1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. 21 * - for astronomical applications: add a new function to get 22 * non ambiguous timestamps even around leap seconds. This needs 23 * a new timestamp format and a good name. 24 * 25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 26 * "A Kernel Model for Precision Timekeeping" by Dave Mills 27 * 28 * This program is free software; you can redistribute it and/or 29 * modify it under the terms of the GNU General Public License 30 * as published by the Free Software Foundation; either version 31 * 2 of the License, or (at your option) any later version. 32 */ 33 34 #include <linux/errno.h> 35 #include <linux/export.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/clockchips.h> 47 #include <linux/init.h> 48 #include <linux/profile.h> 49 #include <linux/cpu.h> 50 #include <linux/security.h> 51 #include <linux/percpu.h> 52 #include <linux/rtc.h> 53 #include <linux/jiffies.h> 54 #include <linux/posix-timers.h> 55 #include <linux/irq.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 #include <linux/clk-provider.h> 59 #include <linux/suspend.h> 60 #include <linux/sched/cputime.h> 61 #include <linux/processor.h> 62 #include <asm/trace.h> 63 64 #include <asm/io.h> 65 #include <asm/nvram.h> 66 #include <asm/cache.h> 67 #include <asm/machdep.h> 68 #include <linux/uaccess.h> 69 #include <asm/time.h> 70 #include <asm/prom.h> 71 #include <asm/irq.h> 72 #include <asm/div64.h> 73 #include <asm/smp.h> 74 #include <asm/vdso_datapage.h> 75 #include <asm/firmware.h> 76 #include <asm/asm-prototypes.h> 77 78 /* powerpc clocksource/clockevent code */ 79 80 #include <linux/clockchips.h> 81 #include <linux/timekeeper_internal.h> 82 83 static u64 rtc_read(struct clocksource *); 84 static struct clocksource clocksource_rtc = { 85 .name = "rtc", 86 .rating = 400, 87 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 88 .mask = CLOCKSOURCE_MASK(64), 89 .read = rtc_read, 90 }; 91 92 static u64 timebase_read(struct clocksource *); 93 static struct clocksource clocksource_timebase = { 94 .name = "timebase", 95 .rating = 400, 96 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 97 .mask = CLOCKSOURCE_MASK(64), 98 .read = timebase_read, 99 }; 100 101 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 102 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 103 104 static int decrementer_set_next_event(unsigned long evt, 105 struct clock_event_device *dev); 106 static int decrementer_shutdown(struct clock_event_device *evt); 107 108 struct clock_event_device decrementer_clockevent = { 109 .name = "decrementer", 110 .rating = 200, 111 .irq = 0, 112 .set_next_event = decrementer_set_next_event, 113 .set_state_oneshot_stopped = decrementer_shutdown, 114 .set_state_shutdown = decrementer_shutdown, 115 .tick_resume = decrementer_shutdown, 116 .features = CLOCK_EVT_FEAT_ONESHOT | 117 CLOCK_EVT_FEAT_C3STOP, 118 }; 119 EXPORT_SYMBOL(decrementer_clockevent); 120 121 DEFINE_PER_CPU(u64, decrementers_next_tb); 122 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 123 124 #define XSEC_PER_SEC (1024*1024) 125 126 #ifdef CONFIG_PPC64 127 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 128 #else 129 /* compute ((xsec << 12) * max) >> 32 */ 130 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 131 #endif 132 133 unsigned long tb_ticks_per_jiffy; 134 unsigned long tb_ticks_per_usec = 100; /* sane default */ 135 EXPORT_SYMBOL(tb_ticks_per_usec); 136 unsigned long tb_ticks_per_sec; 137 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 138 139 DEFINE_SPINLOCK(rtc_lock); 140 EXPORT_SYMBOL_GPL(rtc_lock); 141 142 static u64 tb_to_ns_scale __read_mostly; 143 static unsigned tb_to_ns_shift __read_mostly; 144 static u64 boot_tb __read_mostly; 145 146 extern struct timezone sys_tz; 147 static long timezone_offset; 148 149 unsigned long ppc_proc_freq; 150 EXPORT_SYMBOL_GPL(ppc_proc_freq); 151 unsigned long ppc_tb_freq; 152 EXPORT_SYMBOL_GPL(ppc_tb_freq); 153 154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 155 /* 156 * Factor for converting from cputime_t (timebase ticks) to 157 * microseconds. This is stored as 0.64 fixed-point binary fraction. 