xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision d968014b)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78 
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 	.name         = "rtc",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.shift        = 22,
86 	.mult         = 0,	/* To be filled in */
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.shift        = 22,
97 	.mult         = 0,	/* To be filled in */
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109        .name           = "decrementer",
110        .rating         = 200,
111        .shift          = 32,
112        .mult           = 0,	/* To be filled in */
113        .irq            = 0,
114        .set_next_event = decrementer_set_next_event,
115        .set_mode       = decrementer_set_mode,
116        .features       = CLOCK_EVT_FEAT_ONESHOT,
117 };
118 
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 void init_decrementer_clockevent(void);
121 static DEFINE_PER_CPU(u64, decrementer_next_tb);
122 
123 #ifdef CONFIG_PPC_ISERIES
124 static unsigned long __initdata iSeries_recal_titan;
125 static signed long __initdata iSeries_recal_tb;
126 
127 /* Forward declaration is only needed for iSereis compiles */
128 void __init clocksource_init(void);
129 #endif
130 
131 #define XSEC_PER_SEC (1024*1024)
132 
133 #ifdef CONFIG_PPC64
134 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
135 #else
136 /* compute ((xsec << 12) * max) >> 32 */
137 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
138 #endif
139 
140 unsigned long tb_ticks_per_jiffy;
141 unsigned long tb_ticks_per_usec = 100; /* sane default */
142 EXPORT_SYMBOL(tb_ticks_per_usec);
143 unsigned long tb_ticks_per_sec;
144 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
145 u64 tb_to_xs;
146 unsigned tb_to_us;
147 
148 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
149 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
150 u64 ticklen_to_xs;	/* 0.64 fraction */
151 
152 /* If last_tick_len corresponds to about 1/HZ seconds, then
153    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155 
156 DEFINE_SPINLOCK(rtc_lock);
157 EXPORT_SYMBOL_GPL(rtc_lock);
158 
159 static u64 tb_to_ns_scale __read_mostly;
160 static unsigned tb_to_ns_shift __read_mostly;
161 static unsigned long boot_tb __read_mostly;
162 
163 struct gettimeofday_struct do_gtod;
164 
165 extern struct timezone sys_tz;
166 static long timezone_offset;
167 
168 unsigned long ppc_proc_freq;
169 EXPORT_SYMBOL(ppc_proc_freq);
170 unsigned long ppc_tb_freq;
171 
172 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173 static DEFINE_PER_CPU(u64, last_jiffy);
174 
175 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
176 /*
177  * Factors for converting from cputime_t (timebase ticks) to
178  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179  * These are all stored as 0.64 fixed-point binary fractions.
180  */
181 u64 __cputime_jiffies_factor;
182 EXPORT_SYMBOL(__cputime_jiffies_factor);
183 u64 __cputime_msec_factor;
184 EXPORT_SYMBOL(__cputime_msec_factor);
185 u64 __cputime_sec_factor;
186 EXPORT_SYMBOL(__cputime_sec_factor);
187 u64 __cputime_clockt_factor;
188 EXPORT_SYMBOL(__cputime_clockt_factor);
189 
190 static void calc_cputime_factors(void)
191 {
192 	struct div_result res;
193 
194 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195 	__cputime_jiffies_factor = res.result_low;
196 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197 	__cputime_msec_factor = res.result_low;
198 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
199 	__cputime_sec_factor = res.result_low;
200 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201 	__cputime_clockt_factor = res.result_low;
202 }
203 
204 /*
205  * Read the PURR on systems that have it, otherwise the timebase.
206  */
207 static u64 read_purr(void)
208 {
209 	if (cpu_has_feature(CPU_FTR_PURR))
210 		return mfspr(SPRN_PURR);
211 	return mftb();
212 }
213 
214 /*
215  * Account time for a transition between system, hard irq
216  * or soft irq state.
