xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77 
78 static u64 timebase_read(struct clocksource *);
79 static struct clocksource clocksource_timebase = {
80 	.name         = "timebase",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.read         = timebase_read,
85 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
86 };
87 
88 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
89 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
90 
91 static int decrementer_set_next_event(unsigned long evt,
92 				      struct clock_event_device *dev);
93 static int decrementer_shutdown(struct clock_event_device *evt);
94 
95 struct clock_event_device decrementer_clockevent = {
96 	.name			= "decrementer",
97 	.rating			= 200,
98 	.irq			= 0,
99 	.set_next_event		= decrementer_set_next_event,
100 	.set_state_oneshot_stopped = decrementer_shutdown,
101 	.set_state_shutdown	= decrementer_shutdown,
102 	.tick_resume		= decrementer_shutdown,
103 	.features		= CLOCK_EVT_FEAT_ONESHOT |
104 				  CLOCK_EVT_FEAT_C3STOP,
105 };
106 EXPORT_SYMBOL(decrementer_clockevent);
107 
108 DEFINE_PER_CPU(u64, decrementers_next_tb);
109 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
110 
111 #define XSEC_PER_SEC (1024*1024)
112 
113 #ifdef CONFIG_PPC64
114 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
115 #else
116 /* compute ((xsec << 12) * max) >> 32 */
117 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
118 #endif
119 
120 unsigned long tb_ticks_per_jiffy;
121 unsigned long tb_ticks_per_usec = 100; /* sane default */
122 EXPORT_SYMBOL(tb_ticks_per_usec);
123 unsigned long tb_ticks_per_sec;
124 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
125 
126 DEFINE_SPINLOCK(rtc_lock);
127 EXPORT_SYMBOL_GPL(rtc_lock);
128 
129 static u64 tb_to_ns_scale __read_mostly;
130 static unsigned tb_to_ns_shift __read_mostly;
131 static u64 boot_tb __read_mostly;
132 
133 extern struct timezone sys_tz;
134 static long timezone_offset;
135 
136 unsigned long ppc_proc_freq;
137 EXPORT_SYMBOL_GPL(ppc_proc_freq);
138 unsigned long ppc_tb_freq;
139 EXPORT_SYMBOL_GPL(ppc_tb_freq);
140 
141 bool tb_invalid;
142 
143 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
144 /*
145  * Factor for converting from cputime_t (timebase ticks) to
146  * microseconds. This is stored as 0.64 fixed-point binary fraction.
147  */
148 u64 __cputime_usec_factor;
149 EXPORT_SYMBOL(__cputime_usec_factor);
150 
151 #ifdef CONFIG_PPC_SPLPAR
152 void (*dtl_consumer)(struct dtl_entry *, u64);
153 #endif
154 
155 static void calc_cputime_factors(void)
156 {
157 	struct div_result res;
158 
159 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
160 	__cputime_usec_factor = res.result_low;
161 }
162 
163 /*
164  * Read the SPURR on systems that have it, otherwise the PURR,
165  * or if that doesn't exist return the timebase value passed in.
166  */
167 static inline unsigned long read_spurr(unsigned long tb)
168 {
169 	if (cpu_has_feature(CPU_FTR_SPURR))
170 		return mfspr(SPRN_SPURR);
171 	if (cpu_has_feature(CPU_FTR_PURR))
172 		return mfspr(SPRN_PURR);
173 	return tb;
174 }
175 
176 #ifdef CONFIG_PPC_SPLPAR
177 
178 #include <asm/dtl.h>
179 
180 /*
181  * Scan the dispatch trace log and count up the stolen time.
182  * Should be called with interrupts disabled.