158 */ 159 u64 __cputime_usec_factor; 160 EXPORT_SYMBOL(__cputime_usec_factor); 161 162 #ifdef CONFIG_PPC_SPLPAR 163 void (*dtl_consumer)(struct dtl_entry *, u64); 164 #endif 165 166 static void calc_cputime_factors(void) 167 { 168 struct div_result res; 169 170 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 171 __cputime_usec_factor = res.result_low; 172 } 173 174 /* 175 * Read the SPURR on systems that have it, otherwise the PURR, 176 * or if that doesn't exist return the timebase value passed in. 177 */ 178 static inline unsigned long read_spurr(unsigned long tb) 179 { 180 if (cpu_has_feature(CPU_FTR_SPURR)) 181 return mfspr(SPRN_SPURR); 182 if (cpu_has_feature(CPU_FTR_PURR)) 183 return mfspr(SPRN_PURR); 184 return tb; 185 } 186 187 #ifdef CONFIG_PPC_SPLPAR 188 189 /* 190 * Scan the dispatch trace log and count up the stolen time. 191 * Should be called with interrupts disabled. 192 */ 193 static u64 scan_dispatch_log(u64 stop_tb) 194 { 195 u64 i = local_paca->dtl_ridx; 196 struct dtl_entry *dtl = local_paca->dtl_curr; 197 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 198 struct lppaca *vpa = local_paca->lppaca_ptr; 199 u64 tb_delta; 200 u64 stolen = 0; 201 u64 dtb; 202 203 if (!dtl) 204 return 0; 205 206 if (i == be64_to_cpu(vpa->dtl_idx)) 207 return 0; 208 while (i < be64_to_cpu(vpa->dtl_idx)) { 209 dtb = be64_to_cpu(dtl->timebase); 210 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 211 be32_to_cpu(dtl->ready_to_enqueue_time); 212 barrier(); 213 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 214 /* buffer has overflowed */ 215 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 216 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 217 continue; 218 } 219 if (dtb > stop_tb) 220 break; 221 if (dtl_consumer) 222 dtl_consumer(dtl, i); 223 stolen += tb_delta; 224 ++i; 225 ++dtl; 226 if (dtl == dtl_end) 227 dtl = local_paca->dispatch_log; 228 } 229 local_paca->dtl_ridx = i; 230 local_paca->dtl_curr = dtl; 231 return stolen; 232 } 233 234 /* 235 * Accumulate stolen time by scanning the dispatch trace log. 236 * Called on entry from user mode. 237 */ 238 void accumulate_stolen_time(void) 239 { 240 u64 sst, ust; 241 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 242 struct cpu_accounting_data *acct = &local_paca->accounting; 243 244 /* We are called early in the exception entry, before 245 * soft/hard_enabled are sync'ed to the expected state 246 * for the exception. We are hard disabled but the PACA 247 * needs to reflect that so various debug stuff doesn't 248 * complain 249 */ 250 irq_soft_mask_set(IRQS_DISABLED); 251 252 sst = scan_dispatch_log(acct->starttime_user); 253 ust = scan_dispatch_log(acct->starttime); 254 acct->stime -= sst; 255 acct->utime -= ust; 256 acct->steal_time += ust + sst; 257 258 irq_soft_mask_set(save_irq_soft_mask); 259 } 260 261 static inline u64 calculate_stolen_time(u64 stop_tb) 262 { 263 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 264 return 0; 265 266 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 267 return scan_dispatch_log(stop_tb); 268 269 return 0; 270 } 271 272 #else /* CONFIG_PPC_SPLPAR */ 273 static inline u64 calculate_stolen_time(u64 stop_tb) 274 { 275 return 0; 276 } 277 278 #endif /* CONFIG_PPC_SPLPAR */ 279 280 /* 281 * Account time for a transition between system, hard irq 282 * or soft irq state. 283 */ 284 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 285 unsigned long now, unsigned long stime) 286 { 287 unsigned long stime_scaled = 0; 288 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 289 unsigned long nowscaled, deltascaled; 290 unsigned long utime, utime_scaled; 291 292 nowscaled = read_spurr(now); 293 deltascaled = nowscaled - acct->startspurr; 294 acct->startspurr = nowscaled; 295 utime = acct->utime - acct->utime_sspurr; 296 acct->utime_sspurr = acct->utime; 297 298 /* 299 * Because we don't read the SPURR on every kernel entry/exit, 300 * deltascaled includes both user and system SPURR ticks. 