217  */
218 void account_system_vtime(struct task_struct *tsk)
219 {
220 	u64 now, delta;
221 	unsigned long flags;
222 
223 	local_irq_save(flags);
224 	now = read_purr();
225 	delta = now - get_paca()->startpurr;
226 	get_paca()->startpurr = now;
227 	if (!in_interrupt()) {
228 		delta += get_paca()->system_time;
229 		get_paca()->system_time = 0;
230 	}
231 	account_system_time(tsk, 0, delta);
232 	local_irq_restore(flags);
233 }
234 
235 /*
236  * Transfer the user and system times accumulated in the paca
237  * by the exception entry and exit code to the generic process
238  * user and system time records.
239  * Must be called with interrupts disabled.
240  */
241 void account_process_vtime(struct task_struct *tsk)
242 {
243 	cputime_t utime;
244 
245 	utime = get_paca()->user_time;
246 	get_paca()->user_time = 0;
247 	account_user_time(tsk, utime);
248 }
249 
250 static void account_process_time(struct pt_regs *regs)
251 {
252 	int cpu = smp_processor_id();
253 
254 	account_process_vtime(current);
255 	run_local_timers();
256 	if (rcu_pending(cpu))
257 		rcu_check_callbacks(cpu, user_mode(regs));
258 	scheduler_tick();
259  	run_posix_cpu_timers(current);
260 }
261 
262 /*
263  * Stuff for accounting stolen time.
264  */
265 struct cpu_purr_data {
266 	int	initialized;			/* thread is running */
267 	u64	tb;			/* last TB value read */
268 	u64	purr;			/* last PURR value read */
269 };
270 
271 /*
272  * Each entry in the cpu_purr_data array is manipulated only by its
273  * "owner" cpu -- usually in the timer interrupt but also occasionally
274  * in process context for cpu online.  As long as cpus do not touch
275  * each others' cpu_purr_data, disabling local interrupts is
276  * sufficient to serialize accesses.
277  */
278 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
279 
280 static void snapshot_tb_and_purr(void *data)
281 {
282 	unsigned long flags;
283 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
284 
285 	local_irq_save(flags);
286 	p->tb = get_tb_or_rtc();
287 	p->purr = mfspr(SPRN_PURR);
288 	wmb();
289 	p->initialized = 1;
290 	local_irq_restore(flags);
291 }
292 
293 /*
294  * Called during boot when all cpus have come up.
295  */
296 void snapshot_timebases(void)
297 {
298 	if (!cpu_has_feature(CPU_FTR_PURR))
299 		return;
300 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
301 }
302 
303 /*
304  * Must be called with interrupts disabled.
305  */
306 void calculate_steal_time(void)
307 {
308 	u64 tb, purr;
309 	s64 stolen;
310 	struct cpu_purr_data *pme;
311 
312 	if (!cpu_has_feature(CPU_FTR_PURR))
313 		return;
314 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
315 	if (!pme->initialized)
316 		return;		/* this can happen in early boot */
317 	tb = mftb();
318 	purr = mfspr(SPRN_PURR);
319 	stolen = (tb - pme->tb) - (purr - pme->purr);
320 	if (stolen > 0)
321 		account_steal_time(current, stolen);
322 	pme->tb = tb;
323 	pme->purr = purr;
324 }
325 
326 #ifdef CONFIG_PPC_SPLPAR
327 /*
328  * Must be called before the cpu is added to the online map when
329  * a cpu is being brought up at runtime.
330  */
331 static void snapshot_purr(void)
332 {
333 	struct cpu_purr_data *pme;
334 	unsigned long flags;
335 
336 	if (!cpu_has_feature(CPU_FTR_PURR))
337 		return;
338 	local_irq_save(flags);
339 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
340 	pme->tb = mftb();
341 	pme->purr = mfspr(SPRN_PURR);
342 	pme->initialized = 1;
343 	local_irq_restore(flags);
344 }
345 
346 #endif /* CONFIG_PPC_SPLPAR */
347 
348 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
349 #define calc_cputime_factors()
350 #define account_process_time(regs)	update_process_times(user_mode(regs))
351 #define calculate_steal_time()		do { } while (0)
352 #endif
353 
354 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
355 #define snapshot_purr()			do { } while (0)
356 #endif
357 
358 /*
359  * Called when a cpu comes up after the system has finished booting,
360  * i.e. as a result of a hotplug cpu action.
