpu;
760 	const __be32 *fp;
761 	int found = 0;
762 
763 	/* The cpu node should have timebase and clock frequency properties */
764 	cpu = of_find_node_by_type(NULL, "cpu");
765 
766 	if (cpu) {
767 		fp = of_get_property(cpu, name, NULL);
768 		if (fp) {
769 			found = 1;
770 			*val = of_read_ulong(fp, cells);
771 		}
772 
773 		of_node_put(cpu);
774 	}
775 
776 	return found;
777 }
778 
779 static void start_cpu_decrementer(void)
780 {
781 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
782 	unsigned int tcr;
783 
784 	/* Clear any pending timer interrupts */
785 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
786 
787 	tcr = mfspr(SPRN_TCR);
788 	/*
789 	 * The watchdog may have already been enabled by u-boot. So leave
790 	 * TRC[WP] (Watchdog Period) alone.
791 	 */
792 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
793 	tcr |= TCR_DIE;		/* Enable decrementer */
794 	mtspr(SPRN_TCR, tcr);
795 #endif
796 }
797 
798 void __init generic_calibrate_decr(void)
799 {
800 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
801 
802 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
803 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
804 
805 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
806 				"(not found)\n");
807 	}
808 
809 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
810 
811 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
812 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
813 
814 		printk(KERN_ERR "WARNING: Estimating processor frequency "
815 				"(not found)\n");
816 	}
817 }
818 
819 int update_persistent_clock64(struct timespec64 now)
820 {
821 	struct rtc_time tm;
822 
823 	if (!ppc_md.set_rtc_time)
824 		return -ENODEV;
825 
826 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
827 
828 	return ppc_md.set_rtc_time(&tm);
829 }
830 
831 static void __read_persistent_clock(struct timespec64 *ts)
832 {
833 	struct rtc_time tm;
834 	static int first = 1;
835 
836 	ts->tv_nsec = 0;
837 	/* XXX this is a litle fragile but will work okay in the short term */
838 	if (first) {
839 		first = 0;
840 		if (ppc_md.time_init)
841 			timezone_offset = ppc_md.time_init();
842 
843 		/* get_boot_time() isn't guaranteed to be safe to call late */
844 		if (ppc_md.get_boot_time) {
845 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
846 			return;
847 		}
848 	}
849 	if (!ppc_md.get_rtc_time) {
850 		ts->tv_sec = 0;
851 		return;
852 	}
853 	ppc_md.get_rtc_time(&tm);
854 
855 	ts->tv_sec = rtc_tm_to_time64(&tm);
856 }
857 
858 void read_persistent_clock64(struct timespec64 *ts)
859 {
860 	__read_persistent_clock(ts);
861 
862 	/* Sanitize it in case real time clock is set below EPOCH */
863 	if (ts->tv_sec < 0) {
864 		ts->tv_sec = 0;
865 		ts->tv_nsec = 0;
866 	}
867 
868 }
869 
870 /* clocksource code */
871 static notrace u64 rtc_read(struct clocksource *cs)
872 {
873 	return (u64)get_rtc();
874 }
875 
876 static notrace u64 timebase_read(struct clocksource *cs)
877 {
878 	return (u64)get_tb();
879 }
880 
881 
882 void update_vsyscall(struct timekeeper *tk)
883 {
884 	struct timespec xt;
885 	struct clocksource *clock = tk->tkr_mono.clock;
886 	u32 mult = tk->tkr_mono.mult;
887 	u32 shift = tk->tkr_mono.shift;
888 	u64 cycle_last = tk->tkr_mono.cycle_last;
889 	u64 new_tb_to_xs, new_stamp_xsec;
890 	u64 frac_sec;
891 
892 	if (clock != &clocksource_timebase)
893 		return;
894 
895 	xt.tv_sec = tk->xtime_sec;
896 	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
897 
898 	/* Make userspace gettimeofday spin until we're done. */
899 	++vdso_data->tb_update_count;
900 	smp_mb();
901 
902 	/*
903 	 * This computes ((2^20 / 1e9) * mult) >> shift as a
904 	 * 0.64 fixed-point fraction.
905 	 * The computation in the else clause below won't overflow
906 	 * (as long as the timebase frequency is >= 1.049 MHz)
907 	 * but loses precision because we lose the low bits of the constant
908 	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
909 	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
910 	 * over a second.  (Shift values are usually 22, 23 or 24.)
911 	 * For high frequency clocks such as the 512MHz timebase clock
912 	 * on POWER[6789], the mult value is small (e.g. 32768000)
913 	 * and so we can shift the constant by 16 initially
914 	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
915 	 * remaining shifts after the multiplication, which gives a
916 	 * more accurate result (e.g. with mult = 32768000, shift = 24,
917 	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
918 	 */
919 	if (mult <= 62500000 && clock->shift >= 16)
920 		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
921 	else
922 		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
923 
924 	/*
925 	 * Compute the fractional second in units of 2^-32 seconds.
