xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77 
78 static u64 timebase_read(struct clocksource *);
79 static struct clocksource clocksource_timebase = {
80 	.name         = "timebase",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.read         = timebase_read,
85 };
86 
87 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
88 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
89 
90 static int decrementer_set_next_event(unsigned long evt,
91 				      struct clock_event_device *dev);
92 static int decrementer_shutdown(struct clock_event_device *evt);
93 
94 struct clock_event_device decrementer_clockevent = {
95 	.name			= "decrementer",
96 	.rating			= 200,
97 	.irq			= 0,
98 	.set_next_event		= decrementer_set_next_event,
99 	.set_state_oneshot_stopped = decrementer_shutdown,
100 	.set_state_shutdown	= decrementer_shutdown,
101 	.tick_resume		= decrementer_shutdown,
102 	.features		= CLOCK_EVT_FEAT_ONESHOT |
103 				  CLOCK_EVT_FEAT_C3STOP,
104 };
105 EXPORT_SYMBOL(decrementer_clockevent);
106 
107 DEFINE_PER_CPU(u64, decrementers_next_tb);
108 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
109 
110 #define XSEC_PER_SEC (1024*1024)
111 
112 #ifdef CONFIG_PPC64
113 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
114 #else
115 /* compute ((xsec << 12) * max) >> 32 */
116 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
117 #endif
118 
119 unsigned long tb_ticks_per_jiffy;
120 unsigned long tb_ticks_per_usec = 100; /* sane default */
121 EXPORT_SYMBOL(tb_ticks_per_usec);
122 unsigned long tb_ticks_per_sec;
123 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
124 
125 DEFINE_SPINLOCK(rtc_lock);
126 EXPORT_SYMBOL_GPL(rtc_lock);
127 
128 static u64 tb_to_ns_scale __read_mostly;
129 static unsigned tb_to_ns_shift __read_mostly;
130 static u64 boot_tb __read_mostly;
131 
132 extern struct timezone sys_tz;
133 static long timezone_offset;
134 
135 unsigned long ppc_proc_freq;
136 EXPORT_SYMBOL_GPL(ppc_proc_freq);
137 unsigned long ppc_tb_freq;
138 EXPORT_SYMBOL_GPL(ppc_tb_freq);
139 
140 bool tb_invalid;
141 
142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
143 /*
144  * Factor for converting from cputime_t (timebase ticks) to
145  * microseconds. This is stored as 0.64 fixed-point binary fraction.
146  */
147 u64 __cputime_usec_factor;
148 EXPORT_SYMBOL(__cputime_usec_factor);
149 
150 #ifdef CONFIG_PPC_SPLPAR
151 void (*dtl_consumer)(struct dtl_entry *, u64);
152 #endif
153 
154 static void calc_cputime_factors(void)
155 {
156 	struct div_result res;
157 
158 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
159 	__cputime_usec_factor = res.result_low;
160 }
161 
162 /*
163  * Read the SPURR on systems that have it, otherwise the PURR,
164  * or if that doesn't exist return the timebase value passed in.
165  */
166 static inline unsigned long read_spurr(unsigned long tb)
167 {
168 	if (cpu_has_feature(CPU_FTR_SPURR))
169 		return mfspr(SPRN_SPURR);
170 	if (cpu_has_feature(CPU_FTR_PURR))
171 		return mfspr(SPRN_PURR);
172 	return tb;
173 }
174 
175 #ifdef CONFIG_PPC_SPLPAR
176 
177 #include <asm/dtl.h>
178 
179 /*
180  * Scan the dispatch trace log and count up the stolen time.
181  * Should be called with interrupts disabled.
