xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision c27da339)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
76 
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 #ifdef CONFIG_PPC_ISERIES
80 static unsigned long __initdata iSeries_recal_titan;
81 static signed long __initdata iSeries_recal_tb;
82 #endif
83 
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86 
87 #define XSEC_PER_SEC (1024*1024)
88 
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94 #endif
95 
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
101 u64 tb_to_xs;
102 unsigned tb_to_us;
103 
104 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
105 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs;	/* 0.64 fraction */
107 
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111 
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
114 
115 static u64 tb_to_ns_scale __read_mostly;
116 static unsigned tb_to_ns_shift __read_mostly;
117 static unsigned long boot_tb __read_mostly;
118 
119 struct gettimeofday_struct do_gtod;
120 
121 extern struct timezone sys_tz;
122 static long timezone_offset;
123 
124 unsigned long ppc_proc_freq;
125 EXPORT_SYMBOL(ppc_proc_freq);
126 unsigned long ppc_tb_freq;
127 
128 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 static DEFINE_PER_CPU(u64, last_jiffy);
130 
131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
132 /*
133  * Factors for converting from cputime_t (timebase ticks) to
134  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
135  * These are all stored as 0.64 fixed-point binary fractions.
136  */
137 u64 __cputime_jiffies_factor;
138 EXPORT_SYMBOL(__cputime_jiffies_factor);
139 u64 __cputime_msec_factor;
140 EXPORT_SYMBOL(__cputime_msec_factor);
141 u64 __cputime_sec_factor;
142 EXPORT_SYMBOL(__cputime_sec_factor);
143 u64 __cputime_clockt_factor;
144 EXPORT_SYMBOL(__cputime_clockt_factor);
145 
146 static void calc_cputime_factors(void)
147 {
148 	struct div_result res;
149 
150 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
151 	__cputime_jiffies_factor = res.result_low;
152 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
153 	__cputime_msec_factor = res.result_low;
154 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
155 	__cputime_sec_factor = res.result_low;
156 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
157 	__cputime_clockt_factor = res.result_low;
158 }
159 
160 /*
161  * Read the PURR on systems that have it, otherwise the timebase.
162  */
163 static u64 read_purr(void)
164 {
165 	if (cpu_has_feature(CPU_FTR_PURR))
166 		return mfspr(SPRN_PURR);
167 	return mftb();
168 }
169 
170 /*
171  * Account time for a transition between system, hard irq
172  * or soft irq state.
173  */
174 void account_system_vtime(struct task_struct *tsk)
175 {
176 	u64 now, delta;
177 	unsigned long flags;
178 
179 	local_irq_save(flags);
180 	now = read_purr();
181 	delta = now - get_paca()->startpurr;
182 	get_paca()->startpurr = now;
183 	if (!in_interrupt()) {
184 		delta += get_paca()->system_time;
185 		get_paca()->system_time = 0;
186 	}
187 	account_system_time(tsk, 0, delta);
188 	local_irq_restore(flags);
189 }
190 
191 /*
192  * Transfer the user and system times accumulated in the paca
193  * by the exception entry and exit code to the generic process
194  * user and system time records.
195  * Must be called with interrupts disabled.
196  */
197 void account_process_vtime(struct task_struct *tsk)
198 {
199 	cputime_t utime;
200 
201 	utime = get_paca()->user_time;
202 	get_paca()->user_time = 0;
203 	account_user_time(tsk, utime);
204 }
205 
206 static void account_process_time(struct pt_regs *regs)
207 {
208 	int cpu = smp_processor_id();
209 
210 	account_process_vtime(current);
211 	run_local_timers();
212 	if (rcu_pending(cpu))
213 		rcu_check_callbacks(cpu, user_mode(regs));
214 	scheduler_tick();
215  	run_posix_cpu_timers(current);
216 }
217 
218 /*
219  * Stuff for accounting stolen time.
220  */
221 struct cpu_purr_data {
222 	int	initialized;			/* thread is running */
223 	u64	tb;			/* last TB value read */
224 	u64	purr;			/* last PURR value read */
225 };
226 
227 /*
228  * Each entry in the cpu_purr_data array is manipulated only by its
229  * "owner" cpu -- usually in the timer interrupt but also occasionally
230  * in process context for cpu online.  As long as cpus do not touch
231  * each others' cpu_purr_data, disabling local interrupts is
232  * sufficient to serialize accesses.