301 * Apportion these ticks to system SPURR ticks and user 302 * SPURR ticks in the same ratio as the system time (delta) 303 * and user time (udelta) values obtained from the timebase 304 * over the same interval. The system ticks get accounted here; 305 * the user ticks get saved up in paca->user_time_scaled to be 306 * used by account_process_tick. 307 */ 308 stime_scaled = stime; 309 utime_scaled = utime; 310 if (deltascaled != stime + utime) { 311 if (utime) { 312 stime_scaled = deltascaled * stime / (stime + utime); 313 utime_scaled = deltascaled - stime_scaled; 314 } else { 315 stime_scaled = deltascaled; 316 } 317 } 318 acct->utime_scaled += utime_scaled; 319 #endif 320 321 return stime_scaled; 322 } 323 324 static unsigned long vtime_delta(struct task_struct *tsk, 325 unsigned long *stime_scaled, 326 unsigned long *steal_time) 327 { 328 unsigned long now, stime; 329 struct cpu_accounting_data *acct = get_accounting(tsk); 330 331 WARN_ON_ONCE(!irqs_disabled()); 332 333 now = mftb(); 334 stime = now - acct->starttime; 335 acct->starttime = now; 336 337 *stime_scaled = vtime_delta_scaled(acct, now, stime); 338 339 *steal_time = calculate_stolen_time(now); 340 341 return stime; 342 } 343 344 void vtime_account_system(struct task_struct *tsk) 345 { 346 unsigned long stime, stime_scaled, steal_time; 347 struct cpu_accounting_data *acct = get_accounting(tsk); 348 349 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 350 351 stime -= min(stime, steal_time); 352 acct->steal_time += steal_time; 353 354 if ((tsk->flags & PF_VCPU) && !irq_count()) { 355 acct->gtime += stime; 356 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 357 acct->utime_scaled += stime_scaled; 358 #endif 359 } else { 360 if (hardirq_count()) 361 acct->hardirq_time += stime; 362 else if (in_serving_softirq()) 363 acct->softirq_time += stime; 364 else 365 acct->stime += stime; 366 367 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 368 acct->stime_scaled += stime_scaled; 369 #endif 370 } 371 } 372 EXPORT_SYMBOL_GPL(vtime_account_system); 373 374 void vtime_account_idle(struct task_struct *tsk) 375 { 376 unsigned long stime, stime_scaled, steal_time; 377 struct cpu_accounting_data *acct = get_accounting(tsk); 378 379 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 380 acct->idle_time += stime + steal_time; 381 } 382 383 static void vtime_flush_scaled(struct task_struct *tsk, 384 struct cpu_accounting_data *acct) 385 { 386 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 387 if (acct->utime_scaled) 388 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 389 if (acct->stime_scaled) 390 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 391 392 acct->utime_scaled = 0; 393 acct->utime_sspurr = 0; 394 acct->stime_scaled = 0; 395 #endif 396 } 397 398 /* 399 * Account the whole cputime accumulated in the paca 400 * Must be called with interrupts disabled. 401 * Assumes that vtime_account_system/idle() has been called 402 * recently (i.e. since the last entry from usermode) so that 403 * get_paca()->user_time_scaled is up to date. 404 */ 405 void vtime_flush(struct task_struct *tsk) 406 { 407 struct cpu_accounting_data *acct = get_accounting(tsk); 408 409 if (acct->utime) 410 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 411 412 if (acct->gtime) 413 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 414 415 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 416 account_steal_time(cputime_to_nsecs(acct->steal_time)); 417 acct->steal_time = 0; 418 } 419 420 if (acct->idle_time) 421 account_idle_time(cputime_to_nsecs(acct->idle_time)); 422 423 if (acct->stime) 424 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 425 CPUTIME_SYSTEM); 426 427 if (acct->hardirq_time) 428 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 429 CPUTIME_IRQ); 430 if (acct->softirq_time) 431 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 432 CPUTIME_SOFTIRQ); 433 434 vtime_flush_scaled(tsk, acct); 435 436 acct->utime = 0; 437 acct->gtime = 0; 438 acct->idle_time = 0; 439 acct->stime = 0; 440 acct->hardirq_time = 0; 441 acct->softirq_time = 0; 442 } 443 444 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 445 #define calc_cputime_factors() 446 #endif 447 448 void __delay(unsigned long loops) 449 { 450 unsigned long start; 451 int diff; 452 453 spin_begin(); 454 if (__USE_RTC()) { 455 start = get_rtcl(); 456 do { 457 /* the RTCL register wraps at 1000000000 */ 458 diff = get_rtcl() - start; 459 if (diff < 0) 460 diff += 1000000000; 461 spin_cpu_relax(); 462 } while (diff < loops); 463 } else { 464 start = get_tbl(); 465 while (get_tbl() - start < loops) 466 spin_cpu_relax(); 467 } 468 spin_end(); 469 } 470 EXPORT_SYMBOL(__delay); 471 472 void udelay(unsigned long usecs) 473 { 474 __delay(tb_ticks_per_usec * usecs); 475 } 476 EXPORT_SYMBOL(udelay); 477 478 #ifdef CONFIG_SMP 479 unsigned long profile_pc(struct pt_regs *regs) 