xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision d170e938f01fc8c5c41f8a12f0c12491580829ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/sched/cputime.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/timex.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/time.h>
43 #include <linux/init.h>
44 #include <linux/profile.h>
45 #include <linux/cpu.h>
46 #include <linux/security.h>
47 #include <linux/percpu.h>
48 #include <linux/rtc.h>
49 #include <linux/jiffies.h>
50 #include <linux/posix-timers.h>
51 #include <linux/irq.h>
52 #include <linux/delay.h>
53 #include <linux/irq_work.h>
54 #include <linux/of_clk.h>
55 #include <linux/suspend.h>
56 #include <linux/processor.h>
57 #include <linux/mc146818rtc.h>
58 #include <linux/platform_device.h>
59 
60 #include <asm/trace.h>
61 #include <asm/interrupt.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <linux/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/mce.h>
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79 
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 	.name         = "timebase",
83 	.rating       = 400,
84 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85 	.mask         = CLOCKSOURCE_MASK(64),
86 	.read         = timebase_read,
87 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
88 };
89 
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
93 
94 static int decrementer_set_next_event(unsigned long evt,
95 				      struct clock_event_device *dev);
96 static int decrementer_shutdown(struct clock_event_device *evt);
97 
98 struct clock_event_device decrementer_clockevent = {
99 	.name			= "decrementer",
100 	.rating			= 200,
101 	.irq			= 0,
102 	.set_next_event		= decrementer_set_next_event,
103 	.set_state_oneshot_stopped = decrementer_shutdown,
104 	.set_state_shutdown	= decrementer_shutdown,
105 	.tick_resume		= decrementer_shutdown,
106 	.features		= CLOCK_EVT_FEAT_ONESHOT |
107 				  CLOCK_EVT_FEAT_C3STOP,
108 };
109 EXPORT_SYMBOL(decrementer_clockevent);
110 
111 /*
112  * This always puts next_tb beyond now, so the clock event will never fire
113  * with the usual comparison, no need for a separate test for stopped.
114  */
115 #define DEC_CLOCKEVENT_STOPPED ~0ULL
116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
117 EXPORT_SYMBOL_GPL(decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119 
120 #define XSEC_PER_SEC (1024*1024)
121 
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
127 #endif
128 
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime conversions */
134 
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137 
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141 
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144 
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149 
150 bool tb_invalid;
151 
152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 /*
154  * Read the SPURR on systems that have it, otherwise the PURR,
155  * or if that doesn't exist return the timebase value passed in.
156  */
157 static inline unsigned long read_spurr(unsigned long tb)
158 {
159 	if (cpu_has_feature(CPU_FTR_SPURR))
160 		return mfspr(SPRN_SPURR);
161 	if (cpu_has_feature(CPU_FTR_PURR))
162 		return mfspr(SPRN_PURR);
163 	return tb;
164 }
165 
166 /*
167  * Account time for a transition between system, hard irq
168  * or soft irq state.
169  */
170 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
171 					unsigned long now, unsigned long stime)
172 {
173 	unsigned long stime_scaled = 0;
174 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
175 	unsigned long nowscaled, deltascaled;
176 	unsigned long utime, utime_scaled;
177 
178 	nowscaled = read_spurr(now);
179 	deltascaled = nowscaled - acct->startspurr;
180 	acct->startspurr = nowscaled;
181 	utime = acct->utime - acct->utime_sspurr;
182 	acct->utime_sspurr = acct->utime;
183 
184 	/*
185 	 * Because we don't read the SPURR on every kernel entry/exit,
186 	 * deltascaled includes both user and system SPURR ticks.
187 	 * Apportion these ticks to system SPURR ticks and user
188 	 * SPURR ticks in the same ratio as the system time (delta)
189 	 * and user time (udelta) values obtained from the timebase
190 	 * over the same interval.  The system ticks get accounted here;
191 	 * the user ticks get saved up in paca->user_time_scaled to be
192 	 * used by account_process_tick.