361  */
362 void snapshot_timebase(void)
363 {
364 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
365 	snapshot_purr();
366 }
367 
368 void __delay(unsigned long loops)
369 {
370 	unsigned long start;
371 	int diff;
372 
373 	if (__USE_RTC()) {
374 		start = get_rtcl();
375 		do {
376 			/* the RTCL register wraps at 1000000000 */
377 			diff = get_rtcl() - start;
378 			if (diff < 0)
379 				diff += 1000000000;
380 		} while (diff < loops);
381 	} else {
382 		start = get_tbl();
383 		while (get_tbl() - start < loops)
384 			HMT_low();
385 		HMT_medium();
386 	}
387 }
388 EXPORT_SYMBOL(__delay);
389 
390 void udelay(unsigned long usecs)
391 {
392 	__delay(tb_ticks_per_usec * usecs);
393 }
394 EXPORT_SYMBOL(udelay);
395 
396 
397 /*
398  * There are two copies of tb_to_xs and stamp_xsec so that no
399  * lock is needed to access and use these values in
400  * do_gettimeofday.  We alternate the copies and as long as a
401  * reasonable time elapses between changes, there will never
402  * be inconsistent values.  ntpd has a minimum of one minute
403  * between updates.
404  */
405 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
406 			       u64 new_tb_to_xs)
407 {
408 	unsigned temp_idx;
409 	struct gettimeofday_vars *temp_varp;
410 
411 	temp_idx = (do_gtod.var_idx == 0);
412 	temp_varp = &do_gtod.vars[temp_idx];
413 
414 	temp_varp->tb_to_xs = new_tb_to_xs;
415 	temp_varp->tb_orig_stamp = new_tb_stamp;
416 	temp_varp->stamp_xsec = new_stamp_xsec;
417 	smp_mb();
418 	do_gtod.varp = temp_varp;
419 	do_gtod.var_idx = temp_idx;
420 
421 	/*
422 	 * tb_update_count is used to allow the userspace gettimeofday code
423 	 * to assure itself that it sees a consistent view of the tb_to_xs and
424 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
425 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
426 	 * the two values of tb_update_count match and are even then the
427 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
428 	 * loops back and reads them again until this criteria is met.
429 	 * We expect the caller to have done the first increment of
430 	 * vdso_data->tb_update_count already.
431 	 */
432 	vdso_data->tb_orig_stamp = new_tb_stamp;
433 	vdso_data->stamp_xsec = new_stamp_xsec;
434 	vdso_data->tb_to_xs = new_tb_to_xs;
435 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
436 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
437 	smp_wmb();
438 	++(vdso_data->tb_update_count);
439 }
440 
441 #ifdef CONFIG_SMP
442 unsigned long profile_pc(struct pt_regs *regs)
443 {
444 	unsigned long pc = instruction_pointer(regs);
445 
446 	if (in_lock_functions(pc))
447 		return regs->link;
448 
449 	return pc;
450 }
451 EXPORT_SYMBOL(profile_pc);
452 #endif
453 
454 #ifdef CONFIG_PPC_ISERIES
455 
456 /*
457  * This function recalibrates the timebase based on the 49-bit time-of-day
458  * value in the Titan chip.  The Titan is much more accurate than the value
459  * returned by the service processor for the timebase frequency.