182  */
183 static u64 scan_dispatch_log(u64 stop_tb)
184 {
185 	u64 i = local_paca->dtl_ridx;
186 	struct dtl_entry *dtl = local_paca->dtl_curr;
187 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
188 	struct lppaca *vpa = local_paca->lppaca_ptr;
189 	u64 tb_delta;
190 	u64 stolen = 0;
191 	u64 dtb;
192 
193 	if (!dtl)
194 		return 0;
195 
196 	if (i == be64_to_cpu(vpa->dtl_idx))
197 		return 0;
198 	while (i < be64_to_cpu(vpa->dtl_idx)) {
199 		dtb = be64_to_cpu(dtl->timebase);
200 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
201 			be32_to_cpu(dtl->ready_to_enqueue_time);
202 		barrier();
203 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
204 			/* buffer has overflowed */
205 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
206 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
207 			continue;
208 		}
209 		if (dtb > stop_tb)
210 			break;
211 		if (dtl_consumer)
212 			dtl_consumer(dtl, i);
213 		stolen += tb_delta;
214 		++i;
215 		++dtl;
216 		if (dtl == dtl_end)
217 			dtl = local_paca->dispatch_log;
218 	}
219 	local_paca->dtl_ridx = i;
220 	local_paca->dtl_curr = dtl;
221 	return stolen;
222 }
223 
224 /*
225  * Accumulate stolen time by scanning the dispatch trace log.
226  * Called on entry from user mode.
227  */
228 void notrace accumulate_stolen_time(void)
229 {
230 	u64 sst, ust;
231 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
232 	struct cpu_accounting_data *acct = &local_paca->accounting;
233 
234 	/* We are called early in the exception entry, before
235 	 * soft/hard_enabled are sync'ed to the expected state
236 	 * for the exception. We are hard disabled but the PACA
237 	 * needs to reflect that so various debug stuff doesn't
238 	 * complain
239 	 */
240 	irq_soft_mask_set(IRQS_DISABLED);
241 
242 	sst = scan_dispatch_log(acct->starttime_user);
243 	ust = scan_dispatch_log(acct->starttime);
244 	acct->stime -= sst;
245 	acct->utime -= ust;
246 	acct->steal_time += ust + sst;
247 
248 	irq_soft_mask_set(save_irq_soft_mask);
249 }
250 
251 static inline u64 calculate_stolen_time(u64 stop_tb)
252 {
253 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
254 		return 0;
255 
256 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
257 		return scan_dispatch_log(stop_tb);
258 
259 	return 0;
260 }
261 
262 #else /* CONFIG_PPC_SPLPAR */
263 static inline u64 calculate_stolen_time(u64 stop_tb)
264 {
265 	return 0;
266 }
267 
268 #endif /* CONFIG_PPC_SPLPAR */
269 
270 /*
271  * Account time for a transition between system, hard irq
272  * or soft irq state.
273  */
274 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
275 					unsigned long now, unsigned long stime)
276 {
277 	unsigned long stime_scaled = 0;
278 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
279 	unsigned long nowscaled, deltascaled;
280 	unsigned long utime, utime_scaled;
281 
282 	nowscaled = read_spurr(now);
283 	deltascaled = nowscaled - acct->startspurr;
284 	acct->startspurr = nowscaled;
285 	utime = acct->utime - acct->utime_sspurr;
286 	acct->utime_sspurr = acct->utime;
287 
288 	/*
289 	 * Because we don't read the SPURR on every kernel entry/exit,
290 	 * deltascaled includes both user and system SPURR ticks.
291 	 * Apportion these ticks to system SPURR ticks and user
292 	 * SPURR ticks in the same ratio as the system time (delta)
293 	 * and user time (udelta) values obtained from the timebase
294 	 * over the same interval.  The system ticks get accounted here;
295 	 * the user ticks get saved up in paca->user_time_scaled to be
296 	 * used by account_process_tick.