480 { 481 unsigned long pc = instruction_pointer(regs); 482 483 if (in_lock_functions(pc)) 484 return regs->link; 485 486 return pc; 487 } 488 EXPORT_SYMBOL(profile_pc); 489 #endif 490 491 #ifdef CONFIG_IRQ_WORK 492 493 /* 494 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 495 */ 496 #ifdef CONFIG_PPC64 497 static inline unsigned long test_irq_work_pending(void) 498 { 499 unsigned long x; 500 501 asm volatile("lbz %0,%1(13)" 502 : "=r" (x) 503 : "i" (offsetof(struct paca_struct, irq_work_pending))); 504 return x; 505 } 506 507 static inline void set_irq_work_pending_flag(void) 508 { 509 asm volatile("stb %0,%1(13)" : : 510 "r" (1), 511 "i" (offsetof(struct paca_struct, irq_work_pending))); 512 } 513 514 static inline void clear_irq_work_pending(void) 515 { 516 asm volatile("stb %0,%1(13)" : : 517 "r" (0), 518 "i" (offsetof(struct paca_struct, irq_work_pending))); 519 } 520 521 void arch_irq_work_raise(void) 522 { 523 preempt_disable(); 524 set_irq_work_pending_flag(); 525 /* 526 * Non-nmi code running with interrupts disabled will replay 527 * irq_happened before it re-enables interrupts, so setthe 528 * decrementer there instead of causing a hardware exception 529 * which would immediately hit the masked interrupt handler 530 * and have the net effect of setting the decrementer in 531 * irq_happened. 532 * 533 * NMI interrupts can not check this when they return, so the 534 * decrementer hardware exception is raised, which will fire 535 * when interrupts are next enabled. 536 * 537 * BookE does not support this yet, it must audit all NMI 538 * interrupt handlers to ensure they call nmi_enter() so this 539 * check would be correct. 540 */ 541 if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) { 542 set_dec(1); 543 } else { 544 hard_irq_disable(); 545 local_paca->irq_happened |= PACA_IRQ_DEC; 546 } 547 preempt_enable(); 548 } 549 550 #else /* 32-bit */ 551 552 DEFINE_PER_CPU(u8, irq_work_pending); 553 554 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 555 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 556 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 557 558 void arch_irq_work_raise(void) 559 { 560 preempt_disable(); 561 set_irq_work_pending_flag(); 562 set_dec(1); 563 preempt_enable(); 564 } 565 566 #endif /* 32 vs 64 bit */ 567 568 #else /* CONFIG_IRQ_WORK */ 569 570 #define test_irq_work_pending() 0 571 #define clear_irq_work_pending() 572 573 #endif /* CONFIG_IRQ_WORK */ 574 575 /* 576 * timer_interrupt - gets called when the decrementer overflows, 577 * with interrupts disabled. 578 */ 579 void timer_interrupt(struct pt_regs *regs) 580 { 581 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 582 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 583 struct pt_regs *old_regs; 584 u64 now; 585 586 /* Some implementations of hotplug will get timer interrupts while 587 * offline, just ignore these and we also need to set 588 * decrementers_next_tb as MAX to make sure __check_irq_replay 589 * don't replay timer interrupt when return, otherwise we'll trap 590 * here infinitely :( 591 */ 592 if (unlikely(!cpu_online(smp_processor_id()))) { 593 *next_tb = ~(u64)0; 594 set_dec(decrementer_max); 595 return; 596 } 597 598 /* Ensure a positive value is written to the decrementer, or else 599 * some CPUs will continue to take decrementer exceptions. When the 600 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 601 * 31 bits, which is about 4 seconds on most systems, which gives 602 * the watchdog a chance of catching timer interrupt hard lockups. 603 */ 604 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 605 set_dec(0x7fffffff); 606 else 607 set_dec(decrementer_max); 608 609 /* Conditionally hard-enable interrupts now that the DEC has been 610 * bumped to its maximum value 611 */ 612 may_hard_irq_enable(); 613 614 615 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 616 if (atomic_read(&ppc_n_lost_interrupts) != 0) 617 do_IRQ(regs); 618 #endif 619 620 old_regs = set_irq_regs(regs); 621 irq_enter(); 622 trace_timer_interrupt_entry(regs); 623 624 if (test_irq_work_pending()) { 625 clear_irq_work_pending(); 626 irq_work_run(); 627 } 628 629 now = get_tb_or_rtc(); 630 if (now >= *next_tb) { 631 *next_tb = ~(u64)0; 632 if (evt->event_handler) 633 evt->event_handler(evt); 634 __this_cpu_inc(irq_stat.timer_irqs_event); 635 } else { 