193 	 */
194 	stime_scaled = stime;
195 	utime_scaled = utime;
196 	if (deltascaled != stime + utime) {
197 		if (utime) {
198 			stime_scaled = deltascaled * stime / (stime + utime);
199 			utime_scaled = deltascaled - stime_scaled;
200 		} else {
201 			stime_scaled = deltascaled;
202 		}
203 	}
204 	acct->utime_scaled += utime_scaled;
205 #endif
206 
207 	return stime_scaled;
208 }
209 
210 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
211 				 unsigned long *stime_scaled,
212 				 unsigned long *steal_time)
213 {
214 	unsigned long now, stime;
215 
216 	WARN_ON_ONCE(!irqs_disabled());
217 
218 	now = mftb();
219 	stime = now - acct->starttime;
220 	acct->starttime = now;
221 
222 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
223 
224 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) &&
225 			firmware_has_feature(FW_FEATURE_SPLPAR))
226 		*steal_time = pseries_calculate_stolen_time(now);
227 	else
228 		*steal_time = 0;
229 
230 	return stime;
231 }
232 
233 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
234 			       unsigned long *stime, unsigned long *stime_scaled)
235 {
236 	unsigned long steal_time;
237 
238 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
239 	*stime -= min(*stime, steal_time);
240 	acct->steal_time += steal_time;
241 }
242 
243 void vtime_account_kernel(struct task_struct *tsk)
244 {
245 	struct cpu_accounting_data *acct = get_accounting(tsk);
246 	unsigned long stime, stime_scaled;
247 
248 	vtime_delta_kernel(acct, &stime, &stime_scaled);
249 
250 	if (tsk->flags & PF_VCPU) {
251 		acct->gtime += stime;
252 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
253 		acct->utime_scaled += stime_scaled;
254 #endif
255 	} else {
256 		acct->stime += stime;
257 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
258 		acct->stime_scaled += stime_scaled;
259 #endif
260 	}
261 }
262 EXPORT_SYMBOL_GPL(vtime_account_kernel);
263 
264 void vtime_account_idle(struct task_struct *tsk)
265 {
266 	unsigned long stime, stime_scaled, steal_time;
267 	struct cpu_accounting_data *acct = get_accounting(tsk);
268 
269 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
270 	acct->idle_time += stime + steal_time;
271 }
272 
273 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
274 				    unsigned long *field)
275 {
276 	unsigned long stime, stime_scaled;
277 
278 	vtime_delta_kernel(acct, &stime, &stime_scaled);
279 	*field += stime;
280 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
281 	acct->stime_scaled += stime_scaled;
282 #endif
283 }
284 
285 void vtime_account_softirq(struct task_struct *tsk)
286 {
287 	struct cpu_accounting_data *acct = get_accounting(tsk);
288 	vtime_account_irq_field(acct, &acct->softirq_time);
289 }
290 
291 void vtime_account_hardirq(struct task_struct *tsk)
292 {
293 	struct cpu_accounting_data *acct = get_accounting(tsk);
294 	vtime_account_irq_field(acct, &acct->hardirq_time);
295 }
296 
297 static void vtime_flush_scaled(struct task_struct *tsk,
298 			       struct cpu_accounting_data *acct)
299 {
300 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
301 	if (acct->utime_scaled)
302 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
303 	if (acct->stime_scaled)
304 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
305 
306 	acct->utime_scaled = 0;
307 	acct->utime_sspurr = 0;
308 	acct->stime_scaled = 0;
309 #endif
310 }
311 
312 /*
313  * Account the whole cputime accumulated in the paca
314  * Must be called with interrupts disabled.
315  * Assumes that vtime_account_kernel/idle() has been called
316  * recently (i.e. since the last entry from usermode) so that
317  * get_paca()->user_time_scaled is up to date.