233  */
234 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
235 
236 static void snapshot_tb_and_purr(void *data)
237 {
238 	unsigned long flags;
239 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
240 
241 	local_irq_save(flags);
242 	p->tb = get_tb_or_rtc();
243 	p->purr = mfspr(SPRN_PURR);
244 	wmb();
245 	p->initialized = 1;
246 	local_irq_restore(flags);
247 }
248 
249 /*
250  * Called during boot when all cpus have come up.
251  */
252 void snapshot_timebases(void)
253 {
254 	if (!cpu_has_feature(CPU_FTR_PURR))
255 		return;
256 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
257 }
258 
259 /*
260  * Must be called with interrupts disabled.
261  */
262 void calculate_steal_time(void)
263 {
264 	u64 tb, purr;
265 	s64 stolen;
266 	struct cpu_purr_data *pme;
267 
268 	if (!cpu_has_feature(CPU_FTR_PURR))
269 		return;
270 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
271 	if (!pme->initialized)
272 		return;		/* this can happen in early boot */
273 	tb = mftb();
274 	purr = mfspr(SPRN_PURR);
275 	stolen = (tb - pme->tb) - (purr - pme->purr);
276 	if (stolen > 0)
277 		account_steal_time(current, stolen);
278 	pme->tb = tb;
279 	pme->purr = purr;
280 }
281 
282 #ifdef CONFIG_PPC_SPLPAR
283 /*
284  * Must be called before the cpu is added to the online map when
285  * a cpu is being brought up at runtime.
286  */
287 static void snapshot_purr(void)
288 {
289 	struct cpu_purr_data *pme;
290 	unsigned long flags;
291 
292 	if (!cpu_has_feature(CPU_FTR_PURR))
293 		return;
294 	local_irq_save(flags);
295 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
296 	pme->tb = mftb();
297 	pme->purr = mfspr(SPRN_PURR);
298 	pme->initialized = 1;
299 	local_irq_restore(flags);
300 }
301 
302 #endif /* CONFIG_PPC_SPLPAR */
303 
304 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
305 #define calc_cputime_factors()
306 #define account_process_time(regs)	update_process_times(user_mode(regs))
307 #define calculate_steal_time()		do { } while (0)
308 #endif
309 
310 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
311 #define snapshot_purr()			do { } while (0)
312 #endif
313 
314 /*
315  * Called when a cpu comes up after the system has finished booting,
316  * i.e. as a result of a hotplug cpu action.
317  */
318 void snapshot_timebase(void)
319 {
320 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
321 	snapshot_purr();
322 }
323 
324 void __delay(unsigned long loops)
325 {
326 	unsigned long start;
327 	int diff;
328 
329 	if (__USE_RTC()) {
330 		start = get_rtcl();
331 		do {
332 			/* the RTCL register wraps at 1000000000 */
333 			diff = get_rtcl() - start;
334 			if (diff < 0)
335 				diff += 1000000000;
336 		} while (diff < loops);
337 	} else {
338 		start = get_tbl();
339 		while (get_tbl() - start < loops)
340 			HMT_low();
341 		HMT_medium();
342 	}
343 }
344 EXPORT_SYMBOL(__delay);
345 
346 void udelay(unsigned long usecs)
347 {
348 	__delay(tb_ticks_per_usec * usecs);
349 }
350 EXPORT_SYMBOL(udelay);
351 
352 static __inline__ void timer_check_rtc(void)
353 {
354         /*
355          * update the rtc when needed, this should be performed on the
356          * right fraction of a second. Half or full second ?
357          * Full second works on mk48t59 clocks, others need testing.
358          * Note that this update is basically only used through
359          * the adjtimex system calls. Setting the HW clock in
360          * any other way is a /dev/rtc and userland business.
361          * This is still wrong by -0.5/+1.5 jiffies because of the
362          * timer interrupt resolution and possible delay, but here we
363          * hit a quantization limit which can only be solved by higher
364          * resolution timers and decoupling time management from timer
365          * interrupts. This is also wrong on the clocks
366          * which require being written at the half second boundary.
