1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/sched/cputime.h> 35 #include <linux/kernel.h> 36 #include <linux/param.h> 37 #include <linux/string.h> 38 #include <linux/mm.h> 39 #include <linux/interrupt.h> 40 #include <linux/timex.h> 41 #include <linux/kernel_stat.h> 42 #include <linux/time.h> 43 #include <linux/init.h> 44 #include <linux/profile.h> 45 #include <linux/cpu.h> 46 #include <linux/security.h> 47 #include <linux/percpu.h> 48 #include <linux/rtc.h> 49 #include <linux/jiffies.h> 50 #include <linux/posix-timers.h> 51 #include <linux/irq.h> 52 #include <linux/delay.h> 53 #include <linux/irq_work.h> 54 #include <linux/of_clk.h> 55 #include <linux/suspend.h> 56 #include <linux/processor.h> 57 #include <linux/mc146818rtc.h> 58 #include <linux/platform_device.h> 59 60 #include <asm/trace.h> 61 #include <asm/interrupt.h> 62 #include <asm/io.h> 63 #include <asm/nvram.h> 64 #include <asm/cache.h> 65 #include <asm/machdep.h> 66 #include <linux/uaccess.h> 67 #include <asm/time.h> 68 #include <asm/irq.h> 69 #include <asm/div64.h> 70 #include <asm/smp.h> 71 #include <asm/vdso_datapage.h> 72 #include <asm/firmware.h> 73 #include <asm/mce.h> 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/timekeeper_internal.h> 79 80 static u64 timebase_read(struct clocksource *); 81 static struct clocksource clocksource_timebase = { 82 .name = "timebase", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .read = timebase_read, 87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 88 }; 89 90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */ 93 94 static int decrementer_set_next_event(unsigned long evt, 95 struct clock_event_device *dev); 96 static int decrementer_shutdown(struct clock_event_device *evt); 97 98 struct clock_event_device decrementer_clockevent = { 99 .name = "decrementer", 100 .rating = 200, 101 .irq = 0, 102 .set_next_event = decrementer_set_next_event, 103 .set_state_oneshot_stopped = decrementer_shutdown, 104 .set_state_shutdown = decrementer_shutdown, 105 .tick_resume = decrementer_shutdown, 106 .features = CLOCK_EVT_FEAT_ONESHOT | 107 CLOCK_EVT_FEAT_C3STOP, 108 }; 109 EXPORT_SYMBOL(decrementer_clockevent); 110 111 /* 112 * This always puts next_tb beyond now, so the clock event will never fire 113 * with the usual comparison, no need for a separate test for stopped. 114 */ 115 #define DEC_CLOCKEVENT_STOPPED ~0ULL 116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED; 117 EXPORT_SYMBOL_GPL(decrementers_next_tb); 118 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 119 120 #define XSEC_PER_SEC (1024*1024) 121 122 #ifdef CONFIG_PPC64 123 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 124 #else 125 /* compute ((xsec << 12) * max) >> 32 */ 126 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 127 #endif 128 129 unsigned long tb_ticks_per_jiffy; 130 unsigned long tb_ticks_per_usec = 100; /* sane default */ 131 EXPORT_SYMBOL(tb_ticks_per_usec); 132 unsigned long tb_ticks_per_sec; 133 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 134 135 DEFINE_SPINLOCK(rtc_lock); 136 EXPORT_SYMBOL_GPL(rtc_lock); 137 138 static u64 tb_to_ns_scale __read_mostly; 139 static unsigned tb_to_ns_shift __read_mostly; 140 static u64 boot_tb __read_mostly; 141 142 extern struct timezone sys_tz; 143 static long timezone_offset; 144 145 unsigned long ppc_proc_freq; 146 EXPORT_SYMBOL_GPL(ppc_proc_freq); 147 unsigned long ppc_tb_freq; 148 EXPORT_SYMBOL_GPL(ppc_tb_freq); 149 150 bool tb_invalid; 151 152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 153 /* 154 * Factor for converting from cputime_t (timebase ticks) to 155 * microseconds. This is stored as 0.64 fixed-point binary fraction. 