297 	 */
298 	stime_scaled = stime;
299 	utime_scaled = utime;
300 	if (deltascaled != stime + utime) {
301 		if (utime) {
302 			stime_scaled = deltascaled * stime / (stime + utime);
303 			utime_scaled = deltascaled - stime_scaled;
304 		} else {
305 			stime_scaled = deltascaled;
306 		}
307 	}
308 	acct->utime_scaled += utime_scaled;
309 #endif
310 
311 	return stime_scaled;
312 }
313 
314 static unsigned long vtime_delta(struct task_struct *tsk,
315 				 unsigned long *stime_scaled,
316 				 unsigned long *steal_time)
317 {
318 	unsigned long now, stime;
319 	struct cpu_accounting_data *acct = get_accounting(tsk);
320 
321 	WARN_ON_ONCE(!irqs_disabled());
322 
323 	now = mftb();
324 	stime = now - acct->starttime;
325 	acct->starttime = now;
326 
327 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
328 
329 	*steal_time = calculate_stolen_time(now);
330 
331 	return stime;
332 }
333 
334 void vtime_account_kernel(struct task_struct *tsk)
335 {
336 	unsigned long stime, stime_scaled, steal_time;
337 	struct cpu_accounting_data *acct = get_accounting(tsk);
338 
339 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
340 
341 	stime -= min(stime, steal_time);
342 	acct->steal_time += steal_time;
343 
344 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
345 		acct->gtime += stime;
346 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
347 		acct->utime_scaled += stime_scaled;
348 #endif
349 	} else {
350 		if (hardirq_count())
351 			acct->hardirq_time += stime;
352 		else if (in_serving_softirq())
353 			acct->softirq_time += stime;
354 		else
355 			acct->stime += stime;
356 
357 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
358 		acct->stime_scaled += stime_scaled;
359 #endif
360 	}
361 }
362 EXPORT_SYMBOL_GPL(vtime_account_kernel);
363 
364 void vtime_account_idle(struct task_struct *tsk)
365 {
366 	unsigned long stime, stime_scaled, steal_time;
367 	struct cpu_accounting_data *acct = get_accounting(tsk);
368 
369 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
370 	acct->idle_time += stime + steal_time;
371 }
372 
373 static void vtime_flush_scaled(struct task_struct *tsk,
374 			       struct cpu_accounting_data *acct)
375 {
376 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
377 	if (acct->utime_scaled)
378 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
379 	if (acct->stime_scaled)
380 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
381 
382 	acct->utime_scaled = 0;
383 	acct->utime_sspurr = 0;
384 	acct->stime_scaled = 0;
385 #endif
386 }
387 
388 /*
389  * Account the whole cputime accumulated in the paca
390  * Must be called with interrupts disabled.
391  * Assumes that vtime_account_kernel/idle() has been called
392  * recently (i.e. since the last entry from usermode) so that
393  * get_paca()->user_time_scaled is up to date.
394  */
395 void vtime_flush(struct task_struct *tsk)
396 {
397 	struct cpu_accounting_data *acct = get_accounting(tsk);
398 
399 	if (acct->utime)
400 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
401 
402 	if (acct->gtime)
403 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
404 
405 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
406 		account_steal_time(cputime_to_nsecs(acct->steal_time));
407 		acct->steal_time = 0;
408 	}
409 
410 	if (acct->idle_time)
411 		account_idle_time(cputime_to_nsecs(acct->idle_time));
412 
413 	if (acct->stime)
414 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
415 					  CPUTIME_SYSTEM);
416 
417 	if (acct->hardirq_time)
418 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
419 					  CPUTIME_IRQ);
420 	if (acct->softirq_time)
421 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
422 					  CPUTIME_SOFTIRQ);
423 
424 	vtime_flush_scaled(tsk, acct);
425 
426 	acct->utime = 0;
427 	acct->gtime = 0;
428 	acct->idle_time = 0;
429 	acct->stime = 0;
430 	acct->hardirq_time = 0;
431 	acct->softirq_time = 0;
432 }
433 
434 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
435 #define calc_cputime_factors()
436 #endif
437 
438 void __delay(unsigned long loops)
439 {
440 	unsigned long start;
441 
442 	spin_begin();
443 	if (tb_invalid) {
444 		/*
445 		 * TB is in error state and isn't ticking anymore.
446 		 * HMI handler was unable to recover from TB error.
447 		 * Return immediately, so that kernel won't get stuck here.