318  */
319 void vtime_flush(struct task_struct *tsk)
320 {
321 	struct cpu_accounting_data *acct = get_accounting(tsk);
322 
323 	if (acct->utime)
324 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
325 
326 	if (acct->gtime)
327 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
328 
329 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
330 		account_steal_time(cputime_to_nsecs(acct->steal_time));
331 		acct->steal_time = 0;
332 	}
333 
334 	if (acct->idle_time)
335 		account_idle_time(cputime_to_nsecs(acct->idle_time));
336 
337 	if (acct->stime)
338 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
339 					  CPUTIME_SYSTEM);
340 
341 	if (acct->hardirq_time)
342 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
343 					  CPUTIME_IRQ);
344 	if (acct->softirq_time)
345 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
346 					  CPUTIME_SOFTIRQ);
347 
348 	vtime_flush_scaled(tsk, acct);
349 
350 	acct->utime = 0;
351 	acct->gtime = 0;
352 	acct->idle_time = 0;
353 	acct->stime = 0;
354 	acct->hardirq_time = 0;
355 	acct->softirq_time = 0;
356 }
357 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
358 
359 void __no_kcsan __delay(unsigned long loops)
360 {
361 	unsigned long start;
362 
363 	spin_begin();
364 	if (tb_invalid) {
365 		/*
366 		 * TB is in error state and isn't ticking anymore.
367 		 * HMI handler was unable to recover from TB error.
368 		 * Return immediately, so that kernel won't get stuck here.
369 		 */
370 		spin_cpu_relax();
371 	} else {
372 		start = mftb();
373 		while (mftb() - start < loops)
374 			spin_cpu_relax();
375 	}
376 	spin_end();
377 }
378 EXPORT_SYMBOL(__delay);
379 
380 void __no_kcsan udelay(unsigned long usecs)
381 {
382 	__delay(tb_ticks_per_usec * usecs);
383 }
384 EXPORT_SYMBOL(udelay);
385 
386 #ifdef CONFIG_SMP
387 unsigned long profile_pc(struct pt_regs *regs)
388 {
389 	unsigned long pc = instruction_pointer(regs);
390 
391 	if (in_lock_functions(pc))
392 		return regs->link;
393 
394 	return pc;
395 }
396 EXPORT_SYMBOL(profile_pc);
397 #endif
398 
399 #ifdef CONFIG_IRQ_WORK
400 
401 /*
402  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
403  */
404 #ifdef CONFIG_PPC64
405 static inline unsigned long test_irq_work_pending(void)
406 {
407 	unsigned long x;
408 
409 	asm volatile("lbz %0,%1(13)"
410 		: "=r" (x)
411 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
412 	return x;
413 }
414 
415 static inline void set_irq_work_pending_flag(void)
416 {
417 	asm volatile("stb %0,%1(13)" : :
418 		"r" (1),
419 		"i" (offsetof(struct paca_struct, irq_work_pending)));
420 }
421 
422 static inline void clear_irq_work_pending(void)
423 {
424 	asm volatile("stb %0,%1(13)" : :
425 		"r" (0),
426 		"i" (offsetof(struct paca_struct, irq_work_pending)));
427 }
428 
429 #else /* 32-bit */
430 
431 DEFINE_PER_CPU(u8, irq_work_pending);
432 
433 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
434 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
435 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
436 
437 #endif /* 32 vs 64 bit */
438 
439 void arch_irq_work_raise(void)
440 {
441 	/*
442 	 * 64-bit code that uses irq soft-mask can just cause an immediate
443 	 * interrupt here that gets soft masked, if this is called under
444 	 * local_irq_disable(). It might be possible to prevent that happening
445 	 * by noticing interrupts are disabled and setting decrementer pending
446 	 * to be replayed when irqs are enabled. The problem there is that
447 	 * tracing can call irq_work_raise, including in code that does low
448 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
449 	 * which could get tangled up if we're messing with the same state
450 	 * here.