156 */ 157 u64 __cputime_usec_factor; 158 EXPORT_SYMBOL(__cputime_usec_factor); 159 160 static void calc_cputime_factors(void) 161 { 162 struct div_result res; 163 164 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 165 __cputime_usec_factor = res.result_low; 166 } 167 168 /* 169 * Read the SPURR on systems that have it, otherwise the PURR, 170 * or if that doesn't exist return the timebase value passed in. 171 */ 172 static inline unsigned long read_spurr(unsigned long tb) 173 { 174 if (cpu_has_feature(CPU_FTR_SPURR)) 175 return mfspr(SPRN_SPURR); 176 if (cpu_has_feature(CPU_FTR_PURR)) 177 return mfspr(SPRN_PURR); 178 return tb; 179 } 180 181 #ifdef CONFIG_PPC_SPLPAR 182 183 #include <asm/dtl.h> 184 185 void (*dtl_consumer)(struct dtl_entry *, u64); 186 187 /* 188 * Scan the dispatch trace log and count up the stolen time. 189 * Should be called with interrupts disabled. 190 */ 191 static u64 scan_dispatch_log(u64 stop_tb) 192 { 193 u64 i = local_paca->dtl_ridx; 194 struct dtl_entry *dtl = local_paca->dtl_curr; 195 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 196 struct lppaca *vpa = local_paca->lppaca_ptr; 197 u64 tb_delta; 198 u64 stolen = 0; 199 u64 dtb; 200 201 if (!dtl) 202 return 0; 203 204 if (i == be64_to_cpu(vpa->dtl_idx)) 205 return 0; 206 while (i < be64_to_cpu(vpa->dtl_idx)) { 207 dtb = be64_to_cpu(dtl->timebase); 208 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 209 be32_to_cpu(dtl->ready_to_enqueue_time); 210 barrier(); 211 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 212 /* buffer has overflowed */ 213 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 214 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 215 continue; 216 } 217 if (dtb > stop_tb) 218 break; 219 if (dtl_consumer) 220 dtl_consumer(dtl, i); 221 stolen += tb_delta; 222 ++i; 223 ++dtl; 224 if (dtl == dtl_end) 225 dtl = local_paca->dispatch_log; 226 } 227 local_paca->dtl_ridx = i; 228 local_paca->dtl_curr = dtl; 229 return stolen; 230 } 231 232 /* 233 * Accumulate stolen time by scanning the dispatch trace log. 234 * Called on entry from user mode. 235 */ 236 void notrace accumulate_stolen_time(void) 237 { 238 u64 sst, ust; 239 struct cpu_accounting_data *acct = &local_paca->accounting; 240 241 sst = scan_dispatch_log(acct->starttime_user); 242 ust = scan_dispatch_log(acct->starttime); 243 acct->stime -= sst; 244 acct->utime -= ust; 245 acct->steal_time += ust + sst; 246 } 247 248 static inline u64 calculate_stolen_time(u64 stop_tb) 249 { 250 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 251 return 0; 252 253 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 254 return scan_dispatch_log(stop_tb); 255 256 return 0; 257 } 258 259 #else /* CONFIG_PPC_SPLPAR */ 260 static inline u64 calculate_stolen_time(u64 stop_tb) 261 { 262 return 0; 263 } 264 265 #endif /* CONFIG_PPC_SPLPAR */ 266 267 /* 268 * Account time for a transition between system, hard irq 269 * or soft irq state. 270 */ 271 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 272 unsigned long now, unsigned long stime) 273 { 274 unsigned long stime_scaled = 0; 275 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 276 unsigned long nowscaled, deltascaled; 277 unsigned long utime, utime_scaled; 278 279 nowscaled = read_spurr(now); 280 deltascaled = nowscaled - acct->startspurr; 281 acct->startspurr = nowscaled; 282 utime = acct->utime - acct->utime_sspurr; 283 acct->utime_sspurr = acct->utime; 284 285 /* 286 * Because we don't read the SPURR on every kernel entry/exit, 287 * deltascaled includes both user and system SPURR ticks. 