636 now = *next_tb - now; 637 if (now <= decrementer_max) 638 set_dec(now); 639 /* We may have raced with new irq work */ 640 if (test_irq_work_pending()) 641 set_dec(1); 642 __this_cpu_inc(irq_stat.timer_irqs_others); 643 } 644 645 trace_timer_interrupt_exit(regs); 646 irq_exit(); 647 set_irq_regs(old_regs); 648 } 649 EXPORT_SYMBOL(timer_interrupt); 650 651 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 652 void timer_broadcast_interrupt(void) 653 { 654 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 655 656 *next_tb = ~(u64)0; 657 tick_receive_broadcast(); 658 __this_cpu_inc(irq_stat.broadcast_irqs_event); 659 } 660 #endif 661 662 /* 663 * Hypervisor decrementer interrupts shouldn't occur but are sometimes 664 * left pending on exit from a KVM guest. We don't need to do anything 665 * to clear them, as they are edge-triggered. 666 */ 667 void hdec_interrupt(struct pt_regs *regs) 668 { 669 } 670 671 #ifdef CONFIG_SUSPEND 672 static void generic_suspend_disable_irqs(void) 673 { 674 /* Disable the decrementer, so that it doesn't interfere 675 * with suspending. 676 */ 677 678 set_dec(decrementer_max); 679 local_irq_disable(); 680 set_dec(decrementer_max); 681 } 682 683 static void generic_suspend_enable_irqs(void) 684 { 685 local_irq_enable(); 686 } 687 688 /* Overrides the weak version in kernel/power/main.c */ 689 void arch_suspend_disable_irqs(void) 690 { 691 if (ppc_md.suspend_disable_irqs) 692 ppc_md.suspend_disable_irqs(); 693 generic_suspend_disable_irqs(); 694 } 695 696 /* Overrides the weak version in kernel/power/main.c */ 697 void arch_suspend_enable_irqs(void) 698 { 699 generic_suspend_enable_irqs(); 700 if (ppc_md.suspend_enable_irqs) 701 ppc_md.suspend_enable_irqs(); 702 } 703 #endif 704 705 unsigned long long tb_to_ns(unsigned long long ticks) 706 { 707 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 708 } 709 EXPORT_SYMBOL_GPL(tb_to_ns); 710 711 /* 712 * Scheduler clock - returns current time in nanosec units. 713 * 714 * Note: mulhdu(a, b) (multiply high double unsigned) returns 715 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 716 * are 64-bit unsigned numbers. 717 */ 718 notrace unsigned long long sched_clock(void) 719 { 720 if (__USE_RTC()) 721 return get_rtc(); 722 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 723 } 724 725 726 #ifdef CONFIG_PPC_PSERIES 727 728 /* 729 * Running clock - attempts to give a view of time passing for a virtualised 730 * kernels. 731 * Uses the VTB register if available otherwise a next best guess. 732 */ 733 unsigned long long running_clock(void) 734 { 735 /* 736 * Don't read the VTB as a host since KVM does not switch in host 737 * timebase into the VTB when it takes a guest off the CPU, reading the 738 * VTB would result in reading 'last switched out' guest VTB. 739 * 740 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 741 * would be unsafe to rely only on the #ifdef above. 742 */ 743 if (firmware_has_feature(FW_FEATURE_LPAR) && 744 cpu_has_feature(CPU_FTR_ARCH_207S)) 745 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 746 747 /* 748 * This is a next best approximation without a VTB. 749 * On a host which is running bare metal there should never be any stolen 750 * time and on a host which doesn't do any virtualisation TB *should* equal 751 * VTB so it makes no difference anyway. 752 */ 753 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 754 } 755 #endif 756 757 static int __init get_freq(char *name, int cells, unsigned long *val) 758 { 759 struct device_node *cpu; 760 const __be32 *fp; 761 int found = 0; 762 763 /* The cpu node should have timebase and clock frequency properties */ 764 cpu = of_find_node_by_type(NULL, "cpu"); 765 766 if (cpu) { 767 fp = of_get_property(cpu, name, NULL); 768 if (fp) { 769 found = 1; 770 *val = of_read_ulong(fp, cells); 771 } 772 773 of_node_put(cpu); 774 } 775 776 return found; 777 } 778 779 static void start_cpu_decrementer(void) 780 { 781 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 782 unsigned int tcr; 783 784 /* Clear any pending timer interrupts */ 785 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 786 787 tcr = mfspr(SPRN_TCR); 788 /* 789 * The watchdog may have already been enabled by u-boot. So leave 790 * TRC[WP] (Watchdog Period) alone. 