448 		 */
449 		spin_cpu_relax();
450 	} else {
451 		start = mftb();
452 		while (mftb() - start < loops)
453 			spin_cpu_relax();
454 	}
455 	spin_end();
456 }
457 EXPORT_SYMBOL(__delay);
458 
459 void udelay(unsigned long usecs)
460 {
461 	__delay(tb_ticks_per_usec * usecs);
462 }
463 EXPORT_SYMBOL(udelay);
464 
465 #ifdef CONFIG_SMP
466 unsigned long profile_pc(struct pt_regs *regs)
467 {
468 	unsigned long pc = instruction_pointer(regs);
469 
470 	if (in_lock_functions(pc))
471 		return regs->link;
472 
473 	return pc;
474 }
475 EXPORT_SYMBOL(profile_pc);
476 #endif
477 
478 #ifdef CONFIG_IRQ_WORK
479 
480 /*
481  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
482  */
483 #ifdef CONFIG_PPC64
484 static inline unsigned long test_irq_work_pending(void)
485 {
486 	unsigned long x;
487 
488 	asm volatile("lbz %0,%1(13)"
489 		: "=r" (x)
490 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
491 	return x;
492 }
493 
494 static inline void set_irq_work_pending_flag(void)
495 {
496 	asm volatile("stb %0,%1(13)" : :
497 		"r" (1),
498 		"i" (offsetof(struct paca_struct, irq_work_pending)));
499 }
500 
501 static inline void clear_irq_work_pending(void)
502 {
503 	asm volatile("stb %0,%1(13)" : :
504 		"r" (0),
505 		"i" (offsetof(struct paca_struct, irq_work_pending)));
506 }
507 
508 #else /* 32-bit */
509 
510 DEFINE_PER_CPU(u8, irq_work_pending);
511 
512 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
513 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
514 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
515 
516 #endif /* 32 vs 64 bit */
517 
518 void arch_irq_work_raise(void)
519 {
520 	/*
521 	 * 64-bit code that uses irq soft-mask can just cause an immediate
522 	 * interrupt here that gets soft masked, if this is called under
523 	 * local_irq_disable(). It might be possible to prevent that happening
524 	 * by noticing interrupts are disabled and setting decrementer pending
525 	 * to be replayed when irqs are enabled. The problem there is that
526 	 * tracing can call irq_work_raise, including in code that does low
527 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
528 	 * which could get tangled up if we're messing with the same state
529 	 * here.
530 	 */
531 	preempt_disable();
532 	set_irq_work_pending_flag();
533 	set_dec(1);
534 	preempt_enable();
535 }
536 
537 #else  /* CONFIG_IRQ_WORK */
538 
539 #define test_irq_work_pending()	0
540 #define clear_irq_work_pending()
541 
542 #endif /* CONFIG_IRQ_WORK */
543 
544 /*
545  * timer_interrupt - gets called when the decrementer overflows,
546  * with interrupts disabled.
547  */
548 void timer_interrupt(struct pt_regs *regs)
549 {
550 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
551 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
552 	struct pt_regs *old_regs;
553 	u64 now;
554 
555 	/* Some implementations of hotplug will get timer interrupts while
556 	 * offline, just ignore these and we also need to set
557 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
558 	 * don't replay timer interrupt when return, otherwise we'll trap
559 	 * here infinitely :(
560 	 */
561 	if (unlikely(!cpu_online(smp_processor_id()))) {
562 		*next_tb = ~(u64)0;
563 		set_dec(decrementer_max);
564 		return;
565 	}
566 
567 	/* Ensure a positive value is written to the decrementer, or else
568 	 * some CPUs will continue to take decrementer exceptions. When the
569 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
570 	 * 31 bits, which is about 4 seconds on most systems, which gives
571 	 * the watchdog a chance of catching timer interrupt hard lockups.
572 	 */
573 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
574 		set_dec(0x7fffffff);
575 	else
576 		set_dec(decrementer_max);
577 
578 	/* Conditionally hard-enable interrupts now that the DEC has been
579 	 * bumped to its maximum value
580 	 */
581 	may_hard_irq_enable();
582 
583 
584 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
585 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
586 		do_IRQ(regs);
587 #endif
588 
589 	old_regs = set_irq_regs(regs);
590 	irq_enter();
591 	trace_timer_interrupt_entry(regs);
592 
593 	if (test_irq_work_pending()) {
594 		clear_irq_work_pending();
595 		irq_work_run();
596 	}
597 
598 	now = get_tb();
599 	if (now >= *next_tb) {
600 		*next_tb = ~(u64)0;
601 		if (evt->event_handler)
602 			evt->event_handler(evt);
603 		__this_cpu_inc(irq_stat.timer_irqs_event);
604 	} else {
605 		now = *next_tb - now;
606 		if (now <= decrementer_max)
607 			set_dec(now);
608 		/* We may have raced with new irq work */
609 		if (test_irq_work_pending())
610 			set_dec(1);
611 		__this_cpu_inc(irq_stat.timer_irqs_others);
612 	}
613 
614 	trace_timer_interrupt_exit(regs);
615 	irq_exit();
616 	set_irq_regs(old_regs);
617 }
618 EXPORT_SYMBOL(timer_interrupt);
619 
620 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
621 void timer_broadcast_interrupt(void)
622 {
623 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
624 
625 	*next_tb = ~(u64)0;
626 	tick_receive_broadcast();
627 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
628 }
629 #endif
630 
631 #ifdef CONFIG_SUSPEND
632 static void generic_suspend_disable_irqs(void)
633 {
634 	/* Disable the decrementer, so that it doesn't interfere
635 	 * with suspending.