460  */
461 
462 static int __init iSeries_tb_recal(void)
463 {
464 	struct div_result divres;
465 	unsigned long titan, tb;
466 
467 	/* Make sure we only run on iSeries */
468 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
469 		return -ENODEV;
470 
471 	tb = get_tb();
472 	titan = HvCallXm_loadTod();
473 	if ( iSeries_recal_titan ) {
474 		unsigned long tb_ticks = tb - iSeries_recal_tb;
475 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
476 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
477 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
478 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
479 		char sign = '+';
480 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
481 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
482 
483 		if ( tick_diff < 0 ) {
484 			tick_diff = -tick_diff;
485 			sign = '-';
486 		}
487 		if ( tick_diff ) {
488 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
489 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
490 						new_tb_ticks_per_jiffy, sign, tick_diff );
491 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
492 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
493 				calc_cputime_factors();
494 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
495 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
496 				tb_to_xs = divres.result_low;
497 				do_gtod.varp->tb_to_xs = tb_to_xs;
498 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
499 				vdso_data->tb_to_xs = tb_to_xs;
500 			}
501 			else {
502 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
503 					"                   new tb_ticks_per_jiffy = %lu\n"
504 					"                   old tb_ticks_per_jiffy = %lu\n",
505 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
506 			}
507 		}
508 	}
509 	iSeries_recal_titan = titan;
510 	iSeries_recal_tb = tb;
511 
512 	/* Called here as now we know accurate values for the timebase */
513 	clocksource_init();
514 	return 0;
515 }
516 late_initcall(iSeries_tb_recal);
517 
518 /* Called from platform early init */
519 void __init iSeries_time_init_early(void)
520 {
521 	iSeries_recal_tb = get_tb();
522 	iSeries_recal_titan = HvCallXm_loadTod();
523 }
524 #endif /* CONFIG_PPC_ISERIES */
525 
526 /*
527  * For iSeries shared processors, we have to let the hypervisor
528  * set the hardware decrementer.  We set a virtual decrementer
529  * in the lppaca and call the hypervisor if the virtual
530  * decrementer is less than the current value in the hardware
531  * decrementer. (almost always the new decrementer value will
532  * be greater than the current hardware decementer so the hypervisor
533  * call will not be needed)
534  */
535 
536 /*
537  * timer_interrupt - gets called when the decrementer overflows,
538  * with interrupts disabled.
539  */
540 void timer_interrupt(struct pt_regs * regs)
541 {
542 	struct pt_regs *old_regs;
543 	int cpu = smp_processor_id();
544 	struct clock_event_device *evt = &per_cpu(decrementers, cpu);
545 	u64 now;
546 
547 	/* Ensure a positive value is written to the decrementer, or else
548 	 * some CPUs will continuue to take decrementer exceptions */
549 	set_dec(DECREMENTER_MAX);
550 
551 #ifdef CONFIG_PPC32
552 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
553 		do_IRQ(regs);
554 #endif
555 
556 	now = get_tb_or_rtc();
557 	if (now < per_cpu(decrementer_next_tb, cpu)) {
558 		/* not time for this event yet */
559 		now = per_cpu(decrementer_next_tb, cpu) - now;
560 		if (now <= DECREMENTER_MAX)
561 			set_dec((unsigned int)now - 1);
562 		return;
563 	}
564 	old_regs = set_irq_regs(regs);
565 	irq_enter();
566 
567 	calculate_steal_time();
568 
569 #ifdef CONFIG_PPC_ISERIES
570 	if (firmware_has_feature(FW_FEATURE_ISERIES))
571 		get_lppaca()->int_dword.fields.decr_int = 0;
572 #endif
573 
574 	/*
575 	 * We cannot disable the decrementer, so in the period
576 	 * between this cpu's being marked offline in cpu_online_map
577 	 * and calling stop-self, it is taking timer interrupts.
578 	 * Avoid calling into the scheduler rebalancing code if this
579 	 * is the case.