791 */ 792 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 793 tcr |= TCR_DIE; /* Enable decrementer */ 794 mtspr(SPRN_TCR, tcr); 795 #endif 796 } 797 798 void __init generic_calibrate_decr(void) 799 { 800 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 801 802 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 803 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 804 805 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 806 "(not found)\n"); 807 } 808 809 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 810 811 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 812 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 813 814 printk(KERN_ERR "WARNING: Estimating processor frequency " 815 "(not found)\n"); 816 } 817 } 818 819 int update_persistent_clock64(struct timespec64 now) 820 { 821 struct rtc_time tm; 822 823 if (!ppc_md.set_rtc_time) 824 return -ENODEV; 825 826 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 827 828 return ppc_md.set_rtc_time(&tm); 829 } 830 831 static void __read_persistent_clock(struct timespec64 *ts) 832 { 833 struct rtc_time tm; 834 static int first = 1; 835 836 ts->tv_nsec = 0; 837 /* XXX this is a litle fragile but will work okay in the short term */ 838 if (first) { 839 first = 0; 840 if (ppc_md.time_init) 841 timezone_offset = ppc_md.time_init(); 842 843 /* get_boot_time() isn't guaranteed to be safe to call late */ 844 if (ppc_md.get_boot_time) { 845 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 846 return; 847 } 848 } 849 if (!ppc_md.get_rtc_time) { 850 ts->tv_sec = 0; 851 return; 852 } 853 ppc_md.get_rtc_time(&tm); 854 855 ts->tv_sec = rtc_tm_to_time64(&tm); 856 } 857 858 void read_persistent_clock64(struct timespec64 *ts) 859 { 860 __read_persistent_clock(ts); 861 862 /* Sanitize it in case real time clock is set below EPOCH */ 863 if (ts->tv_sec < 0) { 864 ts->tv_sec = 0; 865 ts->tv_nsec = 0; 866 } 867 868 } 869 870 /* clocksource code */ 871 static notrace u64 rtc_read(struct clocksource *cs) 872 { 873 return (u64)get_rtc(); 874 } 875 876 static notrace u64 timebase_read(struct clocksource *cs) 877 { 878 return (u64)get_tb(); 879 } 880 881 882 void update_vsyscall(struct timekeeper *tk) 883 { 884 struct timespec xt; 885 struct clocksource *clock = tk->tkr_mono.clock; 886 u32 mult = tk->tkr_mono.mult; 887 u32 shift = tk->tkr_mono.shift; 888 u64 cycle_last = tk->tkr_mono.cycle_last; 889 u64 new_tb_to_xs, new_stamp_xsec; 890 u64 frac_sec; 891 892 if (clock != &clocksource_timebase) 893 return; 894 895 xt.tv_sec = tk->xtime_sec; 896 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 897 898 /* Make userspace gettimeofday spin until we're done. */ 899 ++vdso_data->tb_update_count; 900 smp_mb(); 901 902 /* 903 * This computes ((2^20 / 1e9) * mult) >> shift as a 904 * 0.64 fixed-point fraction. 905 * The computation in the else clause below won't overflow 906 * (as long as the timebase frequency is >= 1.049 MHz) 907 * but loses precision because we lose the low bits of the constant 908 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. 909 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns 910 * over a second. (Shift values are usually 22, 23 or 24.) 911 * For high frequency clocks such as the 512MHz timebase clock 912 * on POWER[6789], the mult value is small (e.g. 32768000) 913 * and so we can shift the constant by 16 initially 914 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the 915 * remaining shifts after the multiplication, which gives a 916 * more accurate result (e.g. with mult = 32768000, shift = 24, 917 * the error is only about 1.2e-12, or 0.7ns over 10 minutes). 918 */ 919 if (mult <= 62500000 && clock->shift >= 16) 920 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); 921 else 922 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 923 924 /* 925 * Compute the fractional second in units of 2^-32 seconds. 926 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift 927 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives 928 * it in units of 2^-32 seconds. 929 * We assume shift <= 32 because clocks_calc_mult_shift() 930 * generates shift values in the range 0 - 32. 931 */ 932 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); 933 do_div(frac_sec, NSEC_PER_SEC); 934 935 /* 936 * Work out new stamp_xsec value for any legacy users of systemcfg. 937 * stamp_xsec is in units of 2^-20 seconds. 