636 	 */
637 
638 	set_dec(decrementer_max);
639 	local_irq_disable();
640 	set_dec(decrementer_max);
641 }
642 
643 static void generic_suspend_enable_irqs(void)
644 {
645 	local_irq_enable();
646 }
647 
648 /* Overrides the weak version in kernel/power/main.c */
649 void arch_suspend_disable_irqs(void)
650 {
651 	if (ppc_md.suspend_disable_irqs)
652 		ppc_md.suspend_disable_irqs();
653 	generic_suspend_disable_irqs();
654 }
655 
656 /* Overrides the weak version in kernel/power/main.c */
657 void arch_suspend_enable_irqs(void)
658 {
659 	generic_suspend_enable_irqs();
660 	if (ppc_md.suspend_enable_irqs)
661 		ppc_md.suspend_enable_irqs();
662 }
663 #endif
664 
665 unsigned long long tb_to_ns(unsigned long long ticks)
666 {
667 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
668 }
669 EXPORT_SYMBOL_GPL(tb_to_ns);
670 
671 /*
672  * Scheduler clock - returns current time in nanosec units.
673  *
674  * Note: mulhdu(a, b) (multiply high double unsigned) returns
675  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
676  * are 64-bit unsigned numbers.
677  */
678 notrace unsigned long long sched_clock(void)
679 {
680 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
681 }
682 
683 
684 #ifdef CONFIG_PPC_PSERIES
685 
686 /*
687  * Running clock - attempts to give a view of time passing for a virtualised
688  * kernels.
689  * Uses the VTB register if available otherwise a next best guess.
690  */
691 unsigned long long running_clock(void)
692 {
693 	/*
694 	 * Don't read the VTB as a host since KVM does not switch in host
695 	 * timebase into the VTB when it takes a guest off the CPU, reading the
696 	 * VTB would result in reading 'last switched out' guest VTB.
697 	 *
698 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
699 	 * would be unsafe to rely only on the #ifdef above.
700 	 */
701 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
702 	    cpu_has_feature(CPU_FTR_ARCH_207S))
703 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
704 
705 	/*
706 	 * This is a next best approximation without a VTB.
707 	 * On a host which is running bare metal there should never be any stolen
708 	 * time and on a host which doesn't do any virtualisation TB *should* equal
709 	 * VTB so it makes no difference anyway.
710 	 */
711 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
712 }
713 #endif
714 
715 static int __init get_freq(char *name, int cells, unsigned long *val)
716 {
717 	struct device_node *cpu;
718 	const __be32 *fp;
719 	int found = 0;
720 
721 	/* The cpu node should have timebase and clock frequency properties */
722 	cpu = of_find_node_by_type(NULL, "cpu");
723 
724 	if (cpu) {
725 		fp = of_get_property(cpu, name, NULL);
726 		if (fp) {
727 			found = 1;
728 			*val = of_read_ulong(fp, cells);
729 		}
730 
731 		of_node_put(cpu);
732 	}
733 
734 	return found;
735 }
736 
737 static void start_cpu_decrementer(void)
738 {
739 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
740 	unsigned int tcr;
741 
742 	/* Clear any pending timer interrupts */
743 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
744 
745 	tcr = mfspr(SPRN_TCR);
746 	/*
747 	 * The watchdog may have already been enabled by u-boot. So leave
748 	 * TRC[WP] (Watchdog Period) alone.