288 * Apportion these ticks to system SPURR ticks and user 289 * SPURR ticks in the same ratio as the system time (delta) 290 * and user time (udelta) values obtained from the timebase 291 * over the same interval. The system ticks get accounted here; 292 * the user ticks get saved up in paca->user_time_scaled to be 293 * used by account_process_tick. 294 */ 295 stime_scaled = stime; 296 utime_scaled = utime; 297 if (deltascaled != stime + utime) { 298 if (utime) { 299 stime_scaled = deltascaled * stime / (stime + utime); 300 utime_scaled = deltascaled - stime_scaled; 301 } else { 302 stime_scaled = deltascaled; 303 } 304 } 305 acct->utime_scaled += utime_scaled; 306 #endif 307 308 return stime_scaled; 309 } 310 311 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 312 unsigned long *stime_scaled, 313 unsigned long *steal_time) 314 { 315 unsigned long now, stime; 316 317 WARN_ON_ONCE(!irqs_disabled()); 318 319 now = mftb(); 320 stime = now - acct->starttime; 321 acct->starttime = now; 322 323 *stime_scaled = vtime_delta_scaled(acct, now, stime); 324 325 *steal_time = calculate_stolen_time(now); 326 327 return stime; 328 } 329 330 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 331 unsigned long *stime, unsigned long *stime_scaled) 332 { 333 unsigned long steal_time; 334 335 *stime = vtime_delta(acct, stime_scaled, &steal_time); 336 *stime -= min(*stime, steal_time); 337 acct->steal_time += steal_time; 338 } 339 340 void vtime_account_kernel(struct task_struct *tsk) 341 { 342 struct cpu_accounting_data *acct = get_accounting(tsk); 343 unsigned long stime, stime_scaled; 344 345 vtime_delta_kernel(acct, &stime, &stime_scaled); 346 347 if (tsk->flags & PF_VCPU) { 348 acct->gtime += stime; 349 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 350 acct->utime_scaled += stime_scaled; 351 #endif 352 } else { 353 acct->stime += stime; 354 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 355 acct->stime_scaled += stime_scaled; 356 #endif 357 } 358 } 359 EXPORT_SYMBOL_GPL(vtime_account_kernel); 360 361 void vtime_account_idle(struct task_struct *tsk) 362 { 363 unsigned long stime, stime_scaled, steal_time; 364 struct cpu_accounting_data *acct = get_accounting(tsk); 365 366 stime = vtime_delta(acct, &stime_scaled, &steal_time); 367 acct->idle_time += stime + steal_time; 368 } 369 370 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 371 unsigned long *field) 372 { 373 unsigned long stime, stime_scaled; 374 375 vtime_delta_kernel(acct, &stime, &stime_scaled); 376 *field += stime; 377 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 378 acct->stime_scaled += stime_scaled; 379 #endif 380 } 381 382 void vtime_account_softirq(struct task_struct *tsk) 383 { 384 struct cpu_accounting_data *acct = get_accounting(tsk); 385 vtime_account_irq_field(acct, &acct->softirq_time); 386 } 387 388 void vtime_account_hardirq(struct task_struct *tsk) 389 { 390 struct cpu_accounting_data *acct = get_accounting(tsk); 391 vtime_account_irq_field(acct, &acct->hardirq_time); 392 } 393 394 static void vtime_flush_scaled(struct task_struct *tsk, 395 struct cpu_accounting_data *acct) 396 { 397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 398 if (acct->utime_scaled) 399 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 400 if (acct->stime_scaled) 401 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 402 403 acct->utime_scaled = 0; 404 acct->utime_sspurr = 0; 405 acct->stime_scaled = 0; 406 #endif 407 } 408 409 /* 410 * Account the whole cputime accumulated in the paca 411 * Must be called with interrupts disabled. 