183  */
184 static u64 scan_dispatch_log(u64 stop_tb)
185 {
186 	u64 i = local_paca->dtl_ridx;
187 	struct dtl_entry *dtl = local_paca->dtl_curr;
188 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
189 	struct lppaca *vpa = local_paca->lppaca_ptr;
190 	u64 tb_delta;
191 	u64 stolen = 0;
192 	u64 dtb;
193 
194 	if (!dtl)
195 		return 0;
196 
197 	if (i == be64_to_cpu(vpa->dtl_idx))
198 		return 0;
199 	while (i < be64_to_cpu(vpa->dtl_idx)) {
200 		dtb = be64_to_cpu(dtl->timebase);
201 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
202 			be32_to_cpu(dtl->ready_to_enqueue_time);
203 		barrier();
204 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
205 			/* buffer has overflowed */
206 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
207 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
208 			continue;
209 		}
210 		if (dtb > stop_tb)
211 			break;
212 		if (dtl_consumer)
213 			dtl_consumer(dtl, i);
214 		stolen += tb_delta;
215 		++i;
216 		++dtl;
217 		if (dtl == dtl_end)
218 			dtl = local_paca->dispatch_log;
219 	}
220 	local_paca->dtl_ridx = i;
221 	local_paca->dtl_curr = dtl;
222 	return stolen;
223 }
224 
225 /*
226  * Accumulate stolen time by scanning the dispatch trace log.
227  * Called on entry from user mode.
228  */
229 void notrace accumulate_stolen_time(void)
230 {
231 	u64 sst, ust;
232 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
233 	struct cpu_accounting_data *acct = &local_paca->accounting;
234 
235 	/* We are called early in the exception entry, before
236 	 * soft/hard_enabled are sync'ed to the expected state
237 	 * for the exception. We are hard disabled but the PACA
238 	 * needs to reflect that so various debug stuff doesn't
239 	 * complain
240 	 */
241 	irq_soft_mask_set(IRQS_DISABLED);
242 
243 	sst = scan_dispatch_log(acct->starttime_user);
244 	ust = scan_dispatch_log(acct->starttime);
245 	acct->stime -= sst;
246 	acct->utime -= ust;
247 	acct->steal_time += ust + sst;
248 
249 	irq_soft_mask_set(save_irq_soft_mask);
250 }
251 
252 static inline u64 calculate_stolen_time(u64 stop_tb)
253 {
254 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
255 		return 0;
256 
257 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
258 		return scan_dispatch_log(stop_tb);
259 
260 	return 0;
261 }
262 
263 #else /* CONFIG_PPC_SPLPAR */
264 static inline u64 calculate_stolen_time(u64 stop_tb)
265 {
266 	return 0;
267 }
268 
269 #endif /* CONFIG_PPC_SPLPAR */
270 
271 /*
272  * Account time for a transition between system, hard irq
273  * or soft irq state.
274  */
275 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
276 					unsigned long now, unsigned long stime)
277 {
278 	unsigned long stime_scaled = 0;
279 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
280 	unsigned long nowscaled, deltascaled;
281 	unsigned long utime, utime_scaled;
282 
283 	nowscaled = read_spurr(now);
284 	deltascaled = nowscaled - acct->startspurr;
285 	acct->startspurr = nowscaled;
286 	utime = acct->utime - acct->utime_sspurr;
287 	acct->utime_sspurr = acct->utime;
288 
289 	/*
290 	 * Because we don't read the SPURR on every kernel entry/exit,
291 	 * deltascaled includes both user and system SPURR ticks.
292 	 * Apportion these ticks to system SPURR ticks and user
293 	 * SPURR ticks in the same ratio as the system time (delta)
294 	 * and user time (udelta) values obtained from the timebase
295 	 * over the same interval.  The system ticks get accounted here;
296 	 * the user ticks get saved up in paca->user_time_scaled to be
297 	 * used by account_process_tick.