451 	 */
452 	preempt_disable();
453 	set_irq_work_pending_flag();
454 	set_dec(1);
455 	preempt_enable();
456 }
457 
458 static void set_dec_or_work(u64 val)
459 {
460 	set_dec(val);
461 	/* We may have raced with new irq work */
462 	if (unlikely(test_irq_work_pending()))
463 		set_dec(1);
464 }
465 
466 #else  /* CONFIG_IRQ_WORK */
467 
468 #define test_irq_work_pending()	0
469 #define clear_irq_work_pending()
470 
471 static void set_dec_or_work(u64 val)
472 {
473 	set_dec(val);
474 }
475 #endif /* CONFIG_IRQ_WORK */
476 
477 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
478 void timer_rearm_host_dec(u64 now)
479 {
480 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
481 
482 	WARN_ON_ONCE(!arch_irqs_disabled());
483 	WARN_ON_ONCE(mfmsr() & MSR_EE);
484 
485 	if (now >= *next_tb) {
486 		local_paca->irq_happened |= PACA_IRQ_DEC;
487 	} else {
488 		now = *next_tb - now;
489 		if (now > decrementer_max)
490 			now = decrementer_max;
491 		set_dec_or_work(now);
492 	}
493 }
494 EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
495 #endif
496 
497 /*
498  * timer_interrupt - gets called when the decrementer overflows,
499  * with interrupts disabled.
500  */
501 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
502 {
503 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
504 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
505 	struct pt_regs *old_regs;
506 	u64 now;
507 
508 	/*
509 	 * Some implementations of hotplug will get timer interrupts while
510 	 * offline, just ignore these.
511 	 */
512 	if (unlikely(!cpu_online(smp_processor_id()))) {
513 		set_dec(decrementer_max);
514 		return;
515 	}
516 
517 	/* Conditionally hard-enable interrupts. */
518 	if (should_hard_irq_enable(regs)) {
519 		/*
520 		 * Ensure a positive value is written to the decrementer, or
521 		 * else some CPUs will continue to take decrementer exceptions.
522 		 * When the PPC_WATCHDOG (decrementer based) is configured,
523 		 * keep this at most 31 bits, which is about 4 seconds on most
524 		 * systems, which gives the watchdog a chance of catching timer
525 		 * interrupt hard lockups.
526 		 */
527 		if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
528 			set_dec(0x7fffffff);
529 		else
530 			set_dec(decrementer_max);
531 
532 		do_hard_irq_enable();
533 	}
534 
535 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
536 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
537 		__do_IRQ(regs);
538 #endif
539 
540 	old_regs = set_irq_regs(regs);
541 
542 	trace_timer_interrupt_entry(regs);
543 
544 	if (test_irq_work_pending()) {
545 		clear_irq_work_pending();
546 		mce_run_irq_context_handlers();
547 		irq_work_run();
548 	}
549 
550 	now = get_tb();
551 	if (now >= *next_tb) {
552 		evt->event_handler(evt);
553 		__this_cpu_inc(irq_stat.timer_irqs_event);
554 	} else {
555 		now = *next_tb - now;
556 		if (now > decrementer_max)
557 			now = decrementer_max;
558 		set_dec_or_work(now);
559 		__this_cpu_inc(irq_stat.timer_irqs_others);
560 	}
561 
562 	trace_timer_interrupt_exit(regs);
563 
564 	set_irq_regs(old_regs);
565 }
566 EXPORT_SYMBOL(timer_interrupt);
567 
568 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
569 void timer_broadcast_interrupt(void)
570 {
571 	tick_receive_broadcast();
572 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
573 }
574 #endif
575 
576 #ifdef CONFIG_SUSPEND
577 /* Overrides the weak version in kernel/power/main.c */
578 void arch_suspend_disable_irqs(void)
579 {
580 	if (ppc_md.suspend_disable_irqs)
581 		ppc_md.suspend_disable_irqs();
582 
583 	/* Disable the decrementer, so that it doesn't interfere
584 	 * with suspending.
585 	 */
586 
587 	set_dec(decrementer_max);
588 	local_irq_disable();
589 	set_dec(decrementer_max);
590 }
591 
592 /* Overrides the weak version in kernel/power/main.c */
593 void arch_suspend_enable_irqs(void)
594 {
595 	local_irq_enable();
596 
597 	if (ppc_md.suspend_enable_irqs)
598 		ppc_md.suspend_enable_irqs();
599 }
600 #endif
601 
602 unsigned long long tb_to_ns(unsigned long long ticks)
603 {
604 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
605 }
606 EXPORT_SYMBOL_GPL(tb_to_ns);
607 
608 /*
609  * Scheduler clock - returns current time in nanosec units.