412 * Assumes that vtime_account_kernel/idle() has been called 413 * recently (i.e. since the last entry from usermode) so that 414 * get_paca()->user_time_scaled is up to date. 415 */ 416 void vtime_flush(struct task_struct *tsk) 417 { 418 struct cpu_accounting_data *acct = get_accounting(tsk); 419 420 if (acct->utime) 421 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 422 423 if (acct->gtime) 424 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 425 426 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 427 account_steal_time(cputime_to_nsecs(acct->steal_time)); 428 acct->steal_time = 0; 429 } 430 431 if (acct->idle_time) 432 account_idle_time(cputime_to_nsecs(acct->idle_time)); 433 434 if (acct->stime) 435 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 436 CPUTIME_SYSTEM); 437 438 if (acct->hardirq_time) 439 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 440 CPUTIME_IRQ); 441 if (acct->softirq_time) 442 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 443 CPUTIME_SOFTIRQ); 444 445 vtime_flush_scaled(tsk, acct); 446 447 acct->utime = 0; 448 acct->gtime = 0; 449 acct->idle_time = 0; 450 acct->stime = 0; 451 acct->hardirq_time = 0; 452 acct->softirq_time = 0; 453 } 454 455 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 456 #define calc_cputime_factors() 457 #endif 458 459 void __delay(unsigned long loops) 460 { 461 unsigned long start; 462 463 spin_begin(); 464 if (tb_invalid) { 465 /* 466 * TB is in error state and isn't ticking anymore. 467 * HMI handler was unable to recover from TB error. 468 * Return immediately, so that kernel won't get stuck here. 469 */ 470 spin_cpu_relax(); 471 } else { 472 start = mftb(); 473 while (mftb() - start < loops) 474 spin_cpu_relax(); 475 } 476 spin_end(); 477 } 478 EXPORT_SYMBOL(__delay); 479 480 void udelay(unsigned long usecs) 481 { 482 __delay(tb_ticks_per_usec * usecs); 483 } 484 EXPORT_SYMBOL(udelay); 485 486 #ifdef CONFIG_SMP 487 unsigned long profile_pc(struct pt_regs *regs) 488 { 489 unsigned long pc = instruction_pointer(regs); 490 491 if (in_lock_functions(pc)) 492 return regs->link; 493 494 return pc; 495 } 496 EXPORT_SYMBOL(profile_pc); 497 #endif 498 499 #ifdef CONFIG_IRQ_WORK 500 501 /* 502 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 503 */ 504 #ifdef CONFIG_PPC64 505 static inline unsigned long test_irq_work_pending(void) 506 { 507 unsigned long x; 508 509 asm volatile("lbz %0,%1(13)" 510 : "=r" (x) 511 : "i" (offsetof(struct paca_struct, irq_work_pending))); 512 return x; 513 } 514 515 static inline void set_irq_work_pending_flag(void) 516 { 517 asm volatile("stb %0,%1(13)" : : 518 "r" (1), 519 "i" (offsetof(struct paca_struct, irq_work_pending))); 520 } 521 522 static inline void clear_irq_work_pending(void) 523 { 524 asm volatile("stb %0,%1(13)" : : 525 "r" (0), 526 "i" (offsetof(struct paca_struct, irq_work_pending))); 527 } 528 529 #else /* 32-bit */ 530 531 DEFINE_PER_CPU(u8, irq_work_pending); 532 533 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 534 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 535 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 536 537 #endif /* 32 vs 64 bit */ 538 539 void arch_irq_work_raise(void) 540 { 541 /* 542 * 64-bit code that uses irq soft-mask can just cause an immediate 543 * interrupt here that gets soft masked, if this is called under 544 * local_irq_disable(). It might be possible to prevent that happening 545 * by noticing interrupts are disabled and setting decrementer pending 546 * to be replayed when irqs are enabled. The problem there is that 547 * tracing can call irq_work_raise, including in code that does low 548 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 549 * which could get tangled up if we're messing with the same state 550 * here. 551 */ 552 preempt_disable(); 553 set_irq_work_pending_flag(); 554 set_dec(1); 555 preempt_enable(); 556 } 557 558 static void set_dec_or_work(u64 val) 559 { 560 set_dec(val); 561 /* We may have raced with new irq work */ 562 if (unlikely(test_irq_work_pending())) 563 set_dec(1); 564 } 565 566 #else /* CONFIG_IRQ_WORK */ 567 568 #define test_irq_work_pending() 0 569 #define clear_irq_work_pending() 570 571 static void set_dec_or_work(u64 val) 