298 	 */
299 	stime_scaled = stime;
300 	utime_scaled = utime;
301 	if (deltascaled != stime + utime) {
302 		if (utime) {
303 			stime_scaled = deltascaled * stime / (stime + utime);
304 			utime_scaled = deltascaled - stime_scaled;
305 		} else {
306 			stime_scaled = deltascaled;
307 		}
308 	}
309 	acct->utime_scaled += utime_scaled;
310 #endif
311 
312 	return stime_scaled;
313 }
314 
315 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
316 				 unsigned long *stime_scaled,
317 				 unsigned long *steal_time)
318 {
319 	unsigned long now, stime;
320 
321 	WARN_ON_ONCE(!irqs_disabled());
322 
323 	now = mftb();
324 	stime = now - acct->starttime;
325 	acct->starttime = now;
326 
327 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
328 
329 	*steal_time = calculate_stolen_time(now);
330 
331 	return stime;
332 }
333 
334 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
335 			       unsigned long *stime, unsigned long *stime_scaled)
336 {
337 	unsigned long steal_time;
338 
339 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
340 	*stime -= min(*stime, steal_time);
341 	acct->steal_time += steal_time;
342 }
343 
344 void vtime_account_kernel(struct task_struct *tsk)
345 {
346 	struct cpu_accounting_data *acct = get_accounting(tsk);
347 	unsigned long stime, stime_scaled;
348 
349 	vtime_delta_kernel(acct, &stime, &stime_scaled);
350 
351 	if (tsk->flags & PF_VCPU) {
352 		acct->gtime += stime;
353 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
354 		acct->utime_scaled += stime_scaled;
355 #endif
356 	} else {
357 		acct->stime += stime;
358 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
359 		acct->stime_scaled += stime_scaled;
360 #endif
361 	}
362 }
363 EXPORT_SYMBOL_GPL(vtime_account_kernel);
364 
365 void vtime_account_idle(struct task_struct *tsk)
366 {
367 	unsigned long stime, stime_scaled, steal_time;
368 	struct cpu_accounting_data *acct = get_accounting(tsk);
369 
370 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
371 	acct->idle_time += stime + steal_time;
372 }
373 
374 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
375 				    unsigned long *field)
376 {
377 	unsigned long stime, stime_scaled;
378 
379 	vtime_delta_kernel(acct, &stime, &stime_scaled);
380 	*field += stime;
381 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
382 	acct->stime_scaled += stime_scaled;
383 #endif
384 }
385 
386 void vtime_account_softirq(struct task_struct *tsk)
387 {
388 	struct cpu_accounting_data *acct = get_accounting(tsk);
389 	vtime_account_irq_field(acct, &acct->softirq_time);
390 }
391 
392 void vtime_account_hardirq(struct task_struct *tsk)
393 {
394 	struct cpu_accounting_data *acct = get_accounting(tsk);
395 	vtime_account_irq_field(acct, &acct->hardirq_time);
396 }
397 
398 static void vtime_flush_scaled(struct task_struct *tsk,
399 			       struct cpu_accounting_data *acct)
400 {
401 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
402 	if (acct->utime_scaled)
403 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
404 	if (acct->stime_scaled)
405 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
406 
407 	acct->utime_scaled = 0;
408 	acct->utime_sspurr = 0;
409 	acct->stime_scaled = 0;
410 #endif
411 }
412 
413 /*
414  * Account the whole cputime accumulated in the paca
415  * Must be called with interrupts disabled.
416  * Assumes that vtime_account_kernel/idle() has been called
417  * recently (i.e. since the last entry from usermode) so that
418  * get_paca()->user_time_scaled is up to date.