610  *
611  * Note: mulhdu(a, b) (multiply high double unsigned) returns
612  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
613  * are 64-bit unsigned numbers.
614  */
615 notrace unsigned long long sched_clock(void)
616 {
617 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
618 }
619 
620 
621 #ifdef CONFIG_PPC_PSERIES
622 
623 /*
624  * Running clock - attempts to give a view of time passing for a virtualised
625  * kernels.
626  * Uses the VTB register if available otherwise a next best guess.
627  */
628 unsigned long long running_clock(void)
629 {
630 	/*
631 	 * Don't read the VTB as a host since KVM does not switch in host
632 	 * timebase into the VTB when it takes a guest off the CPU, reading the
633 	 * VTB would result in reading 'last switched out' guest VTB.
634 	 *
635 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
636 	 * would be unsafe to rely only on the #ifdef above.
637 	 */
638 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
639 	    cpu_has_feature(CPU_FTR_ARCH_207S))
640 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
641 
642 	/*
643 	 * This is a next best approximation without a VTB.
644 	 * On a host which is running bare metal there should never be any stolen
645 	 * time and on a host which doesn't do any virtualisation TB *should* equal
646 	 * VTB so it makes no difference anyway.
647 	 */
648 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
649 }
650 #endif
651 
652 static int __init get_freq(char *name, int cells, unsigned long *val)
653 {
654 	struct device_node *cpu;
655 	const __be32 *fp;
656 	int found = 0;
657 
658 	/* The cpu node should have timebase and clock frequency properties */
659 	cpu = of_find_node_by_type(NULL, "cpu");
660 
661 	if (cpu) {
662 		fp = of_get_property(cpu, name, NULL);
663 		if (fp) {
664 			found = 1;
665 			*val = of_read_ulong(fp, cells);
666 		}
667 
668 		of_node_put(cpu);
669 	}
670 
671 	return found;
672 }
673 
674 static void start_cpu_decrementer(void)
675 {
676 #ifdef CONFIG_BOOKE_OR_40x
677 	unsigned int tcr;
678 
679 	/* Clear any pending timer interrupts */
680 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
681 
682 	tcr = mfspr(SPRN_TCR);
683 	/*
684 	 * The watchdog may have already been enabled by u-boot. So leave
685 	 * TRC[WP] (Watchdog Period) alone.
686 	 */
687 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
688 	tcr |= TCR_DIE;		/* Enable decrementer */
689 	mtspr(SPRN_TCR, tcr);
690 #endif
691 }
692 
693 void __init generic_calibrate_decr(void)
694 {
695 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
696 
697 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
698 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
699 
700 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
701 				"(not found)\n");
702 	}
703 
704 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
705 
706 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
707 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
708 
709 		printk(KERN_ERR "WARNING: Estimating processor frequency "
710 				"(not found)\n");
711 	}
712 }
713 
714 int update_persistent_clock64(struct timespec64 now)
715 {
716 	struct rtc_time tm;
717 
718 	if (!ppc_md.set_rtc_time)
719 		return -ENODEV;
720 
721 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
722 
723 	return ppc_md.set_rtc_time(&tm);
724 }
725 
726 static void __read_persistent_clock(struct timespec64 *ts)
727 {
728 	struct rtc_time tm;
729 	static int first = 1;
730 
731 	ts->tv_nsec = 0;
732 	/* XXX this is a little fragile but will work okay in the short term */
733 	if (first) {
734 		first = 0;
735 		if (ppc_md.time_init)
736 			timezone_offset = ppc_md.time_init();
737 
738 		/* get_boot_time() isn't guaranteed to be safe to call late */
739 		if (ppc_md.get_boot_time) {
740 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
741 			return;
742 		}
743 	}
744 	if (!ppc_md.get_rtc_time) {
745 		ts->tv_sec = 0;
746 		return;
747 	}
748 	ppc_md.get_rtc_time(&tm);
749 
750 	ts->tv_sec = rtc_tm_to_time64(&tm);
751 }
752 
753 void read_persistent_clock64(struct timespec64 *ts)
754 {
755 	__read_persistent_clock(ts);