572 { 573 set_dec(val); 574 } 575 #endif /* CONFIG_IRQ_WORK */ 576 577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 578 void timer_rearm_host_dec(u64 now) 579 { 580 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 581 582 WARN_ON_ONCE(!arch_irqs_disabled()); 583 WARN_ON_ONCE(mfmsr() & MSR_EE); 584 585 if (now >= *next_tb) { 586 local_paca->irq_happened |= PACA_IRQ_DEC; 587 } else { 588 now = *next_tb - now; 589 if (now > decrementer_max) 590 now = decrementer_max; 591 set_dec_or_work(now); 592 } 593 } 594 EXPORT_SYMBOL_GPL(timer_rearm_host_dec); 595 #endif 596 597 /* 598 * timer_interrupt - gets called when the decrementer overflows, 599 * with interrupts disabled. 600 */ 601 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt) 602 { 603 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 604 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 605 struct pt_regs *old_regs; 606 u64 now; 607 608 /* 609 * Some implementations of hotplug will get timer interrupts while 610 * offline, just ignore these. 611 */ 612 if (unlikely(!cpu_online(smp_processor_id()))) { 613 set_dec(decrementer_max); 614 return; 615 } 616 617 /* 618 * Ensure a positive value is written to the decrementer, or 619 * else some CPUs will continue to take decrementer exceptions. 620 * When the PPC_WATCHDOG (decrementer based) is configured, 621 * keep this at most 31 bits, which is about 4 seconds on most 622 * systems, which gives the watchdog a chance of catching timer 623 * interrupt hard lockups. 624 */ 625 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 626 set_dec(0x7fffffff); 627 else 628 set_dec(decrementer_max); 629 630 /* Conditionally hard-enable interrupts. */ 631 if (should_hard_irq_enable()) 632 do_hard_irq_enable(); 633 634 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 635 if (atomic_read(&ppc_n_lost_interrupts) != 0) 636 __do_IRQ(regs); 637 #endif 638 639 old_regs = set_irq_regs(regs); 640 641 trace_timer_interrupt_entry(regs); 642 643 if (test_irq_work_pending()) { 644 clear_irq_work_pending(); 645 mce_run_irq_context_handlers(); 646 irq_work_run(); 647 } 648 649 now = get_tb(); 650 if (now >= *next_tb) { 651 evt->event_handler(evt); 652 __this_cpu_inc(irq_stat.timer_irqs_event); 653 } else { 654 now = *next_tb - now; 655 if (now > decrementer_max) 656 now = decrementer_max; 657 set_dec_or_work(now); 658 __this_cpu_inc(irq_stat.timer_irqs_others); 659 } 660 661 trace_timer_interrupt_exit(regs); 662 663 set_irq_regs(old_regs); 664 } 665 EXPORT_SYMBOL(timer_interrupt); 666 667 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 668 void timer_broadcast_interrupt(void) 669 { 670 tick_receive_broadcast(); 671 __this_cpu_inc(irq_stat.broadcast_irqs_event); 672 } 673 #endif 674 675 #ifdef CONFIG_SUSPEND 676 /* Overrides the weak version in kernel/power/main.c */ 677 void arch_suspend_disable_irqs(void) 678 { 679 if (ppc_md.suspend_disable_irqs) 680 ppc_md.suspend_disable_irqs(); 681 682 /* Disable the decrementer, so that it doesn't interfere 683 * with suspending. 684 */ 685 686 set_dec(decrementer_max); 687 local_irq_disable(); 688 set_dec(decrementer_max); 689 } 690 691 /* Overrides the weak version in kernel/power/main.c */ 692 void arch_suspend_enable_irqs(void) 693 { 694 local_irq_enable(); 695 696 if (ppc_md.suspend_enable_irqs) 697 ppc_md.suspend_enable_irqs(); 698 } 699 #endif 700 701 unsigned long long tb_to_ns(unsigned long long ticks) 702 { 703 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 704 } 705 EXPORT_SYMBOL_GPL(tb_to_ns); 706 707 /* 708 * Scheduler clock - returns current time in nanosec units. 709 * 710 * Note: mulhdu(a, b) (multiply high double unsigned) returns 711 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 712 * are 64-bit unsigned numbers. 