419  */
420 void vtime_flush(struct task_struct *tsk)
421 {
422 	struct cpu_accounting_data *acct = get_accounting(tsk);
423 
424 	if (acct->utime)
425 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
426 
427 	if (acct->gtime)
428 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
429 
430 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
431 		account_steal_time(cputime_to_nsecs(acct->steal_time));
432 		acct->steal_time = 0;
433 	}
434 
435 	if (acct->idle_time)
436 		account_idle_time(cputime_to_nsecs(acct->idle_time));
437 
438 	if (acct->stime)
439 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
440 					  CPUTIME_SYSTEM);
441 
442 	if (acct->hardirq_time)
443 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
444 					  CPUTIME_IRQ);
445 	if (acct->softirq_time)
446 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
447 					  CPUTIME_SOFTIRQ);
448 
449 	vtime_flush_scaled(tsk, acct);
450 
451 	acct->utime = 0;
452 	acct->gtime = 0;
453 	acct->idle_time = 0;
454 	acct->stime = 0;
455 	acct->hardirq_time = 0;
456 	acct->softirq_time = 0;
457 }
458 
459 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
460 #define calc_cputime_factors()
461 #endif
462 
463 void __delay(unsigned long loops)
464 {
465 	unsigned long start;
466 
467 	spin_begin();
468 	if (tb_invalid) {
469 		/*
470 		 * TB is in error state and isn't ticking anymore.
471 		 * HMI handler was unable to recover from TB error.
472 		 * Return immediately, so that kernel won't get stuck here.
473 		 */
474 		spin_cpu_relax();
475 	} else {
476 		start = mftb();
477 		while (mftb() - start < loops)
478 			spin_cpu_relax();
479 	}
480 	spin_end();
481 }
482 EXPORT_SYMBOL(__delay);
483 
484 void udelay(unsigned long usecs)
485 {
486 	__delay(tb_ticks_per_usec * usecs);
487 }
488 EXPORT_SYMBOL(udelay);
489 
490 #ifdef CONFIG_SMP
491 unsigned long profile_pc(struct pt_regs *regs)
492 {
493 	unsigned long pc = instruction_pointer(regs);
494 
495 	if (in_lock_functions(pc))
496 		return regs->link;
497 
498 	return pc;
499 }
500 EXPORT_SYMBOL(profile_pc);
501 #endif
502 
503 #ifdef CONFIG_IRQ_WORK
504 
505 /*
506  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
507  */
508 #ifdef CONFIG_PPC64
509 static inline unsigned long test_irq_work_pending(void)
510 {
511 	unsigned long x;
512 
513 	asm volatile("lbz %0,%1(13)"
514 		: "=r" (x)
515 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
516 	return x;
517 }
518 
519 static inline void set_irq_work_pending_flag(void)
520 {
521 	asm volatile("stb %0,%1(13)" : :
522 		"r" (1),
523 		"i" (offsetof(struct paca_struct, irq_work_pending)));
524 }
525 
526 static inline void clear_irq_work_pending(void)
527 {
528 	asm volatile("stb %0,%1(13)" : :
529 		"r" (0),
530 		"i" (offsetof(struct paca_struct, irq_work_pending)));
531 }
532 
533 #else /* 32-bit */
534 
535 DEFINE_PER_CPU(u8, irq_work_pending);
536 
537 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
538 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
539 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
540 
541 #endif /* 32 vs 64 bit */
542 
543 void arch_irq_work_raise(void)
544 {
545 	/*
546 	 * 64-bit code that uses irq soft-mask can just cause an immediate
547 	 * interrupt here that gets soft masked, if this is called under
548 	 * local_irq_disable(). It might be possible to prevent that happening
549 	 * by noticing interrupts are disabled and setting decrementer pending
550 	 * to be replayed when irqs are enabled. The problem there is that
551 	 * tracing can call irq_work_raise, including in code that does low
552 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
553 	 * which could get tangled up if we're messing with the same state
554 	 * here.
555 	 */
556 	preempt_disable();
557 	set_irq_work_pending_flag();
558 	set_dec(1);
559 	preempt_enable();
560 }
561 
562 #else  /* CONFIG_IRQ_WORK */
563 
564 #define test_irq_work_pending()	0
565 #define clear_irq_work_pending()
566 
567 #endif /* CONFIG_IRQ_WORK */
568 
569 /*
570  * timer_interrupt - gets called when the decrementer overflows,
571  * with interrupts disabled.