938 */ 939 new_stamp_xsec = frac_sec >> 12; 940 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; 941 942 /* 943 * tb_update_count is used to allow the userspace gettimeofday code 944 * to assure itself that it sees a consistent view of the tb_to_xs and 945 * stamp_xsec variables. It reads the tb_update_count, then reads 946 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 947 * the two values of tb_update_count match and are even then the 948 * tb_to_xs and stamp_xsec values are consistent. If not, then it 949 * loops back and reads them again until this criteria is met. 950 */ 951 vdso_data->tb_orig_stamp = cycle_last; 952 vdso_data->stamp_xsec = new_stamp_xsec; 953 vdso_data->tb_to_xs = new_tb_to_xs; 954 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; 955 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; 956 vdso_data->stamp_xtime = xt; 957 vdso_data->stamp_sec_fraction = frac_sec; 958 smp_wmb(); 959 ++(vdso_data->tb_update_count); 960 } 961 962 void update_vsyscall_tz(void) 963 { 964 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 965 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 966 } 967 968 static void __init clocksource_init(void) 969 { 970 struct clocksource *clock; 971 972 if (__USE_RTC()) 973 clock = &clocksource_rtc; 974 else 975 clock = &clocksource_timebase; 976 977 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 978 printk(KERN_ERR "clocksource: %s is already registered\n", 979 clock->name); 980 return; 981 } 982 983 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 984 clock->name, clock->mult, clock->shift); 985 } 986 987 static int decrementer_set_next_event(unsigned long evt, 988 struct clock_event_device *dev) 989 { 990 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt); 991 set_dec(evt); 992 993 /* We may have raced with new irq work */ 994 if (test_irq_work_pending()) 995 set_dec(1); 996 997 return 0; 998 } 999 1000 static int decrementer_shutdown(struct clock_event_device *dev) 1001 { 1002 decrementer_set_next_event(decrementer_max, dev); 1003 return 0; 1004 } 1005 1006 static void register_decrementer_clockevent(int cpu) 1007 { 1008 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 1009 1010 *dec = decrementer_clockevent; 1011 dec->cpumask = cpumask_of(cpu); 1012 1013 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 1014 1015 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 1016 dec->name, dec->mult, dec->shift, cpu); 1017 1018 /* Set values for KVM, see kvm_emulate_dec() */ 1019 decrementer_clockevent.mult = dec->mult; 1020 decrementer_clockevent.shift = dec->shift; 1021 } 1022 1023 static void enable_large_decrementer(void) 1024 { 1025 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1026 return; 1027 1028 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 1029 return; 1030 1031 /* 1032 * If we're running as the hypervisor we need to enable the LD manually 1033 * otherwise firmware should have done it for us. 1034 */ 1035 if (cpu_has_feature(CPU_FTR_HVMODE)) 1036 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 1037 } 1038 1039 static void __init set_decrementer_max(void) 1040 { 1041 struct device_node *cpu; 1042 u32 bits = 32; 1043 1044 /* Prior to ISAv3 the decrementer is always 32 bit */ 1045 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1046 return; 1047 1048 cpu = of_find_node_by_type(NULL, "cpu"); 1049 1050 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 1051 if (bits > 64 || bits < 32) { 1052 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 1053 bits = 32; 1054 } 1055 1056 /* calculate the signed maximum given this many bits */ 1057 decrementer_max = (1ul << (bits - 1)) - 1; 1058 } 1059 1060 of_node_put(cpu); 1061 1062 pr_info("time_init: %u bit decrementer (max: %llx)\n", 1063 bits, decrementer_max); 1064 } 1065 1066 static void __init init_decrementer_clockevent(void) 1067 { 1068 register_decrementer_clockevent(smp_processor_id()); 1069 } 1070 1071 void secondary_cpu_time_init(void) 1072 { 1073 /* Enable and test the large decrementer for this cpu */ 1074 enable_large_decrementer(); 1075 1076 /* Start the decrementer on CPUs that have manual control 1077 * such as BookE 1078 */ 1079 start_cpu_decrementer(); 1080 1081 /* FIME: Should make unrelatred change to move snapshot_timebase 1082 * call here ! */ 1083 register_decrementer_clockevent(smp_processor_id()); 1084 } 1085 1086 /* This