367          * We should have an rtc call that only sets the minutes and
368          * seconds like on Intel to avoid problems with non UTC clocks.
369          */
370         if (ppc_md.set_rtc_time && ntp_synced() &&
371 	    xtime.tv_sec - last_rtc_update >= 659 &&
372 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
373 		struct rtc_time tm;
374 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
375 		tm.tm_year -= 1900;
376 		tm.tm_mon -= 1;
377 		if (ppc_md.set_rtc_time(&tm) == 0)
378 			last_rtc_update = xtime.tv_sec + 1;
379 		else
380 			/* Try again one minute later */
381 			last_rtc_update += 60;
382         }
383 }
384 
385 /*
386  * This version of gettimeofday has microsecond resolution.
387  */
388 static inline void __do_gettimeofday(struct timeval *tv)
389 {
390 	unsigned long sec, usec;
391 	u64 tb_ticks, xsec;
392 	struct gettimeofday_vars *temp_varp;
393 	u64 temp_tb_to_xs, temp_stamp_xsec;
394 
395 	/*
396 	 * These calculations are faster (gets rid of divides)
397 	 * if done in units of 1/2^20 rather than microseconds.
398 	 * The conversion to microseconds at the end is done
399 	 * without a divide (and in fact, without a multiply)
400 	 */
401 	temp_varp = do_gtod.varp;
402 
403 	/* Sampling the time base must be done after loading
404 	 * do_gtod.varp in order to avoid racing with update_gtod.
405 	 */
406 	data_barrier(temp_varp);
407 	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
408 	temp_tb_to_xs = temp_varp->tb_to_xs;
409 	temp_stamp_xsec = temp_varp->stamp_xsec;
410 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
411 	sec = xsec / XSEC_PER_SEC;
412 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
413 	usec = SCALE_XSEC(usec, 1000000);
414 
415 	tv->tv_sec = sec;
416 	tv->tv_usec = usec;
417 }
418 
419 void do_gettimeofday(struct timeval *tv)
420 {
421 	if (__USE_RTC()) {
422 		/* do this the old way */
423 		unsigned long flags, seq;
424 		unsigned int sec, nsec, usec;
425 
426 		do {
427 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
428 			sec = xtime.tv_sec;
429 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
430 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
431 		usec = nsec / 1000;
432 		while (usec >= 1000000) {
433 			usec -= 1000000;
434 			++sec;
435 		}
436 		tv->tv_sec = sec;
437 		tv->tv_usec = usec;
438 		return;
439 	}
440 	__do_gettimeofday(tv);
441 }
442 
443 EXPORT_SYMBOL(do_gettimeofday);
444 
445 /*
446  * There are two copies of tb_to_xs and stamp_xsec so that no
447  * lock is needed to access and use these values in
448  * do_gettimeofday.  We alternate the copies and as long as a
449  * reasonable time elapses between changes, there will never
450  * be inconsistent values.  ntpd has a minimum of one minute
451  * between updates.
452  */
453 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
454 			       u64 new_tb_to_xs)
455 {
456 	unsigned temp_idx;
457 	struct gettimeofday_vars *temp_varp;
458 
459 	temp_idx = (do_gtod.var_idx == 0);
460 	temp_varp = &do_gtod.vars[temp_idx];
461 
462 	temp_varp->tb_to_xs = new_tb_to_xs;
463 	temp_varp->tb_orig_stamp = new_tb_stamp;
464 	temp_varp->stamp_xsec = new_stamp_xsec;
465 	smp_mb();
466 	do_gtod.varp = temp_varp;
467 	do_gtod.var_idx = temp_idx;
468 
469 	/*
470 	 * tb_update_count is used to allow the userspace gettimeofday code
471 	 * to assure itself that it sees a consistent view of the tb_to_xs and
472 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
473 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
474 	 * the two values of tb_update_count match and are even then the
475 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
476 	 * loops back and reads them again until this criteria is met.
477 	 * We expect the caller to have done the first increment of
478 	 * vdso_data->tb_update_count already.