572  */
573 void timer_interrupt(struct pt_regs *regs)
574 {
575 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
576 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
577 	struct pt_regs *old_regs;
578 	u64 now;
579 
580 	/*
581 	 * Some implementations of hotplug will get timer interrupts while
582 	 * offline, just ignore these.
583 	 */
584 	if (unlikely(!cpu_online(smp_processor_id()))) {
585 		set_dec(decrementer_max);
586 		return;
587 	}
588 
589 	/* Ensure a positive value is written to the decrementer, or else
590 	 * some CPUs will continue to take decrementer exceptions. When the
591 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
592 	 * 31 bits, which is about 4 seconds on most systems, which gives
593 	 * the watchdog a chance of catching timer interrupt hard lockups.
594 	 */
595 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
596 		set_dec(0x7fffffff);
597 	else
598 		set_dec(decrementer_max);
599 
600 	/* Conditionally hard-enable interrupts now that the DEC has been
601 	 * bumped to its maximum value
602 	 */
603 	may_hard_irq_enable();
604 
605 
606 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
607 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
608 		do_IRQ(regs);
609 #endif
610 
611 	old_regs = set_irq_regs(regs);
612 	irq_enter();
613 	trace_timer_interrupt_entry(regs);
614 
615 	if (test_irq_work_pending()) {
616 		clear_irq_work_pending();
617 		irq_work_run();
618 	}
619 
620 	now = get_tb();
621 	if (now >= *next_tb) {
622 		*next_tb = ~(u64)0;
623 		if (evt->event_handler)
624 			evt->event_handler(evt);
625 		__this_cpu_inc(irq_stat.timer_irqs_event);
626 	} else {
627 		now = *next_tb - now;
628 		if (now <= decrementer_max)
629 			set_dec(now);
630 		/* We may have raced with new irq work */
631 		if (test_irq_work_pending())
632 			set_dec(1);
633 		__this_cpu_inc(irq_stat.timer_irqs_others);
634 	}
635 
636 	trace_timer_interrupt_exit(regs);
637 	irq_exit();
638 	set_irq_regs(old_regs);
639 }
640 EXPORT_SYMBOL(timer_interrupt);
641 
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643 void timer_broadcast_interrupt(void)
644 {
645 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
646 
647 	*next_tb = ~(u64)0;
648 	tick_receive_broadcast();
649 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
650 }
651 #endif
652 
653 #ifdef CONFIG_SUSPEND
654 static void generic_suspend_disable_irqs(void)
655 {
656 	/* Disable the decrementer, so that it doesn't interfere
657 	 * with suspending.
658 	 */
659 
660 	set_dec(decrementer_max);
661 	local_irq_disable();
662 	set_dec(decrementer_max);
663 }
664 
665 static void generic_suspend_enable_irqs(void)
666 {
667 	local_irq_enable();
668 }
669 
670 /* Overrides the weak version in kernel/power/main.c */
671 void arch_suspend_disable_irqs(void)
672 {
673 	if (ppc_md.suspend_disable_irqs)
674 		ppc_md.suspend_disable_irqs();
675 	generic_suspend_disable_irqs();
676 }
677 
678 /* Overrides the weak version in kernel/power/main.c */
679 void arch_suspend_enable_irqs(void)
680 {
681 	generic_suspend_enable_irqs();
682 	if (ppc_md.suspend_enable_irqs)
683 		ppc_md.suspend_enable_irqs();
684 }
685 #endif
686 
687 unsigned long long tb_to_ns(unsigned long long ticks)
688 {
689 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
690 }
691 EXPORT_SYMBOL_GPL(tb_to_ns);
692 
693 /*
694  * Scheduler clock - returns current time in nanosec units.
695  *
696  * Note: mulhdu(a, b) (multiply high double unsigned) returns
697  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
698  * are 64-bit unsigned numbers.