function is only called on the boot processor */ 1087 void __init time_init(void) 1088 { 1089 struct div_result res; 1090 u64 scale; 1091 unsigned shift; 1092 1093 if (__USE_RTC()) { 1094 /* 601 processor: dec counts down by 128 every 128ns */ 1095 ppc_tb_freq = 1000000000; 1096 } else { 1097 /* Normal PowerPC with timebase register */ 1098 ppc_md.calibrate_decr(); 1099 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1100 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1101 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1102 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1103 } 1104 1105 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1106 tb_ticks_per_sec = ppc_tb_freq; 1107 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1108 calc_cputime_factors(); 1109 1110 /* 1111 * Compute scale factor for sched_clock. 1112 * The calibrate_decr() function has set tb_ticks_per_sec, 1113 * which is the timebase frequency. 1114 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1115 * the 128-bit result as a 64.64 fixed-point number. 1116 * We then shift that number right until it is less than 1.0, 1117 * giving us the scale factor and shift count to use in 1118 * sched_clock(). 1119 */ 1120 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1121 scale = res.result_low; 1122 for (shift = 0; res.result_high != 0; ++shift) { 1123 scale = (scale >> 1) | (res.result_high << 63); 1124 res.result_high >>= 1; 1125 } 1126 tb_to_ns_scale = scale; 1127 tb_to_ns_shift = shift; 1128 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1129 boot_tb = get_tb_or_rtc(); 1130 1131 /* If platform provided a timezone (pmac), we correct the time */ 1132 if (timezone_offset) { 1133 sys_tz.tz_minuteswest = -timezone_offset / 60; 1134 sys_tz.tz_dsttime = 0; 1135 } 1136 1137 vdso_data->tb_update_count = 0; 1138 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1139 1140 /* initialise and enable the large decrementer (if we have one) */ 1141 set_decrementer_max(); 1142 enable_large_decrementer(); 1143 1144 /* Start the decrementer on CPUs that have manual control 1145 * such as BookE 1146 */ 1147 start_cpu_decrementer(); 1148 1149 /* Register the clocksource */ 1150 clocksource_init(); 1151 1152 init_decrementer_clockevent(); 1153 tick_setup_hrtimer_broadcast(); 1154 1155 #ifdef CONFIG_COMMON_CLK 1156 of_clk_init(NULL); 1157 #endif 1158 } 1159 1160 /* 1161 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1162 * result. 1163 */ 1164 void div128_by_32(u64 dividend_high, u64 dividend_low, 1165 unsigned divisor, struct div_result *dr) 1166 { 1167 unsigned long a, b, c, d; 1168 unsigned long w, x, y, z; 1169 u64 ra, rb, rc; 1170 1171 a = dividend_high >> 32; 1172 b = dividend_high & 0xffffffff; 1173 c = dividend_low >> 32; 1174 d = dividend_low & 0xffffffff; 1175 1176 w = a / divisor; 1177 ra = ((u64)(a - (w * divisor)) << 32) + b; 1178 1179 rb = ((u64) do_div(ra, divisor) << 32) + c; 1180 x = ra; 1181 1182 rc = ((u64) do_div(rb, divisor) << 32) + d; 1183 y = rb; 1184 1185 do_div(rc, divisor); 1186 z = rc; 1187 1188 dr->result_high = ((u64)w << 32) + x; 1189 dr->result_low = ((u64)y << 32) + z; 1190 1191 } 1192 1193 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1194 void calibrate_delay(void) 1195 { 1196 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1197 * as the number of __delay(1) in a jiffy, so make it so 1198 */ 1199 loops_per_jiffy = tb_ticks_per_jiffy; 1200 } 1201 1202 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1203 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1204 { 1205 ppc_md.get_rtc_time(tm); 1206 return 0; 1207 } 1208 1209 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1210 { 1211 if (!ppc_md.set_rtc_time) 1212 return -EOPNOTSUPP; 1213 1214 if (ppc_md.set_rtc_time(tm) < 0) 1215 return -EOPNOTSUPP; 1216 1217 return 0; 1218 } 1219 1220 static const struct rtc_class_ops rtc_generic_ops = { 1221 .read_time = rtc_generic_get_time, 1222 .set_time = rtc_generic_set_time, 1223 }; 1224 1225 static int __init rtc_init(void) 1226 { 1227 struct platform_device *pdev; 1228 1229 if (!ppc_md.get_rtc_time) 1230 return -ENODEV; 1231 1232 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1233 &rtc_generic_ops, 1234 sizeof(rtc_generic_ops)); 1235 1236 return PTR_ERR_OR_ZERO(pdev); 1237 } 1238 1239 device_initcall(rtc_init); 1240 #endif 1241