479 	 */
480 	vdso_data->tb_orig_stamp = new_tb_stamp;
481 	vdso_data->stamp_xsec = new_stamp_xsec;
482 	vdso_data->tb_to_xs = new_tb_to_xs;
483 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
484 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
485 	smp_wmb();
486 	++(vdso_data->tb_update_count);
487 }
488 
489 /*
490  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
491  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
492  * difference tb - tb_orig_stamp small enough to always fit inside a
493  * 32 bits number. This is a requirement of our fast 32 bits userland
494  * implementation in the vdso. If we "miss" a call to this function
495  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
496  * with a too big difference, then the vdso will fallback to calling
497  * the syscall
498  */
499 static __inline__ void timer_recalc_offset(u64 cur_tb)
500 {
501 	unsigned long offset;
502 	u64 new_stamp_xsec;
503 	u64 tlen, t2x;
504 	u64 tb, xsec_old, xsec_new;
505 	struct gettimeofday_vars *varp;
506 
507 	if (__USE_RTC())
508 		return;
509 	tlen = current_tick_length();
510 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
511 	if (tlen == last_tick_len && offset < 0x80000000u)
512 		return;
513 	if (tlen != last_tick_len) {
514 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
515 		last_tick_len = tlen;
516 	} else
517 		t2x = do_gtod.varp->tb_to_xs;
518 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
519 	do_div(new_stamp_xsec, 1000000000);
520 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
521 
522 	++vdso_data->tb_update_count;
523 	smp_mb();
524 
525 	/*
526 	 * Make sure time doesn't go backwards for userspace gettimeofday.
527 	 */
528 	tb = get_tb();
529 	varp = do_gtod.varp;
530 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
531 		+ varp->stamp_xsec;
532 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
533 	if (xsec_new < xsec_old)
534 		new_stamp_xsec += xsec_old - xsec_new;
535 
536 	update_gtod(cur_tb, new_stamp_xsec, t2x);
537 }
538 
539 #ifdef CONFIG_SMP
540 unsigned long profile_pc(struct pt_regs *regs)
541 {
542 	unsigned long pc = instruction_pointer(regs);
543 
544 	if (in_lock_functions(pc))
545 		return regs->link;
546 
547 	return pc;
548 }
549 EXPORT_SYMBOL(profile_pc);
550 #endif
551 
552 #ifdef CONFIG_PPC_ISERIES
553 
554 /*
555  * This function recalibrates the timebase based on the 49-bit time-of-day
556  * value in the Titan chip.  The Titan is much more accurate than the value
557  * returned by the service processor for the timebase frequency.
558  */
559 
560 static int __init iSeries_tb_recal(void)
561 {
562 	struct div_result divres;
563 	unsigned long titan, tb;
564 
565 	/* Make sure we only run on iSeries */
566 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
567 		return -ENODEV;
568 
569 	tb = get_tb();
570 	titan = HvCallXm_loadTod();
571 	if ( iSeries_recal_titan ) {
572 		unsigned long tb_ticks = tb - iSeries_recal_tb;
573 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
574 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
575 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
576 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
577 		char sign = '+';
578 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
579 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
580 
581 		if ( tick_diff < 0 ) {
582 			tick_diff = -tick_diff;
583 			sign = '-';
584 		}
585 		if ( tick_diff ) {
586 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
587 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
588 						new_tb_ticks_per_jiffy, sign, tick_diff );
589 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
590 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
591 				calc_cputime_factors();
592 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
593 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
594 				tb_to_xs = divres.result_low;
595 				do_gtod.varp->tb_to_xs = tb_to_xs;
596 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
597 				vdso_data->tb_to_xs = tb_to_xs;
598 			}
599 			else {
600 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
601 					"                   new tb_ticks_per_jiffy = %lu\n"
602 					"                   old tb_ticks_per_jiffy = %lu\n",
603 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
604 			}
605 		}
606 	}
607 	iSeries_recal_titan = titan;
608 	iSeries_recal_tb = tb;
609 
610 	return 0;
611 }
612 late_initcall(iSeries_tb_recal);
613 
614 /* Called from platform early init */
615 void __init iSeries_time_init_early(void)
616 {
617 	iSeries_recal_tb = get_tb();
618 	iSeries_recal_titan = HvCallXm_loadTod();
619 }
620 #endif /* CONFIG_PPC_ISERIES */
621 
622 /*
623  * For iSeries shared processors, we have to let the hypervisor
624  * set the hardware decrementer.  We set a virtual decrementer
625  * in the lppaca and call the hypervisor if the virtual
626  * decrementer is less than the current value in the hardware
627  * decrementer. (almost always the new decrementer value will
628  * be greater than the current hardware decementer so the hypervisor
629  * call will not be needed)
630  */
631 
632 /*
633  * timer_interrupt - gets called when the decrementer overflows,
634  * with interrupts disabled.