699  */
700 notrace unsigned long long sched_clock(void)
701 {
702 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
703 }
704 
705 
706 #ifdef CONFIG_PPC_PSERIES
707 
708 /*
709  * Running clock - attempts to give a view of time passing for a virtualised
710  * kernels.
711  * Uses the VTB register if available otherwise a next best guess.
712  */
713 unsigned long long running_clock(void)
714 {
715 	/*
716 	 * Don't read the VTB as a host since KVM does not switch in host
717 	 * timebase into the VTB when it takes a guest off the CPU, reading the
718 	 * VTB would result in reading 'last switched out' guest VTB.
719 	 *
720 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
721 	 * would be unsafe to rely only on the #ifdef above.
722 	 */
723 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
724 	    cpu_has_feature(CPU_FTR_ARCH_207S))
725 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
726 
727 	/*
728 	 * This is a next best approximation without a VTB.
729 	 * On a host which is running bare metal there should never be any stolen
730 	 * time and on a host which doesn't do any virtualisation TB *should* equal
731 	 * VTB so it makes no difference anyway.
732 	 */
733 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
734 }
735 #endif
736 
737 static int __init get_freq(char *name, int cells, unsigned long *val)
738 {
739 	struct device_node *cpu;
740 	const __be32 *fp;
741 	int found = 0;
742 
743 	/* The cpu node should have timebase and clock frequency properties */
744 	cpu = of_find_node_by_type(NULL, "cpu");
745 
746 	if (cpu) {
747 		fp = of_get_property(cpu, name, NULL);
748 		if (fp) {
749 			found = 1;
750 			*val = of_read_ulong(fp, cells);
751 		}
752 
753 		of_node_put(cpu);
754 	}
755 
756 	return found;
757 }
758 
759 static void start_cpu_decrementer(void)
760 {
761 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
762 	unsigned int tcr;
763 
764 	/* Clear any pending timer interrupts */
765 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
766 
767 	tcr = mfspr(SPRN_TCR);
768 	/*
769 	 * The watchdog may have already been enabled by u-boot. So leave
770 	 * TRC[WP] (Watchdog Period) alone.
771 	 */
772 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
773 	tcr |= TCR_DIE;		/* Enable decrementer */
774 	mtspr(SPRN_TCR, tcr);
775 #endif
776 }
777 
778 void __init generic_calibrate_decr(void)
779 {
780 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
781 
782 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
783 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
784 
785 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
786 				"(not found)\n");
787 	}
788 
789 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
790 
791 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
792 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
793 
794 		printk(KERN_ERR "WARNING: Estimating processor frequency "
795 				"(not found)\n");
796 	}
797 }
798 
799 int update_persistent_clock64(struct timespec64 now)
800 {
801 	struct rtc_time tm;
802 
803 	if (!ppc_md.set_rtc_time)
804 		return -ENODEV;
805 
806 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
807 
808 	return ppc_md.set_rtc_time(&tm);
809 }
810 
811 static void __read_persistent_clock(struct timespec64 *ts)
812 {
813 	struct rtc_time tm;
814 	static int first = 1;
815 
816 	ts->tv_nsec = 0;
817 	/* XXX this is a litle fragile but will work okay in the short term */
818 	if (first) {
819 		first = 0;
820 		if (ppc_md.time_init)
821 			timezone_offset = ppc_md.time_init();
822 
823 		/* get_boot_time() isn't guaranteed to be safe to call late */
824 		if (ppc_md.get_boot_time) {
825 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
826 			return;
827 		}
828 	}
829 	if (!ppc_md.get_rtc_time) {
830 		ts->tv_sec = 0;
831 		return;
832 	}
833 	ppc_md.get_rtc_time(&tm);
834 
835 	ts->tv_sec = rtc_tm_to_time64(&tm);
836 }
837 
838 void read_persistent_clock64(struct timespec64 *ts)
839 {
840 	__read_persistent_clock(ts);
841 
842 	/* Sanitize it in case real time clock is set below EPOCH */
843 	if (ts->tv_sec < 0) {