580 	 */
581 	if (!cpu_is_offline(cpu))
582 		account_process_time(regs);
583 
584 	if (evt->event_handler)
585 		evt->event_handler(evt);
586 	else
587 		evt->set_next_event(DECREMENTER_MAX, evt);
588 
589 #ifdef CONFIG_PPC_ISERIES
590 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
591 		process_hvlpevents();
592 #endif
593 
594 #ifdef CONFIG_PPC64
595 	/* collect purr register values often, for accurate calculations */
596 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
597 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
598 		cu->current_tb = mfspr(SPRN_PURR);
599 	}
600 #endif
601 
602 	irq_exit();
603 	set_irq_regs(old_regs);
604 }
605 
606 void wakeup_decrementer(void)
607 {
608 	unsigned long ticks;
609 
610 	/*
611 	 * The timebase gets saved on sleep and restored on wakeup,
612 	 * so all we need to do is to reset the decrementer.
613 	 */
614 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
615 	if (ticks < tb_ticks_per_jiffy)
616 		ticks = tb_ticks_per_jiffy - ticks;
617 	else
618 		ticks = 1;
619 	set_dec(ticks);
620 }
621 
622 #ifdef CONFIG_SMP
623 void __init smp_space_timers(unsigned int max_cpus)
624 {
625 	int i;
626 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
627 
628 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
629 	previous_tb -= tb_ticks_per_jiffy;
630 
631 	for_each_possible_cpu(i) {
632 		if (i == boot_cpuid)
633 			continue;
634 		per_cpu(last_jiffy, i) = previous_tb;
635 	}
636 }
637 #endif
638 
639 /*
640  * Scheduler clock - returns current time in nanosec units.
641  *
642  * Note: mulhdu(a, b) (multiply high double unsigned) returns
643  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
644  * are 64-bit unsigned numbers.
645  */
646 unsigned long long sched_clock(void)
647 {
648 	if (__USE_RTC())
649 		return get_rtc();
650 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
651 }
652 
653 static int __init get_freq(char *name, int cells, unsigned long *val)
654 {
655 	struct device_node *cpu;
656 	const unsigned int *fp;
657 	int found = 0;
658 
659 	/* The cpu node should have timebase and clock frequency properties */
660 	cpu = of_find_node_by_type(NULL, "cpu");
661 
662 	if (cpu) {
663 		fp = of_get_property(cpu, name, NULL);
664 		if (fp) {
665 			found = 1;
666 			*val = of_read_ulong(fp, cells);
667 		}
668 
669 		of_node_put(cpu);
670 	}
671 
672 	return found;
673 }
674 
675 void __init generic_calibrate_decr(void)
676 {
677 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
678 
679 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
680 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
681 
682 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
683 				"(not found)\n");
684 	}
685 
686 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
687 
688 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
689 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
690 
691 		printk(KERN_ERR "WARNING: Estimating processor frequency "
692 				"(not found)\n");
693 	}
694 
695 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
696 	/* Set the time base to zero */
697 	mtspr(SPRN_TBWL, 0);
698 	mtspr(SPRN_TBWU, 0);
699 
700 	/* Clear any pending timer interrupts */
701 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
702 
703 	/* Enable decrementer interrupt */
704 	mtspr(SPRN_TCR, TCR_DIE);
705 #endif
706 }
707 
708 int update_persistent_clock(struct timespec now)
709 {
710 	struct rtc_time tm;
711 
712 	if (!ppc_md.set_rtc_time)
713 		return 0;
714 
715 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
716 	tm.tm_year -= 1900;
717 	tm.tm_mon -= 1;
718 
719 	return ppc_md.set_rtc_time(&tm);
720 }
721 
722 unsigned long read_persistent_clock(void)
723 {
724 	struct rtc_time tm;
725 	static int first = 1;
726 
727 	/* XXX this is a litle fragile but will work okay in the short term */
728 	if (first) {
729 		first = 0;
730 		if (ppc_md.time_init)
731 			timezone_offset = ppc_md.time_init();
732 
733 		/* get_boot_time() isn't guaranteed to be safe to call late */
734 		if (ppc_md.get_boot_time)
735 			return ppc_md.get_boot_time() -timezone_offset;
736 	}
737 	if (!ppc_md.get_rtc_time)
738 		return 0;
739 	ppc_md.get_rtc_time(&tm);
740 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
741 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
742 }
743 
744 /* clocksource code */