635  */
636 void timer_interrupt(struct pt_regs * regs)
637 {
638 	struct pt_regs *old_regs;
639 	int next_dec;
640 	int cpu = smp_processor_id();
641 	unsigned long ticks;
642 	u64 tb_next_jiffy;
643 
644 #ifdef CONFIG_PPC32
645 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
646 		do_IRQ(regs);
647 #endif
648 
649 	old_regs = set_irq_regs(regs);
650 	irq_enter();
651 
652 	profile_tick(CPU_PROFILING);
653 	calculate_steal_time();
654 
655 #ifdef CONFIG_PPC_ISERIES
656 	if (firmware_has_feature(FW_FEATURE_ISERIES))
657 		get_lppaca()->int_dword.fields.decr_int = 0;
658 #endif
659 
660 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
661 	       >= tb_ticks_per_jiffy) {
662 		/* Update last_jiffy */
663 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
664 		/* Handle RTCL overflow on 601 */
665 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
666 			per_cpu(last_jiffy, cpu) -= 1000000000;
667 
668 		/*
669 		 * We cannot disable the decrementer, so in the period
670 		 * between this cpu's being marked offline in cpu_online_map
671 		 * and calling stop-self, it is taking timer interrupts.
672 		 * Avoid calling into the scheduler rebalancing code if this
673 		 * is the case.
674 		 */
675 		if (!cpu_is_offline(cpu))
676 			account_process_time(regs);
677 
678 		/*
679 		 * No need to check whether cpu is offline here; boot_cpuid
680 		 * should have been fixed up by now.
681 		 */
682 		if (cpu != boot_cpuid)
683 			continue;
684 
685 		write_seqlock(&xtime_lock);
686 		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
687 		if (__USE_RTC() && tb_next_jiffy >= 1000000000)
688 			tb_next_jiffy -= 1000000000;
689 		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
690 			tb_last_jiffy = tb_next_jiffy;
691 			do_timer(1);
692 			timer_recalc_offset(tb_last_jiffy);
693 			timer_check_rtc();
694 		}
695 		write_sequnlock(&xtime_lock);
696 	}
697 
698 	next_dec = tb_ticks_per_jiffy - ticks;
699 	set_dec(next_dec);
700 
701 #ifdef CONFIG_PPC_ISERIES
702 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
703 		process_hvlpevents();
704 #endif
705 
706 #ifdef CONFIG_PPC64
707 	/* collect purr register values often, for accurate calculations */
708 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
709 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
710 		cu->current_tb = mfspr(SPRN_PURR);
711 	}
712 #endif
713 
714 	irq_exit();
715 	set_irq_regs(old_regs);
716 }
717 
718 void wakeup_decrementer(void)
719 {
720 	unsigned long ticks;
721 
722 	/*
723 	 * The timebase gets saved on sleep and restored on wakeup,
724 	 * so all we need to do is to reset the decrementer.
725 	 */
726 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
727 	if (ticks < tb_ticks_per_jiffy)
728 		ticks = tb_ticks_per_jiffy - ticks;
729 	else
730 		ticks = 1;
731 	set_dec(ticks);
732 }
733 
734 #ifdef CONFIG_SMP
735 void __init smp_space_timers(unsigned int max_cpus)
736 {
737 	int i;
738 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
739 
740 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
741 	previous_tb -= tb_ticks_per_jiffy;
742 
743 	for_each_possible_cpu(i) {
744 		if (i == boot_cpuid)
745 			continue;
746 		per_cpu(last_jiffy, i) = previous_tb;
747 	}
748 }
749 #endif
750 
751 /*
752  * Scheduler clock - returns current time in nanosec units.