749 	 */
750 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
751 	tcr |= TCR_DIE;		/* Enable decrementer */
752 	mtspr(SPRN_TCR, tcr);
753 #endif
754 }
755 
756 void __init generic_calibrate_decr(void)
757 {
758 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
759 
760 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
761 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
762 
763 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
764 				"(not found)\n");
765 	}
766 
767 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
768 
769 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
770 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
771 
772 		printk(KERN_ERR "WARNING: Estimating processor frequency "
773 				"(not found)\n");
774 	}
775 }
776 
777 int update_persistent_clock64(struct timespec64 now)
778 {
779 	struct rtc_time tm;
780 
781 	if (!ppc_md.set_rtc_time)
782 		return -ENODEV;
783 
784 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
785 
786 	return ppc_md.set_rtc_time(&tm);
787 }
788 
789 static void __read_persistent_clock(struct timespec64 *ts)
790 {
791 	struct rtc_time tm;
792 	static int first = 1;
793 
794 	ts->tv_nsec = 0;
795 	/* XXX this is a litle fragile but will work okay in the short term */
796 	if (first) {
797 		first = 0;
798 		if (ppc_md.time_init)
799 			timezone_offset = ppc_md.time_init();
800 
801 		/* get_boot_time() isn't guaranteed to be safe to call late */
802 		if (ppc_md.get_boot_time) {
803 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
804 			return;
805 		}
806 	}
807 	if (!ppc_md.get_rtc_time) {
808 		ts->tv_sec = 0;
809 		return;
810 	}
811 	ppc_md.get_rtc_time(&tm);
812 
813 	ts->tv_sec = rtc_tm_to_time64(&tm);
814 }
815 
816 void read_persistent_clock64(struct timespec64 *ts)
817 {
818 	__read_persistent_clock(ts);
819 
820 	/* Sanitize it in case real time clock is set below EPOCH */
821 	if (ts->tv_sec < 0) {
822 		ts->tv_sec = 0;
823 		ts->tv_nsec = 0;
824 	}
825 
826 }
827 
828 /* clocksource code */
829 static notrace u64 timebase_read(struct clocksource *cs)
830 {
831 	return (u64)get_tb();
832 }
833 
834 
835 void update_vsyscall(struct timekeeper *tk)
836 {
837 	struct timespec64 xt;
838 	struct clocksource *clock = tk->tkr_mono.clock;
839 	u32 mult = tk->tkr_mono.mult;
840 	u32 shift = tk->tkr_mono.shift;
841 	u64 cycle_last = tk->tkr_mono.cycle_last;
842 	u64 new_tb_to_xs, new_stamp_xsec;
843 	u64 frac_sec;
844 
845 	if (clock != &clocksource_timebase)
846 		return;
847 
848 	xt.tv_sec = tk->xtime_sec;
849 	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
850 
851 	/* Make userspace gettimeofday spin until we're done. */
852 	++vdso_data->tb_update_count;
853 	smp_mb();
854 
855 	/*
856 	 * This computes ((2^20 / 1e9) * mult) >> shift as a
857 	 * 0.64 fixed-point fraction.
858 	 * The computation in the else clause below won't overflow
859 	 * (as long as the timebase frequency is >= 1.049 MHz)
860 	 * but loses precision because we lose the low bits of the constant
861 	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
862 	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
863 	 * over a second.  (Shift values are usually 22, 23 or 24.)
864 	 * For high frequency clocks such as the 512MHz timebase clock
865 	 * on POWER[6789], the mult value is small (e.g. 32768000)
866 	 * and so we can shift the constant by 16 initially
867 	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
868 	 * remaining shifts after the multiplication, which gives a
869 	 * more accurate result (e.g. with mult = 32768000, shift = 24,
870 	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
871 	 */
872 	if (mult <= 62500000 && clock->shift >= 16)
873 		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
874 	else
875 		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
876 
877 	/*
878 	 * Compute the fractional second in units of 2^-32 seconds.
879 	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
880 	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
881 	 * it in units of 2^-32 seconds.
882 	 * We assume shift <= 32 because clocks_calc_mult_shift()
883 	 * generates shift values in the range 0 - 32.
884 	 */
885 	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
886 	do_div(frac_sec, NSEC_PER_SEC);
887 
888 	/*
889 	 * Work out new stamp_xsec value for any legacy users of systemcfg.
890 	 * stamp_xsec is in units of 2^-20 seconds.