745 static cycle_t rtc_read(void)
746 {
747 	return (cycle_t)get_rtc();
748 }
749 
750 static cycle_t timebase_read(void)
751 {
752 	return (cycle_t)get_tb();
753 }
754 
755 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
756 {
757 	u64 t2x, stamp_xsec;
758 
759 	if (clock != &clocksource_timebase)
760 		return;
761 
762 	/* Make userspace gettimeofday spin until we're done. */
763 	++vdso_data->tb_update_count;
764 	smp_mb();
765 
766 	/* XXX this assumes clock->shift == 22 */
767 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
768 	t2x = (u64) clock->mult * 4611686018ULL;
769 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
770 	do_div(stamp_xsec, 1000000000);
771 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
772 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
773 }
774 
775 void update_vsyscall_tz(void)
776 {
777 	/* Make userspace gettimeofday spin until we're done. */
778 	++vdso_data->tb_update_count;
779 	smp_mb();
780 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
781 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
782 	smp_mb();
783 	++vdso_data->tb_update_count;
784 }
785 
786 void __init clocksource_init(void)
787 {
788 	struct clocksource *clock;
789 
790 	if (__USE_RTC())
791 		clock = &clocksource_rtc;
792 	else
793 		clock = &clocksource_timebase;
794 
795 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
796 
797 	if (clocksource_register(clock)) {
798 		printk(KERN_ERR "clocksource: %s is already registered\n",
799 		       clock->name);
800 		return;
801 	}
802 
803 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
804 	       clock->name, clock->mult, clock->shift);
805 }
806 
807 static int decrementer_set_next_event(unsigned long evt,
808 				      struct clock_event_device *dev)
809 {
810 	__get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
811 	/* The decrementer interrupts on the 0 -> -1 transition */
812 	if (evt)
813 		--evt;
814 	set_dec(evt);
815 	return 0;
816 }
817 
818 static void decrementer_set_mode(enum clock_event_mode mode,
819 				 struct clock_event_device *dev)
820 {
821 	if (mode != CLOCK_EVT_MODE_ONESHOT)
822 		decrementer_set_next_event(DECREMENTER_MAX, dev);
823 }
824 
825 static void register_decrementer_clockevent(int cpu)
826 {
827 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
828 
829 	*dec = decrementer_clockevent;
830 	dec->cpumask = cpumask_of_cpu(cpu);
831 
832 	printk(KERN_ERR "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
833 	       dec->name, dec->mult, dec->shift, cpu);
834 
835 	clockevents_register_device(dec);
836 }
837 
838 void init_decrementer_clockevent(void)
839 {
840 	int cpu = smp_processor_id();
841 
842 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
843 					     decrementer_clockevent.shift);
844 	decrementer_clockevent.max_delta_ns =
845 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
846 	decrementer_clockevent.min_delta_ns = 1000;
847 
848 	register_decrementer_clockevent(cpu);
849 }
850 
851 void secondary_cpu_time_init(void)
852 {
853 	/* FIME: Should make unrelatred change to move snapshot_timebase
854 	 * call here ! */
855 	register_decrementer_clockevent(smp_processor_id());
856 }
857 
858 /* This function is only called on the boot processor */
859 void __init time_init(void)
860 {
861 	unsigned long flags;
862 	struct div_result res;
863 	u64 scale, x;
864 	unsigned shift;
865 
866 	if (__USE_RTC()) {
867 		/* 601 processor: dec counts down by 128 every 128ns */
868 		ppc_tb_freq = 1000000000;
869 		tb_last_jiffy = get_rtcl();
870 	} else {
871 		/* Normal PowerPC with timebase register */
872 		ppc_md.calibrate_decr();
873 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
874 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
875 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
876 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
877 		tb_last_jiffy = get_tb();
878 	}
879 
880 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
881 	tb_ticks_per_sec = ppc_tb_freq;
882 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
883 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
884 	calc_cputime_factors();
885 
886 	/*
887 	 * Calculate the length of each tick in ns.  It will not be
888 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
889 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
890 	 * rounded up.