753  *
754  * Note: mulhdu(a, b) (multiply high double unsigned) returns
755  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
756  * are 64-bit unsigned numbers.
757  */
758 unsigned long long sched_clock(void)
759 {
760 	if (__USE_RTC())
761 		return get_rtc();
762 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
763 }
764 
765 int do_settimeofday(struct timespec *tv)
766 {
767 	time_t wtm_sec, new_sec = tv->tv_sec;
768 	long wtm_nsec, new_nsec = tv->tv_nsec;
769 	unsigned long flags;
770 	u64 new_xsec;
771 	unsigned long tb_delta;
772 
773 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
774 		return -EINVAL;
775 
776 	write_seqlock_irqsave(&xtime_lock, flags);
777 
778 	/*
779 	 * Updating the RTC is not the job of this code. If the time is
780 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
781 	 * is cleared.  Tools like clock/hwclock either copy the RTC
782 	 * to the system time, in which case there is no point in writing
783 	 * to the RTC again, or write to the RTC but then they don't call
784 	 * settimeofday to perform this operation.
785 	 */
786 
787 	/* Make userspace gettimeofday spin until we're done. */
788 	++vdso_data->tb_update_count;
789 	smp_mb();
790 
791 	/*
792 	 * Subtract off the number of nanoseconds since the
793 	 * beginning of the last tick.
794 	 */
795 	tb_delta = tb_ticks_since(tb_last_jiffy);
796 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
797 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
798 
799 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
800 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
801 
802  	set_normalized_timespec(&xtime, new_sec, new_nsec);
803 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
804 
805 	/* In case of a large backwards jump in time with NTP, we want the
806 	 * clock to be updated as soon as the PLL is again in lock.
807 	 */
808 	last_rtc_update = new_sec - 658;
809 
810 	ntp_clear();
811 
812 	new_xsec = xtime.tv_nsec;
813 	if (new_xsec != 0) {
814 		new_xsec *= XSEC_PER_SEC;
815 		do_div(new_xsec, NSEC_PER_SEC);
816 	}
817 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
818 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
819 
820 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
821 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
822 
823 	write_sequnlock_irqrestore(&xtime_lock, flags);
824 	clock_was_set();
825 	return 0;
826 }
827 
828 EXPORT_SYMBOL(do_settimeofday);
829 
830 static int __init get_freq(char *name, int cells, unsigned long *val)
831 {
832 	struct device_node *cpu;
833 	const unsigned int *fp;
834 	int found = 0;
835 
836 	/* The cpu node should have timebase and clock frequency properties */
837 	cpu = of_find_node_by_type(NULL, "cpu");
838 
839 	if (cpu) {
840 		fp = of_get_property(cpu, name, NULL);
841 		if (fp) {
842 			found = 1;
843 			*val = of_read_ulong(fp, cells);
844 		}
845 
846 		of_node_put(cpu);
847 	}
848 
849 	return found;
850 }
851 
852 void __init generic_calibrate_decr(void)
853 {
854 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
855 
856 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
857 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
858 
859 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
860 				"(not found)\n");
861 	}
862 
863 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
864 
865 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
866 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
867 
868 		printk(KERN_ERR "WARNING: Estimating processor frequency "
869 				"(not found)\n");
870 	}
871 
872 #ifdef CONFIG_BOOKE
873 	/* Set the time base to zero */
874 	mtspr(SPRN_TBWL, 0);
875 	mtspr(SPRN_TBWU, 0);
876 
877 	/* Clear any pending timer interrupts */
878 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
879 
880 	/* Enable decrementer interrupt */
881 	mtspr(SPRN_TCR, TCR_DIE);
882 #endif
883 }
884 
885 unsigned long get_boot_time(void)
886 {
887 	struct rtc_time tm;
888 
889 	if (ppc_md.get_boot_time)
890 		return ppc_md.get_boot_time();
891 	if (!ppc_md.get_rtc_time)
892 		return 0;
893 	ppc_md.get_rtc_time(&tm);
894 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
895 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
896 }
897 
898 /* This function is only called on the boot processor */
899 void __init time_init(void)
900 {
901 	unsigned long flags;
902 	unsigned long tm = 0;
903 	struct div_result res;
904 	u64 scale, x;
905 	unsigned shift;
906 
907         if (ppc_md.time_init != NULL)
908                 timezone_offset = ppc_md.time_init();
909 
910 	if (__USE_RTC()) {
911 		/* 601 processor: dec counts down by 128 every 128ns */
912 		ppc_tb_freq = 1000000000;
913 		tb_last_jiffy = get_rtcl();
914 	} else {
915 		/* Normal PowerPC with timebase register */
916 		ppc_md.calibrate_decr();
917 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
918 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
919 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
920 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
921 		tb_last_jiffy = get_tb();
922 	}
923 
924 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
925 	tb_ticks_per_sec = ppc_tb_freq;
926 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
927 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
928 	calc_cputime_factors();
929 
930 	/*
931 	 * Calculate the length of each tick in ns.  It will not be
932 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
933 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
934 	 * rounded up.