844 		ts->tv_sec = 0;
845 		ts->tv_nsec = 0;
846 	}
847 
848 }
849 
850 /* clocksource code */
851 static notrace u64 timebase_read(struct clocksource *cs)
852 {
853 	return (u64)get_tb();
854 }
855 
856 static void __init clocksource_init(void)
857 {
858 	struct clocksource *clock = &clocksource_timebase;
859 
860 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
861 		printk(KERN_ERR "clocksource: %s is already registered\n",
862 		       clock->name);
863 		return;
864 	}
865 
866 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
867 	       clock->name, clock->mult, clock->shift);
868 }
869 
870 static int decrementer_set_next_event(unsigned long evt,
871 				      struct clock_event_device *dev)
872 {
873 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
874 	set_dec(evt);
875 
876 	/* We may have raced with new irq work */
877 	if (test_irq_work_pending())
878 		set_dec(1);
879 
880 	return 0;
881 }
882 
883 static int decrementer_shutdown(struct clock_event_device *dev)
884 {
885 	decrementer_set_next_event(decrementer_max, dev);
886 	return 0;
887 }
888 
889 static void register_decrementer_clockevent(int cpu)
890 {
891 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
892 
893 	*dec = decrementer_clockevent;
894 	dec->cpumask = cpumask_of(cpu);
895 
896 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
897 
898 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
899 		    dec->name, dec->mult, dec->shift, cpu);
900 
901 	/* Set values for KVM, see kvm_emulate_dec() */
902 	decrementer_clockevent.mult = dec->mult;
903 	decrementer_clockevent.shift = dec->shift;
904 }
905 
906 static void enable_large_decrementer(void)
907 {
908 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
909 		return;
910 
911 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
912 		return;
913 
914 	/*
915 	 * If we're running as the hypervisor we need to enable the LD manually
916 	 * otherwise firmware should have done it for us.
917 	 */
918 	if (cpu_has_feature(CPU_FTR_HVMODE))
919 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
920 }
921 
922 static void __init set_decrementer_max(void)
923 {
924 	struct device_node *cpu;
925 	u32 bits = 32;
926 
927 	/* Prior to ISAv3 the decrementer is always 32 bit */
928 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
929 		return;
930 
931 	cpu = of_find_node_by_type(NULL, "cpu");
932 
933 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
934 		if (bits > 64 || bits < 32) {
935 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
936 			bits = 32;
937 		}
938 
939 		/* calculate the signed maximum given this many bits */
940 		decrementer_max = (1ul << (bits - 1)) - 1;
941 	}
942 
943 	of_node_put(cpu);
944 
945 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
946 		bits, decrementer_max);
947 }
948 
949 static void __init init_decrementer_clockevent(void)
950 {
951 	register_decrementer_clockevent(smp_processor_id());
952 }
953 
954 void secondary_cpu_time_init(void)
955 {
956 	/* Enable and test the large decrementer for this cpu */
957 	enable_large_decrementer();
958 
959 	/* Start the decrementer on CPUs that have manual control
960 	 * such as BookE
961 	 */
962 	start_cpu_decrementer();
963 
964 	/* FIME: Should make unrelatred change to move snapshot_timebase
965 	 * call here ! */
966 	register_decrementer_clockevent(smp_processor_id());
967 }
968 
969 /* This function is only called on the boot processor */
970 void __init time_init(void)
971 {
972 	struct div_result res;
973 	u64 scale;
974 	unsigned shift;
975 
976 	/* Normal PowerPC with timebase register */
977 	ppc_md.calibrate_decr();
978 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
979 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
980 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
981 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
982 
983 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
984 	tb_ticks_per_sec = ppc_tb_freq;
985 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
986 	calc_cputime_factors();
987 
988 	/*
989 	 * Compute scale factor for sched_clock.