926 	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
927 	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
928 	 * it in units of 2^-32 seconds.
929 	 * We assume shift <= 32 because clocks_calc_mult_shift()
930 	 * generates shift values in the range 0 - 32.
931 	 */
932 	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
933 	do_div(frac_sec, NSEC_PER_SEC);
934 
935 	/*
936 	 * Work out new stamp_xsec value for any legacy users of systemcfg.
937 	 * stamp_xsec is in units of 2^-20 seconds.
938 	 */
939 	new_stamp_xsec = frac_sec >> 12;
940 	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
941 
942 	/*
943 	 * tb_update_count is used to allow the userspace gettimeofday code
944 	 * to assure itself that it sees a consistent view of the tb_to_xs and
945 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
946 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
947 	 * the two values of tb_update_count match and are even then the
948 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
949 	 * loops back and reads them again until this criteria is met.
950 	 */
951 	vdso_data->tb_orig_stamp = cycle_last;
952 	vdso_data->stamp_xsec = new_stamp_xsec;
953 	vdso_data->tb_to_xs = new_tb_to_xs;
954 	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
955 	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
956 	vdso_data->stamp_xtime = xt;
957 	vdso_data->stamp_sec_fraction = frac_sec;
958 	smp_wmb();
959 	++(vdso_data->tb_update_count);
960 }
961 
962 void update_vsyscall_tz(void)
963 {
964 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
965 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
966 }
967 
968 static void __init clocksource_init(void)
969 {
970 	struct clocksource *clock;
971 
972 	if (__USE_RTC())
973 		clock = &clocksource_rtc;
974 	else
975 		clock = &clocksource_timebase;
976 
977 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
978 		printk(KERN_ERR "clocksource: %s is already registered\n",
979 		       clock->name);
980 		return;
981 	}
982 
983 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
984 	       clock->name, clock->mult, clock->shift);
985 }
986 
987 static int decrementer_set_next_event(unsigned long evt,
988 				      struct clock_event_device *dev)
989 {
990 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
991 	set_dec(evt);
992 
993 	/* We may have raced with new irq work */
994 	if (test_irq_work_pending())
995 		set_dec(1);
996 
997 	return 0;
998 }
999 
1000 static int decrementer_shutdown(struct clock_event_device *dev)
1001 {
1002 	decrementer_set_next_event(decrementer_max, dev);
1003 	return 0;
1004 }
1005 
1006 static void register_decrementer_clockevent(int cpu)
1007 {
1008 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
1009 
1010 	*dec = decrementer_clockevent;
1011 	dec->cpumask = cpumask_of(cpu);
1012 
1013 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
1014 
1015 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1016 		    dec->name, dec->mult, dec->shift, cpu);
1017 
1018 	/* Set values for KVM, see kvm_emulate_dec() */
1019 	decrementer_clockevent.mult = dec->mult;
1020 	decrementer_clockevent.shift = dec->shift;
1021 }
1022 
1023 static void enable_large_decrementer(void)
1024 {
1025 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1026 		return;
1027 
1028 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1029 		return;
1030 
1031 	/*
1032 	 * If we're running as the hypervisor we need to enable the LD manually
1033 	 * otherwise firmware should have done it for us.
1034 	 */
1035 	if (cpu_has_feature(CPU_FTR_HVMODE))
1036 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1037 }
1038 
1039 static void __init set_decrementer_max(void)
1040 {
1041 	struct device_node *cpu;
1042 	u32 bits = 32;
1043 
1044 	/* Prior to ISAv3 the decrementer is always 32 bit */
1045 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1046 		return;
1047 
1048 	cpu = of_find_node_by_type(NULL, "cpu");
1049 
1050 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1051 		if (bits > 64 || bits < 32) {
1052 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1053 			bits = 32;
1054 		}
1055 
1056 		/* calculate the signed maximum given this many bits */
1057 		decrementer_max = (1ul << (bits - 1)) - 1;
1058 	}
1059 
1060 	of_node_put(cpu);
1061 
1062 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1063 		bits, decrementer_max);
1064 }
1065 
1066 static void __init init_decrementer_clockevent(void)
1067 {
1068 	register_decrementer_clockevent(smp_processor_id());
1069 }
1070 
1071 void secondary_cpu_time_init(void)
1072 {
1073 	/* Enable and test the large decrementer for this cpu */
1074 	enable_large_decrementer();
1075 
1076 	/* Start the decrementer on CPUs that have manual control
1077 	 * such as BookE
1078 	 */
1079 	start_cpu_decrementer();
1080 
1081 	/* FIME: Should make unrelatred change to move snapshot_timebase
1082 	 * call here ! */
1083 	register_decrementer_clockevent(smp_processor_id());
1084 }
1085 
1086 /* This function is only called on the boot processor */
1087 void __init time_init(void)
1088 {
1089 	struct div_result res;
1090 	u64 scale;
1091 	unsigned shift;
1092 
1093 	if (__USE_RTC()) {
1094 		/* 601 processor: dec counts down by 128 every 128ns */
1095 		ppc_tb_freq = 1000000000;
1096 	} else {
1097 		/* Normal PowerPC with timebase register */
1098 		ppc_md.calibrate_decr();
1099 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1100 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1101 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1102 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1103 	}
1104 
1105 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1106 	tb_ticks_per_sec = ppc_tb_freq;
1107 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1108 	calc_cputime_factors();
1109 
1110 	/*
1111 	 * Compute scale factor for sched_clock.