935 	 */
936 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
937 	do_div(x, ppc_tb_freq);
938 	tick_nsec = x;
939 	last_tick_len = x << TICKLEN_SCALE;
940 
941 	/*
942 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
943 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
944 	 * It is computed as:
945 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
946 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
947 	 * which turns out to be N = 51 - SHIFT_HZ.
948 	 * This gives the result as a 0.64 fixed-point fraction.
949 	 * That value is reduced by an offset amounting to 1 xsec per
950 	 * 2^31 timebase ticks to avoid problems with time going backwards
951 	 * by 1 xsec when we do timer_recalc_offset due to losing the
952 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
953 	 * since there are 2^20 xsec in a second.
954 	 */
955 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
956 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
957 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
958 	ticklen_to_xs = res.result_low;
959 
960 	/* Compute tb_to_xs from tick_nsec */
961 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
962 
963 	/*
964 	 * Compute scale factor for sched_clock.
965 	 * The calibrate_decr() function has set tb_ticks_per_sec,
966 	 * which is the timebase frequency.
967 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
968 	 * the 128-bit result as a 64.64 fixed-point number.
969 	 * We then shift that number right until it is less than 1.0,
970 	 * giving us the scale factor and shift count to use in
971 	 * sched_clock().
972 	 */
973 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
974 	scale = res.result_low;
975 	for (shift = 0; res.result_high != 0; ++shift) {
976 		scale = (scale >> 1) | (res.result_high << 63);
977 		res.result_high >>= 1;
978 	}
979 	tb_to_ns_scale = scale;
980 	tb_to_ns_shift = shift;
981 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
982 	boot_tb = get_tb_or_rtc();
983 
984 	tm = get_boot_time();
985 
986 	write_seqlock_irqsave(&xtime_lock, flags);
987 
988 	/* If platform provided a timezone (pmac), we correct the time */
989         if (timezone_offset) {
990 		sys_tz.tz_minuteswest = -timezone_offset / 60;
991 		sys_tz.tz_dsttime = 0;
992 		tm -= timezone_offset;
993         }
994 
995 	xtime.tv_sec = tm;
996 	xtime.tv_nsec = 0;
997 	do_gtod.varp = &do_gtod.vars[0];
998 	do_gtod.var_idx = 0;
999 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1000 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
1001 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1002 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1003 	do_gtod.varp->tb_to_xs = tb_to_xs;
1004 	do_gtod.tb_to_us = tb_to_us;
1005 
1006 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1007 	vdso_data->tb_update_count = 0;
1008 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1009 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1010 	vdso_data->tb_to_xs = tb_to_xs;
1011 
1012 	time_freq = 0;
1013 
1014 	last_rtc_update = xtime.tv_sec;
1015 	set_normalized_timespec(&wall_to_monotonic,
1016 	                        -xtime.tv_sec, -xtime.tv_nsec);
1017 	write_sequnlock_irqrestore(&xtime_lock, flags);
1018 
1019 	/* Not exact, but the timer interrupt takes care of this */
1020 	set_dec(tb_ticks_per_jiffy);
1021 }
1022 
1023 
1024 #define FEBRUARY	2
1025 #define	STARTOFTIME	1970
1026 #define SECDAY		86400L
1027 #define SECYR		(SECDAY * 365)
1028 #define	leapyear(year)		((year) % 4 == 0 && \
1029 				 ((year) % 100 != 0 || (year) % 400 == 0))
1030 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1031 #define	days_in_month(a) 	(month_days[(a) - 1])
1032 
1033 static int month_days[12] = {
1034 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1035 };
1036 
1037 /*
1038  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1039  */