891 	 */
892 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
893 	do_div(x, ppc_tb_freq);
894 	tick_nsec = x;
895 	last_tick_len = x << TICKLEN_SCALE;
896 
897 	/*
898 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
899 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
900 	 * It is computed as:
901 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
902 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
903 	 * which turns out to be N = 51 - SHIFT_HZ.
904 	 * This gives the result as a 0.64 fixed-point fraction.
905 	 * That value is reduced by an offset amounting to 1 xsec per
906 	 * 2^31 timebase ticks to avoid problems with time going backwards
907 	 * by 1 xsec when we do timer_recalc_offset due to losing the
908 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
909 	 * since there are 2^20 xsec in a second.
910 	 */
911 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
912 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
913 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
914 	ticklen_to_xs = res.result_low;
915 
916 	/* Compute tb_to_xs from tick_nsec */
917 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
918 
919 	/*
920 	 * Compute scale factor for sched_clock.
921 	 * The calibrate_decr() function has set tb_ticks_per_sec,
922 	 * which is the timebase frequency.
923 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
924 	 * the 128-bit result as a 64.64 fixed-point number.
925 	 * We then shift that number right until it is less than 1.0,
926 	 * giving us the scale factor and shift count to use in
927 	 * sched_clock().
928 	 */
929 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
930 	scale = res.result_low;
931 	for (shift = 0; res.result_high != 0; ++shift) {
932 		scale = (scale >> 1) | (res.result_high << 63);
933 		res.result_high >>= 1;
934 	}
935 	tb_to_ns_scale = scale;
936 	tb_to_ns_shift = shift;
937 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
938 	boot_tb = get_tb_or_rtc();
939 
940 	write_seqlock_irqsave(&xtime_lock, flags);
941 
942 	/* If platform provided a timezone (pmac), we correct the time */
943         if (timezone_offset) {
944 		sys_tz.tz_minuteswest = -timezone_offset / 60;
945 		sys_tz.tz_dsttime = 0;
946         }
947 
948 	do_gtod.varp = &do_gtod.vars[0];
949 	do_gtod.var_idx = 0;
950 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
951 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
952 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
953 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
954 	do_gtod.varp->tb_to_xs = tb_to_xs;
955 	do_gtod.tb_to_us = tb_to_us;
956 
957 	vdso_data->tb_orig_stamp = tb_last_jiffy;
958 	vdso_data->tb_update_count = 0;
959 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
960 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
961 	vdso_data->tb_to_xs = tb_to_xs;
962 
963 	time_freq = 0;
964 
965 	write_sequnlock_irqrestore(&xtime_lock, flags);
966 
967 	/* Register the clocksource, if we're not running on iSeries */
968 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
969 		clocksource_init();
970 
971 	init_decrementer_clockevent();
972 }
973 
974 
975 #define FEBRUARY	2
976 #define	STARTOFTIME	1970
977 #define SECDAY		86400L
978 #define SECYR		(SECDAY * 365)
979 #define	leapyear(year)		((year) % 4 == 0 && \
980 				 ((year) % 100 != 0 || (year) % 400 == 0))
981 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
982 #define	days_in_month(a) 	(month_days[(a) - 1])
983 
984 static int month_days[12] = {
985 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
986 };
987 
988 /*
989  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
990  */
991 void GregorianDay(struct rtc_time * tm)
992 {
993 	int leapsToDate;
994 	int lastYear;
995 	int day;