891 	 */
892 	new_stamp_xsec = frac_sec >> 12;
893 	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
894 
895 	/*
896 	 * tb_update_count is used to allow the userspace gettimeofday code
897 	 * to assure itself that it sees a consistent view of the tb_to_xs and
898 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
899 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
900 	 * the two values of tb_update_count match and are even then the
901 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
902 	 * loops back and reads them again until this criteria is met.
903 	 */
904 	vdso_data->tb_orig_stamp = cycle_last;
905 	vdso_data->stamp_xsec = new_stamp_xsec;
906 	vdso_data->tb_to_xs = new_tb_to_xs;
907 	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
908 	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
909 	vdso_data->stamp_xtime_sec = xt.tv_sec;
910 	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
911 	vdso_data->stamp_sec_fraction = frac_sec;
912 	vdso_data->hrtimer_res = hrtimer_resolution;
913 	smp_wmb();
914 	++(vdso_data->tb_update_count);
915 }
916 
917 void update_vsyscall_tz(void)
918 {
919 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
920 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
921 }
922 
923 static void __init clocksource_init(void)
924 {
925 	struct clocksource *clock = &clocksource_timebase;
926 
927 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
928 		printk(KERN_ERR "clocksource: %s is already registered\n",
929 		       clock->name);
930 		return;
931 	}
932 
933 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
934 	       clock->name, clock->mult, clock->shift);
935 }
936 
937 static int decrementer_set_next_event(unsigned long evt,
938 				      struct clock_event_device *dev)
939 {
940 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
941 	set_dec(evt);
942 
943 	/* We may have raced with new irq work */
944 	if (test_irq_work_pending())
945 		set_dec(1);
946 
947 	return 0;
948 }
949 
950 static int decrementer_shutdown(struct clock_event_device *dev)
951 {
952 	decrementer_set_next_event(decrementer_max, dev);
953 	return 0;
954 }
955 
956 static void register_decrementer_clockevent(int cpu)
957 {
958 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
959 
960 	*dec = decrementer_clockevent;
961 	dec->cpumask = cpumask_of(cpu);
962 
963 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
964 
965 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
966 		    dec->name, dec->mult, dec->shift, cpu);
967 
968 	/* Set values for KVM, see kvm_emulate_dec() */
969 	decrementer_clockevent.mult = dec->mult;
970 	decrementer_clockevent.shift = dec->shift;
971 }
972 
973 static void enable_large_decrementer(void)
974 {
975 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
976 		return;
977 
978 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
979 		return;
980 
981 	/*
982 	 * If we're running as the hypervisor we need to enable the LD manually
983 	 * otherwise firmware should have done it for us.
984 	 */
985 	if (cpu_has_feature(CPU_FTR_HVMODE))
986 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
987 }
988 
989 static void __init set_decrementer_max(void)
990 {
991 	struct device_node *cpu;
992 	u32 bits = 32;
993 
994 	/* Prior to ISAv3 the decrementer is always 32 bit */
995 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
996 		return;
997 
998 	cpu = of_find_node_by_type(NULL, "cpu");
999 
1000 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1001 		if (bits > 64 || bits < 32) {
1002 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1003 			bits = 32;
1004 		}
1005 
1006 		/* calculate the signed maximum given this many bits */
1007 		decrementer_max = (1ul << (bits - 1)) - 1;
1008 	}
1009 
1010 	of_node_put(cpu);
1011 
1012 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1013 		bits, decrementer_max);
1014 }
1015 
1016 static void __init init_decrementer_clockevent(void)
1017 {
1018 	register_decrementer_clockevent(smp_processor_id());
1019 }
1020 
1021 void secondary_cpu_time_init(void)
1022 {
1023 	/* Enable and test the large decrementer for this cpu */
1024 	enable_large_decrementer();
1025 
1026 	/* Start the decrementer on CPUs that have manual control
1027 	 * such as BookE
1028 	 */
1029 	start_cpu_decrementer();
1030 
1031 	/* FIME: Should make unrelatred change to move snapshot_timebase
1032 	 * call here ! */
1033 	register_decrementer_clockevent(smp_processor_id());
1034 }
1035 
1036 /* This function is only called on the boot processor */
1037 void __init time_init(void)
1038 {
1039 	struct div_result res;
1040 	u64 scale;
1041 	unsigned shift;
1042 
1043 	/* Normal PowerPC with timebase register */
1044 	ppc_md.calibrate_decr();
1045 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1046 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1047 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1048 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1049 
1050 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1051 	tb_ticks_per_sec = ppc_tb_freq;
1052 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1053 	calc_cputime_factors();
1054 
1055 	/*
1056 	 * Compute scale factor for sched_clock.