1112 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1113 	 * which is the timebase frequency.
1114 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1115 	 * the 128-bit result as a 64.64 fixed-point number.
1116 	 * We then shift that number right until it is less than 1.0,
1117 	 * giving us the scale factor and shift count to use in
1118 	 * sched_clock().
1119 	 */
1120 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1121 	scale = res.result_low;
1122 	for (shift = 0; res.result_high != 0; ++shift) {
1123 		scale = (scale >> 1) | (res.result_high << 63);
1124 		res.result_high >>= 1;
1125 	}
1126 	tb_to_ns_scale = scale;
1127 	tb_to_ns_shift = shift;
1128 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1129 	boot_tb = get_tb_or_rtc();
1130 
1131 	/* If platform provided a timezone (pmac), we correct the time */
1132 	if (timezone_offset) {
1133 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1134 		sys_tz.tz_dsttime = 0;
1135 	}
1136 
1137 	vdso_data->tb_update_count = 0;
1138 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1139 
1140 	/* initialise and enable the large decrementer (if we have one) */
1141 	set_decrementer_max();
1142 	enable_large_decrementer();
1143 
1144 	/* Start the decrementer on CPUs that have manual control
1145 	 * such as BookE
1146 	 */
1147 	start_cpu_decrementer();
1148 
1149 	/* Register the clocksource */
1150 	clocksource_init();
1151 
1152 	init_decrementer_clockevent();
1153 	tick_setup_hrtimer_broadcast();
1154 
1155 #ifdef CONFIG_COMMON_CLK
1156 	of_clk_init(NULL);
1157 #endif
1158 }
1159 
1160 /*
1161  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1162  * result.
1163  */
1164 void div128_by_32(u64 dividend_high, u64 dividend_low,
1165 		  unsigned divisor, struct div_result *dr)
1166 {
1167 	unsigned long a, b, c, d;
1168 	unsigned long w, x, y, z;
1169 	u64 ra, rb, rc;
1170 
1171 	a = dividend_high >> 32;
1172 	b = dividend_high & 0xffffffff;
1173 	c = dividend_low >> 32;
1174 	d = dividend_low & 0xffffffff;
1175 
1176 	w = a / divisor;
1177 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1178 
1179 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1180 	x = ra;
1181 
1182 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1183 	y = rb;
1184 
1185 	do_div(rc, divisor);
1186 	z = rc;
1187 
1188 	dr->result_high = ((u64)w << 32) + x;
1189 	dr->result_low  = ((u64)y << 32) + z;
1190 
1191 }
1192 
1193 /* We don't need to calibrate delay, we use the CPU timebase for that */
1194 void calibrate_delay(void)
1195 {
1196 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1197 	 * as the number of __delay(1) in a jiffy, so make it so
1198 	 */
1199 	loops_per_jiffy = tb_ticks_per_jiffy;
1200 }
1201 
1202 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1203 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1204 {
1205 	ppc_md.get_rtc_time(tm);
1206 	return 0;
1207 }
1208 
1209 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1210 {
1211 	if (!ppc_md.set_rtc_time)
1212 		return -EOPNOTSUPP;
1213 
1214 	if (ppc_md.set_rtc_time(tm) < 0)
1215 		return -EOPNOTSUPP;
1216 
1217 	return 0;
1218 }
1219 
1220 static const struct rtc_class_ops rtc_generic_ops = {
1221 	.read_time = rtc_generic_get_time,
1222 	.set_time = rtc_generic_set_time,
1223 };
1224 
1225 static int __init rtc_init(void)
1226 {
1227 	struct platform_device *pdev;
1228 
1229 	if (!ppc_md.get_rtc_time)
1230 		return -ENODEV;
1231 
1232 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1233 					     &rtc_generic_ops,
1234 					     sizeof(rtc_generic_ops));
1235 
1236 	return PTR_ERR_OR_ZERO(pdev);
1237 }
1238 
1239 device_initcall(rtc_init);
1240 #endif
1241