713 */ 714 notrace unsigned long long sched_clock(void) 715 { 716 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 717 } 718 719 720 #ifdef CONFIG_PPC_PSERIES 721 722 /* 723 * Running clock - attempts to give a view of time passing for a virtualised 724 * kernels. 725 * Uses the VTB register if available otherwise a next best guess. 726 */ 727 unsigned long long running_clock(void) 728 { 729 /* 730 * Don't read the VTB as a host since KVM does not switch in host 731 * timebase into the VTB when it takes a guest off the CPU, reading the 732 * VTB would result in reading 'last switched out' guest VTB. 733 * 734 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 735 * would be unsafe to rely only on the #ifdef above. 736 */ 737 if (firmware_has_feature(FW_FEATURE_LPAR) && 738 cpu_has_feature(CPU_FTR_ARCH_207S)) 739 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 740 741 /* 742 * This is a next best approximation without a VTB. 743 * On a host which is running bare metal there should never be any stolen 744 * time and on a host which doesn't do any virtualisation TB *should* equal 745 * VTB so it makes no difference anyway. 746 */ 747 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 748 } 749 #endif 750 751 static int __init get_freq(char *name, int cells, unsigned long *val) 752 { 753 struct device_node *cpu; 754 const __be32 *fp; 755 int found = 0; 756 757 /* The cpu node should have timebase and clock frequency properties */ 758 cpu = of_find_node_by_type(NULL, "cpu"); 759 760 if (cpu) { 761 fp = of_get_property(cpu, name, NULL); 762 if (fp) { 763 found = 1; 764 *val = of_read_ulong(fp, cells); 765 } 766 767 of_node_put(cpu); 768 } 769 770 return found; 771 } 772 773 static void start_cpu_decrementer(void) 774 { 775 #ifdef CONFIG_BOOKE_OR_40x 776 unsigned int tcr; 777 778 /* Clear any pending timer interrupts */ 779 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 780 781 tcr = mfspr(SPRN_TCR); 782 /* 783 * The watchdog may have already been enabled by u-boot. So leave 784 * TRC[WP] (Watchdog Period) alone. 785 */ 786 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 787 tcr |= TCR_DIE; /* Enable decrementer */ 788 mtspr(SPRN_TCR, tcr); 789 #endif 790 } 791 792 void __init generic_calibrate_decr(void) 793 { 794 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 795 796 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 797 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 798 799 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 800 "(not found)\n"); 801 } 802 803 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 804 805 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 806 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 807 808 printk(KERN_ERR "WARNING: Estimating processor frequency " 809 "(not found)\n"); 810 } 811 } 812 813 int update_persistent_clock64(struct timespec64 now) 814 { 815 struct rtc_time tm; 816 817 if (!ppc_md.set_rtc_time) 818 return -ENODEV; 819 820 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 821 822 return ppc_md.set_rtc_time(&tm); 823 } 824 825 static void __read_persistent_clock(struct timespec64 *ts) 826 { 827 struct rtc_time tm; 828 static int first = 1; 829 830 ts->tv_nsec = 0; 831 /* XXX this is a little fragile but will work okay in the short term */ 832 if (first) { 833 first = 0; 834 if (ppc_md.time_init) 835 timezone_offset = ppc_md.time_init(); 836 837 /* get_boot_time() isn't guaranteed to be safe to call late */ 838 if (ppc_md.get_boot_time) { 839 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 840 return; 841 } 842 } 843 if (!ppc_md.get_rtc_time) { 844 ts->tv_sec = 0; 845 return; 846 } 847 ppc_md.get_rtc_time(&tm); 848 849 ts->tv_sec = rtc_tm_to_time64(&tm); 850 } 851 852 void read_persistent_clock64(struct