1057 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1058 	 * which is the timebase frequency.
1059 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1060 	 * the 128-bit result as a 64.64 fixed-point number.
1061 	 * We then shift that number right until it is less than 1.0,
1062 	 * giving us the scale factor and shift count to use in
1063 	 * sched_clock().
1064 	 */
1065 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1066 	scale = res.result_low;
1067 	for (shift = 0; res.result_high != 0; ++shift) {
1068 		scale = (scale >> 1) | (res.result_high << 63);
1069 		res.result_high >>= 1;
1070 	}
1071 	tb_to_ns_scale = scale;
1072 	tb_to_ns_shift = shift;
1073 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1074 	boot_tb = get_tb();
1075 
1076 	/* If platform provided a timezone (pmac), we correct the time */
1077 	if (timezone_offset) {
1078 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1079 		sys_tz.tz_dsttime = 0;
1080 	}
1081 
1082 	vdso_data->tb_update_count = 0;
1083 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1084 
1085 	/* initialise and enable the large decrementer (if we have one) */
1086 	set_decrementer_max();
1087 	enable_large_decrementer();
1088 
1089 	/* Start the decrementer on CPUs that have manual control
1090 	 * such as BookE
1091 	 */
1092 	start_cpu_decrementer();
1093 
1094 	/* Register the clocksource */
1095 	clocksource_init();
1096 
1097 	init_decrementer_clockevent();
1098 	tick_setup_hrtimer_broadcast();
1099 
1100 	of_clk_init(NULL);
1101 }
1102 
1103 /*
1104  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1105  * result.
1106  */
1107 void div128_by_32(u64 dividend_high, u64 dividend_low,
1108 		  unsigned divisor, struct div_result *dr)
1109 {
1110 	unsigned long a, b, c, d;
1111 	unsigned long w, x, y, z;
1112 	u64 ra, rb, rc;
1113 
1114 	a = dividend_high >> 32;
1115 	b = dividend_high & 0xffffffff;
1116 	c = dividend_low >> 32;
1117 	d = dividend_low & 0xffffffff;
1118 
1119 	w = a / divisor;
1120 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1121 
1122 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1123 	x = ra;
1124 
1125 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1126 	y = rb;
1127 
1128 	do_div(rc, divisor);
1129 	z = rc;
1130 
1131 	dr->result_high = ((u64)w << 32) + x;
1132 	dr->result_low  = ((u64)y << 32) + z;
1133 
1134 }
1135 
1136 /* We don't need to calibrate delay, we use the CPU timebase for that */
1137 void calibrate_delay(void)
1138 {
1139 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1140 	 * as the number of __delay(1) in a jiffy, so make it so
1141 	 */
1142 	loops_per_jiffy = tb_ticks_per_jiffy;
1143 }
1144 
1145 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1146 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1147 {
1148 	ppc_md.get_rtc_time(tm);
1149 	return 0;
1150 }
1151 
1152 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1153 {
1154 	if (!ppc_md.set_rtc_time)
1155 		return -EOPNOTSUPP;
1156 
1157 	if (ppc_md.set_rtc_time(tm) < 0)
1158 		return -EOPNOTSUPP;
1159 
1160 	return 0;
1161 }
1162 
1163 static const struct rtc_class_ops rtc_generic_ops = {
1164 	.read_time = rtc_generic_get_time,
1165 	.set_time = rtc_generic_set_time,
1166 };
1167 
1168 static int __init rtc_init(void)
1169 {
1170 	struct platform_device *pdev;
1171 
1172 	if (!ppc_md.get_rtc_time)
1173 		return -ENODEV;
1174 
1175 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1176 					     &rtc_generic_ops,
1177 					     sizeof(rtc_generic_ops));
1178 
1179 	return PTR_ERR_OR_ZERO(pdev);
1180 }
1181 
1182 device_initcall(rtc_init);
1183 #endif
1184