996 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
997 
998 	lastYear = tm->tm_year - 1;
999 
1000 	/*
1001 	 * Number of leap corrections to apply up to end of last year
1002 	 */
1003 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1004 
1005 	/*
1006 	 * This year is a leap year if it is divisible by 4 except when it is
1007 	 * divisible by 100 unless it is divisible by 400
1008 	 *
1009 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1010 	 */
1011 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1012 
1013 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1014 		   tm->tm_mday;
1015 
1016 	tm->tm_wday = day % 7;
1017 }
1018 
1019 void to_tm(int tim, struct rtc_time * tm)
1020 {
1021 	register int    i;
1022 	register long   hms, day;
1023 
1024 	day = tim / SECDAY;
1025 	hms = tim % SECDAY;
1026 
1027 	/* Hours, minutes, seconds are easy */
1028 	tm->tm_hour = hms / 3600;
1029 	tm->tm_min = (hms % 3600) / 60;
1030 	tm->tm_sec = (hms % 3600) % 60;
1031 
1032 	/* Number of years in days */
1033 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1034 		day -= days_in_year(i);
1035 	tm->tm_year = i;
1036 
1037 	/* Number of months in days left */
1038 	if (leapyear(tm->tm_year))
1039 		days_in_month(FEBRUARY) = 29;
1040 	for (i = 1; day >= days_in_month(i); i++)
1041 		day -= days_in_month(i);
1042 	days_in_month(FEBRUARY) = 28;
1043 	tm->tm_mon = i;
1044 
1045 	/* Days are what is left over (+1) from all that. */
1046 	tm->tm_mday = day + 1;
1047 
1048 	/*
1049 	 * Determine the day of week
1050 	 */
1051 	GregorianDay(tm);
1052 }
1053 
1054 /* Auxiliary function to compute scaling factors */
1055 /* Actually the choice of a timebase running at 1/4 the of the bus
1056  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1057  * It makes this computation very precise (27-28 bits typically) which
1058  * is optimistic considering the stability of most processor clock
1059  * oscillators and the precision with which the timebase frequency
1060  * is measured but does not harm.
1061  */
1062 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1063 {
1064         unsigned mlt=0, tmp, err;
1065         /* No concern for performance, it's done once: use a stupid
1066          * but safe and compact method to find the multiplier.
1067          */
1068 
1069         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1070                 if (mulhwu(inscale, mlt|tmp) < outscale)
1071 			mlt |= tmp;
1072         }
1073 
1074         /* We might still be off by 1 for the best approximation.
1075          * A side effect of this is that if outscale is too large
1076          * the returned value will be zero.
1077          * Many corner cases have been checked and seem to work,
1078          * some might have been forgotten in the test however.
1079          */
1080 
1081         err = inscale * (mlt+1);
1082         if (err <= inscale/2)
1083 		mlt++;
1084         return mlt;
1085 }
1086 
1087 /*
1088  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1089  * result.
1090  */
1091 void div128_by_32(u64 dividend_high, u64 dividend_low,
1092 		  unsigned divisor, struct div_result *dr)
1093 {
1094 	unsigned long a, b, c, d;
1095 	unsigned long w, x, y, z;
1096 	u64 ra, rb, rc;
1097 
1098 	a = dividend_high >> 32;
1099 	b = dividend_high & 0xffffffff;
1100 	c = dividend_low >> 32;
1101 	d = dividend_low & 0xffffffff;
1102 
1103 	w = a / divisor;
1104 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1105 
1106 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1107 	x = ra;
1108 
1109 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1110 	y = rb;
1111 
1112 	do_div(rc, divisor);
1113 	z = rc;
1114 
1115 	dr->result_high = ((u64)w << 32) + x;
1116 	dr->result_low  = ((u64)y << 32) + z;
1117 
1118 }
1119