timespec64 *ts) 853 { 854 __read_persistent_clock(ts); 855 856 /* Sanitize it in case real time clock is set below EPOCH */ 857 if (ts->tv_sec < 0) { 858 ts->tv_sec = 0; 859 ts->tv_nsec = 0; 860 } 861 862 } 863 864 /* clocksource code */ 865 static notrace u64 timebase_read(struct clocksource *cs) 866 { 867 return (u64)get_tb(); 868 } 869 870 static void __init clocksource_init(void) 871 { 872 struct clocksource *clock = &clocksource_timebase; 873 874 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 875 printk(KERN_ERR "clocksource: %s is already registered\n", 876 clock->name); 877 return; 878 } 879 880 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 881 clock->name, clock->mult, clock->shift); 882 } 883 884 static int decrementer_set_next_event(unsigned long evt, 885 struct clock_event_device *dev) 886 { 887 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 888 set_dec_or_work(evt); 889 890 return 0; 891 } 892 893 static int decrementer_shutdown(struct clock_event_device *dev) 894 { 895 __this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED); 896 set_dec_or_work(decrementer_max); 897 898 return 0; 899 } 900 901 static void register_decrementer_clockevent(int cpu) 902 { 903 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 904 905 *dec = decrementer_clockevent; 906 dec->cpumask = cpumask_of(cpu); 907 908 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 909 910 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 911 dec->name, dec->mult, dec->shift, cpu); 912 913 /* Set values for KVM, see kvm_emulate_dec() */ 914 decrementer_clockevent.mult = dec->mult; 915 decrementer_clockevent.shift = dec->shift; 916 } 917 918 static void enable_large_decrementer(void) 919 { 920 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 921 return; 922 923 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 924 return; 925 926 /* 927 * If we're running as the hypervisor we need to enable the LD manually 928 * otherwise firmware should have done it for us. 929 */ 930 if (cpu_has_feature(CPU_FTR_HVMODE)) 931 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 932 } 933 934 static void __init set_decrementer_max(void) 935 { 936 struct device_node *cpu; 937 u32 bits = 32; 938 939 /* Prior to ISAv3 the decrementer is always 32 bit */ 940 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 941 return; 942 943 cpu = of_find_node_by_type(NULL, "cpu"); 944 945 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 946 if (bits > 64 || bits < 32) { 947 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 948 bits = 32; 949 } 950 951 /* calculate the signed maximum given this many bits */ 952 decrementer_max = (1ul << (bits - 1)) - 1; 953 } 954 955 of_node_put(cpu); 956 957 pr_info("time_init: %u bit decrementer (max: %llx)\n", 958 bits, decrementer_max); 959 } 960 961 static void __init init_decrementer_clockevent(void) 962 { 963 register_decrementer_clockevent(smp_processor_id()); 964 } 965 966 void secondary_cpu_time_init(void) 967 { 968 /* Enable and test the large decrementer for this cpu */ 969 enable_large_decrementer(); 970 971 /* Start the decrementer on CPUs that have manual control 972 * such as BookE 973 */ 974 start_cpu_decrementer(); 975 976 /* FIME: Should make unrelated change to move snapshot_timebase 977 * call here ! */ 978 register_decrementer_clockevent(smp_processor_id()); 979 } 980 981 /* This function is only called on the boot processor */ 982 void __init time_init(void) 983 { 984 struct div_result res; 985 u64 scale; 986 unsigned shift; 987 988 /* Normal PowerPC with timebase register */ 989 ppc_md.calibrate_decr(); 990 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 991 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 992 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 993 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 994 995 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 996 tb_ticks_per_sec = ppc_tb_freq; 997 tb_ticks_per_usec = ppc_tb_freq / 1000000; 998 calc_cputime_factors(); 999 1000 /* 1001 * Compute scale factor for sched_clock. 