756 
757 	/* Sanitize it in case real time clock is set below EPOCH */
758 	if (ts->tv_sec < 0) {
759 		ts->tv_sec = 0;
760 		ts->tv_nsec = 0;
761 	}
762 
763 }
764 
765 /* clocksource code */
766 static notrace u64 timebase_read(struct clocksource *cs)
767 {
768 	return (u64)get_tb();
769 }
770 
771 static void __init clocksource_init(void)
772 {
773 	struct clocksource *clock = &clocksource_timebase;
774 
775 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
776 		printk(KERN_ERR "clocksource: %s is already registered\n",
777 		       clock->name);
778 		return;
779 	}
780 
781 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
782 	       clock->name, clock->mult, clock->shift);
783 }
784 
785 static int decrementer_set_next_event(unsigned long evt,
786 				      struct clock_event_device *dev)
787 {
788 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
789 	set_dec_or_work(evt);
790 
791 	return 0;
792 }
793 
794 static int decrementer_shutdown(struct clock_event_device *dev)
795 {
796 	__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
797 	set_dec_or_work(decrementer_max);
798 
799 	return 0;
800 }
801 
802 static void register_decrementer_clockevent(int cpu)
803 {
804 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
805 
806 	*dec = decrementer_clockevent;
807 	dec->cpumask = cpumask_of(cpu);
808 
809 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
810 
811 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
812 		    dec->name, dec->mult, dec->shift, cpu);
813 
814 	/* Set values for KVM, see kvm_emulate_dec() */
815 	decrementer_clockevent.mult = dec->mult;
816 	decrementer_clockevent.shift = dec->shift;
817 }
818 
819 static void enable_large_decrementer(void)
820 {
821 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
822 		return;
823 
824 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
825 		return;
826 
827 	/*
828 	 * If we're running as the hypervisor we need to enable the LD manually
829 	 * otherwise firmware should have done it for us.
830 	 */
831 	if (cpu_has_feature(CPU_FTR_HVMODE))
832 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
833 }
834 
835 static void __init set_decrementer_max(void)
836 {
837 	struct device_node *cpu;
838 	u32 bits = 32;
839 
840 	/* Prior to ISAv3 the decrementer is always 32 bit */
841 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
842 		return;
843 
844 	cpu = of_find_node_by_type(NULL, "cpu");
845 
846 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
847 		if (bits > 64 || bits < 32) {
848 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
849 			bits = 32;
850 		}
851 
852 		/* calculate the signed maximum given this many bits */
853 		decrementer_max = (1ul << (bits - 1)) - 1;
854 	}
855 
856 	of_node_put(cpu);
857 
858 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
859 		bits, decrementer_max);
860 }
861 
862 static void __init init_decrementer_clockevent(void)
863 {
864 	register_decrementer_clockevent(smp_processor_id());
865 }
866 
867 void secondary_cpu_time_init(void)
868 {
869 	/* Enable and test the large decrementer for this cpu */
870 	enable_large_decrementer();
871 
872 	/* Start the decrementer on CPUs that have manual control
873 	 * such as BookE
874 	 */
875 	start_cpu_decrementer();
876 
877 	/* FIME: Should make unrelated change to move snapshot_timebase
878 	 * call here ! */
879 	register_decrementer_clockevent(smp_processor_id());
880 }
881 
882 /* This function is only called on the boot processor */
883 void __init time_init(void)
884 {
885 	struct div_result res;
886 	u64 scale;
887 	unsigned shift;
888 
889 	/* Normal PowerPC with timebase register */
890 	ppc_md.calibrate_decr();
891 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
892 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
893 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
894 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
895 
896 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
897 	tb_ticks_per_sec = ppc_tb_freq;
898 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
899 
900 	/*
901 	 * Compute scale factor for sched_clock.