1040 void GregorianDay(struct rtc_time * tm)
1041 {
1042 	int leapsToDate;
1043 	int lastYear;
1044 	int day;
1045 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1046 
1047 	lastYear = tm->tm_year - 1;
1048 
1049 	/*
1050 	 * Number of leap corrections to apply up to end of last year
1051 	 */
1052 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1053 
1054 	/*
1055 	 * This year is a leap year if it is divisible by 4 except when it is
1056 	 * divisible by 100 unless it is divisible by 400
1057 	 *
1058 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1059 	 */
1060 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1061 
1062 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1063 		   tm->tm_mday;
1064 
1065 	tm->tm_wday = day % 7;
1066 }
1067 
1068 void to_tm(int tim, struct rtc_time * tm)
1069 {
1070 	register int    i;
1071 	register long   hms, day;
1072 
1073 	day = tim / SECDAY;
1074 	hms = tim % SECDAY;
1075 
1076 	/* Hours, minutes, seconds are easy */
1077 	tm->tm_hour = hms / 3600;
1078 	tm->tm_min = (hms % 3600) / 60;
1079 	tm->tm_sec = (hms % 3600) % 60;
1080 
1081 	/* Number of years in days */
1082 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1083 		day -= days_in_year(i);
1084 	tm->tm_year = i;
1085 
1086 	/* Number of months in days left */
1087 	if (leapyear(tm->tm_year))
1088 		days_in_month(FEBRUARY) = 29;
1089 	for (i = 1; day >= days_in_month(i); i++)
1090 		day -= days_in_month(i);
1091 	days_in_month(FEBRUARY) = 28;
1092 	tm->tm_mon = i;
1093 
1094 	/* Days are what is left over (+1) from all that. */
1095 	tm->tm_mday = day + 1;
1096 
1097 	/*
1098 	 * Determine the day of week
1099 	 */
1100 	GregorianDay(tm);
1101 }
1102 
1103 /* Auxiliary function to compute scaling factors */
1104 /* Actually the choice of a timebase running at 1/4 the of the bus
1105  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1106  * It makes this computation very precise (27-28 bits typically) which
1107  * is optimistic considering the stability of most processor clock
1108  * oscillators and the precision with which the timebase frequency
1109  * is measured but does not harm.
1110  */
1111 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1112 {
1113         unsigned mlt=0, tmp, err;
1114         /* No concern for performance, it's done once: use a stupid
1115          * but safe and compact method to find the multiplier.
1116          */
1117 
1118         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1119                 if (mulhwu(inscale, mlt|tmp) < outscale)
1120 			mlt |= tmp;
1121         }
1122 
1123         /* We might still be off by 1 for the best approximation.
1124          * A side effect of this is that if outscale is too large
1125          * the returned value will be zero.
1126          * Many corner cases have been checked and seem to work,
1127          * some might have been forgotten in the test however.
1128          */
1129 
1130         err = inscale * (mlt+1);
1131         if (err <= inscale/2)
1132 		mlt++;
1133         return mlt;
1134 }
1135 
1136 /*
1137  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1138  * result.
1139  */
1140 void div128_by_32(u64 dividend_high, u64 dividend_low,
1141 		  unsigned divisor, struct div_result *dr)
1142 {
1143 	unsigned long a, b, c, d;
1144 	unsigned long w, x, y, z;
1145 	u64 ra, rb, rc;
1146 
1147 	a = dividend_high >> 32;
1148 	b = dividend_high & 0xffffffff;
1149 	c = dividend_low >> 32;
1150 	d = dividend_low & 0xffffffff;
1151 
1152 	w = a / divisor;
1153 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1154 
1155 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1156 	x = ra;
1157 
1158 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1159 	y = rb;
1160 
1161 	do_div(rc, divisor);
1162 	z = rc;
1163 
1164 	dr->result_high = ((u64)w << 32) + x;
1165 	dr->result_low  = ((u64)y << 32) + z;
1166 
1167 }
1168