990 	 * The calibrate_decr() function has set tb_ticks_per_sec,
991 	 * which is the timebase frequency.
992 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
993 	 * the 128-bit result as a 64.64 fixed-point number.
994 	 * We then shift that number right until it is less than 1.0,
995 	 * giving us the scale factor and shift count to use in
996 	 * sched_clock().
997 	 */
998 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
999 	scale = res.result_low;
1000 	for (shift = 0; res.result_high != 0; ++shift) {
1001 		scale = (scale >> 1) | (res.result_high << 63);
1002 		res.result_high >>= 1;
1003 	}
1004 	tb_to_ns_scale = scale;
1005 	tb_to_ns_shift = shift;
1006 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1007 	boot_tb = get_tb();
1008 
1009 	/* If platform provided a timezone (pmac), we correct the time */
1010 	if (timezone_offset) {
1011 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1012 		sys_tz.tz_dsttime = 0;
1013 	}
1014 
1015 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1016 
1017 	/* initialise and enable the large decrementer (if we have one) */
1018 	set_decrementer_max();
1019 	enable_large_decrementer();
1020 
1021 	/* Start the decrementer on CPUs that have manual control
1022 	 * such as BookE
1023 	 */
1024 	start_cpu_decrementer();
1025 
1026 	/* Register the clocksource */
1027 	clocksource_init();
1028 
1029 	init_decrementer_clockevent();
1030 	tick_setup_hrtimer_broadcast();
1031 
1032 	of_clk_init(NULL);
1033 }
1034 
1035 /*
1036  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1037  * result.
1038  */
1039 void div128_by_32(u64 dividend_high, u64 dividend_low,
1040 		  unsigned divisor, struct div_result *dr)
1041 {
1042 	unsigned long a, b, c, d;
1043 	unsigned long w, x, y, z;
1044 	u64 ra, rb, rc;
1045 
1046 	a = dividend_high >> 32;
1047 	b = dividend_high & 0xffffffff;
1048 	c = dividend_low >> 32;
1049 	d = dividend_low & 0xffffffff;
1050 
1051 	w = a / divisor;
1052 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1053 
1054 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1055 	x = ra;
1056 
1057 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1058 	y = rb;
1059 
1060 	do_div(rc, divisor);
1061 	z = rc;
1062 
1063 	dr->result_high = ((u64)w << 32) + x;
1064 	dr->result_low  = ((u64)y << 32) + z;
1065 
1066 }
1067 
1068 /* We don't need to calibrate delay, we use the CPU timebase for that */
1069 void calibrate_delay(void)
1070 {
1071 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1072 	 * as the number of __delay(1) in a jiffy, so make it so
1073 	 */
1074 	loops_per_jiffy = tb_ticks_per_jiffy;
1075 }
1076 
1077 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1078 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1079 {
1080 	ppc_md.get_rtc_time(tm);
1081 	return 0;
1082 }
1083 
1084 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1085 {
1086 	if (!ppc_md.set_rtc_time)
1087 		return -EOPNOTSUPP;
1088 
1089 	if (ppc_md.set_rtc_time(tm) < 0)
1090 		return -EOPNOTSUPP;
1091 
1092 	return 0;
1093 }
1094 
1095 static const struct rtc_class_ops rtc_generic_ops = {
1096 	.read_time = rtc_generic_get_time,
1097 	.set_time = rtc_generic_set_time,
1098 };
1099 
1100 static int __init rtc_init(void)
1101 {
1102 	struct platform_device *pdev;
1103 
1104 	if (!ppc_md.get_rtc_time)
1105 		return -ENODEV;
1106 
1107 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1108 					     &rtc_generic_ops,
1109 					     sizeof(rtc_generic_ops));
1110 
1111 	return PTR_ERR_OR_ZERO(pdev);
1112 }
1113 
1114 device_initcall(rtc_init);
1115 #endif
1116