902 	 * The calibrate_decr() function has set tb_ticks_per_sec,
903 	 * which is the timebase frequency.
904 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
905 	 * the 128-bit result as a 64.64 fixed-point number.
906 	 * We then shift that number right until it is less than 1.0,
907 	 * giving us the scale factor and shift count to use in
908 	 * sched_clock().
909 	 */
910 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
911 	scale = res.result_low;
912 	for (shift = 0; res.result_high != 0; ++shift) {
913 		scale = (scale >> 1) | (res.result_high << 63);
914 		res.result_high >>= 1;
915 	}
916 	tb_to_ns_scale = scale;
917 	tb_to_ns_shift = shift;
918 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
919 	boot_tb = get_tb();
920 
921 	/* If platform provided a timezone (pmac), we correct the time */
922 	if (timezone_offset) {
923 		sys_tz.tz_minuteswest = -timezone_offset / 60;
924 		sys_tz.tz_dsttime = 0;
925 	}
926 
927 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
928 
929 	/* initialise and enable the large decrementer (if we have one) */
930 	set_decrementer_max();
931 	enable_large_decrementer();
932 
933 	/* Start the decrementer on CPUs that have manual control
934 	 * such as BookE
935 	 */
936 	start_cpu_decrementer();
937 
938 	/* Register the clocksource */
939 	clocksource_init();
940 
941 	init_decrementer_clockevent();
942 	tick_setup_hrtimer_broadcast();
943 
944 	of_clk_init(NULL);
945 	enable_sched_clock_irqtime();
946 }
947 
948 /*
949  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
950  * result.
951  */
952 void div128_by_32(u64 dividend_high, u64 dividend_low,
953 		  unsigned divisor, struct div_result *dr)
954 {
955 	unsigned long a, b, c, d;
956 	unsigned long w, x, y, z;
957 	u64 ra, rb, rc;
958 
959 	a = dividend_high >> 32;
960 	b = dividend_high & 0xffffffff;
961 	c = dividend_low >> 32;
962 	d = dividend_low & 0xffffffff;
963 
964 	w = a / divisor;
965 	ra = ((u64)(a - (w * divisor)) << 32) + b;
966 
967 	rb = ((u64) do_div(ra, divisor) << 32) + c;
968 	x = ra;
969 
970 	rc = ((u64) do_div(rb, divisor) << 32) + d;
971 	y = rb;
972 
973 	do_div(rc, divisor);
974 	z = rc;
975 
976 	dr->result_high = ((u64)w << 32) + x;
977 	dr->result_low  = ((u64)y << 32) + z;
978 
979 }
980 
981 /* We don't need to calibrate delay, we use the CPU timebase for that */
982 void calibrate_delay(void)
983 {
984 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
985 	 * as the number of __delay(1) in a jiffy, so make it so
986 	 */
987 	loops_per_jiffy = tb_ticks_per_jiffy;
988 }
989 
990 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
991 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
992 {
993 	ppc_md.get_rtc_time(tm);
994 	return 0;
995 }
996 
997 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
998 {
999 	if (!ppc_md.set_rtc_time)
1000 		return -EOPNOTSUPP;
1001 
1002 	if (ppc_md.set_rtc_time(tm) < 0)
1003 		return -EOPNOTSUPP;
1004 
1005 	return 0;
1006 }
1007 
1008 static const struct rtc_class_ops rtc_generic_ops = {
1009 	.read_time = rtc_generic_get_time,
1010 	.set_time = rtc_generic_set_time,
1011 };
1012 
1013 static int __init rtc_init(void)
1014 {
1015 	struct platform_device *pdev;
1016 
1017 	if (!ppc_md.get_rtc_time)
1018 		return -ENODEV;
1019 
1020 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1021 					     &rtc_generic_ops,
1022 					     sizeof(rtc_generic_ops));
1023 
1024 	return PTR_ERR_OR_ZERO(pdev);
1025 }
1026 
1027 device_initcall(rtc_init);
1028 #endif
1029