1002 * The calibrate_decr() function has set tb_ticks_per_sec, 1003 * which is the timebase frequency. 1004 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1005 * the 128-bit result as a 64.64 fixed-point number. 1006 * We then shift that number right until it is less than 1.0, 1007 * giving us the scale factor and shift count to use in 1008 * sched_clock(). 1009 */ 1010 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1011 scale = res.result_low; 1012 for (shift = 0; res.result_high != 0; ++shift) { 1013 scale = (scale >> 1) | (res.result_high << 63); 1014 res.result_high >>= 1; 1015 } 1016 tb_to_ns_scale = scale; 1017 tb_to_ns_shift = shift; 1018 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1019 boot_tb = get_tb(); 1020 1021 /* If platform provided a timezone (pmac), we correct the time */ 1022 if (timezone_offset) { 1023 sys_tz.tz_minuteswest = -timezone_offset / 60; 1024 sys_tz.tz_dsttime = 0; 1025 } 1026 1027 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1028 1029 /* initialise and enable the large decrementer (if we have one) */ 1030 set_decrementer_max(); 1031 enable_large_decrementer(); 1032 1033 /* Start the decrementer on CPUs that have manual control 1034 * such as BookE 1035 */ 1036 start_cpu_decrementer(); 1037 1038 /* Register the clocksource */ 1039 clocksource_init(); 1040 1041 init_decrementer_clockevent(); 1042 tick_setup_hrtimer_broadcast(); 1043 1044 of_clk_init(NULL); 1045 enable_sched_clock_irqtime(); 1046 } 1047 1048 /* 1049 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1050 * result. 1051 */ 1052 void div128_by_32(u64 dividend_high, u64 dividend_low, 1053 unsigned divisor, struct div_result *dr) 1054 { 1055 unsigned long a, b, c, d; 1056 unsigned long w, x, y, z; 1057 u64 ra, rb, rc; 1058 1059 a = dividend_high >> 32; 1060 b = dividend_high & 0xffffffff; 1061 c = dividend_low >> 32; 1062 d = dividend_low & 0xffffffff; 1063 1064 w = a / divisor; 1065 ra = ((u64)(a - (w * divisor)) << 32) + b; 1066 1067 rb = ((u64) do_div(ra, divisor) << 32) + c; 1068 x = ra; 1069 1070 rc = ((u64) do_div(rb, divisor) << 32) + d; 1071 y = rb; 1072 1073 do_div(rc, divisor); 1074 z = rc; 1075 1076 dr->result_high = ((u64)w << 32) + x; 1077 dr->result_low = ((u64)y << 32) + z; 1078 1079 } 1080 1081 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1082 void calibrate_delay(void) 1083 { 1084 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1085 * as the number of __delay(1) in a jiffy, so make it so 1086 */ 1087 loops_per_jiffy = tb_ticks_per_jiffy; 1088 } 1089 1090 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1091 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1092 { 1093 ppc_md.get_rtc_time(tm); 1094 return 0; 1095 } 1096 1097 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1098 { 1099 if (!ppc_md.set_rtc_time) 1100 return -EOPNOTSUPP; 1101 1102 if (ppc_md.set_rtc_time(tm) < 0) 1103 return -EOPNOTSUPP; 1104 1105 return 0; 1106 } 1107 1108 static const struct rtc_class_ops rtc_generic_ops = { 1109 .read_time = rtc_generic_get_time, 1110 .set_time = rtc_generic_set_time, 1111 }; 1112 1113 static int __init rtc_init(void) 1114 { 1115 struct platform_device *pdev; 1116 1117 if (!ppc_md.get_rtc_time) 1118 return -ENODEV; 1119 1120 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1121 &rtc_generic_ops, 1122 sizeof(rtc_generic_ops)); 1123 1124 return PTR_ERR_OR_ZERO(pdev); 1125 } 1126 1127 device_initcall(rtc_init); 1128 #endif 1129