1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <asm/nvram.h> 59 #include <asm/cache.h> 60 #include <asm/machdep.h> 61 #include <asm/uaccess.h> 62 #include <asm/time.h> 63 #include <asm/prom.h> 64 #include <asm/irq.h> 65 #include <asm/div64.h> 66 #include <asm/smp.h> 67 #include <asm/vdso_datapage.h> 68 #include <asm/firmware.h> 69 #include <asm/cputime.h> 70 #ifdef CONFIG_PPC_ISERIES 71 #include <asm/iseries/it_lp_queue.h> 72 #include <asm/iseries/hv_call_xm.h> 73 #endif 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/clocksource.h> 79 80 static cycle_t rtc_read(void); 81 static struct clocksource clocksource_rtc = { 82 .name = "rtc", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .shift = 22, 87 .mult = 0, /* To be filled in */ 88 .read = rtc_read, 89 }; 90 91 static cycle_t timebase_read(void); 92 static struct clocksource clocksource_timebase = { 93 .name = "timebase", 94 .rating = 400, 95 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 96 .mask = CLOCKSOURCE_MASK(64), 97 .shift = 22, 98 .mult = 0, /* To be filled in */ 99 .read = timebase_read, 100 }; 101 102 #define DECREMENTER_MAX 0x7fffffff 103 104 static int decrementer_set_next_event(unsigned long evt, 105 struct clock_event_device *dev); 106 static void decrementer_set_mode(enum clock_event_mode mode, 107 struct clock_event_device *dev); 108 109 static struct clock_event_device decrementer_clockevent = { 110 .name = "decrementer", 111 .rating = 200, 112 .shift = 16, 113 .mult = 0, /* To be filled in */ 114 .irq = 0, 115 .set_next_event = decrementer_set_next_event, 116 .set_mode = decrementer_set_mode, 117 .features = CLOCK_EVT_FEAT_ONESHOT, 118 }; 119 120 struct decrementer_clock { 121 struct clock_event_device event; 122 u64 next_tb; 123 }; 124 125 static DEFINE_PER_CPU(struct decrementer_clock, decrementers); 126 127 #ifdef CONFIG_PPC_ISERIES 128 static unsigned long __initdata iSeries_recal_titan; 129 static signed long __initdata iSeries_recal_tb; 130 131 /* Forward declaration is only needed for iSereis compiles */ 132 static void __init clocksource_init(void); 133 #endif 134 135 #define XSEC_PER_SEC (1024*1024) 136 137 #ifdef CONFIG_PPC64 138 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 139 #else 140 /* compute ((xsec << 12) * max) >> 32 */ 141 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 142 #endif 143 144 unsigned long tb_ticks_per_jiffy; 145 unsigned long tb_ticks_per_usec = 100; /* sane default */ 146 EXPORT_SYMBOL(tb_ticks_per_usec); 147 unsigned long tb_ticks_per_sec; 148 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 149 u64 tb_to_xs; 150 unsigned tb_to_us; 151 152 #define TICKLEN_SCALE NTP_SCALE_SHIFT 153 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 154 static u64 ticklen_to_xs; /* 0.64 fraction */ 155 156 /* If last_tick_len corresponds to about 1/HZ seconds, then 157 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 158 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 159 160 DEFINE_SPINLOCK(rtc_lock); 161 EXPORT_SYMBOL_GPL(rtc_lock); 162 163 static u64 tb_to_ns_scale __read_mostly; 164 static unsigned tb_to_ns_shift __read_mostly; 165 static unsigned long boot_tb __read_mostly; 166 167 extern struct timezone sys_tz; 168 static long timezone_offset; 169 170 unsigned long ppc_proc_freq; 171 EXPORT_SYMBOL(ppc_proc_freq); 172 unsigned long ppc_tb_freq; 173 174 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 175 static DEFINE_PER_CPU(u64, last_jiffy); 176 177 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 178 /* 179 * Factors for converting from cputime_t (timebase ticks) to 180 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 181 * These are all stored as 0.64 fixed-point binary fractions. 182 */ 183 u64 __cputime_jiffies_factor; 184 EXPORT_SYMBOL(__cputime_jiffies_factor); 185 u64 __cputime_msec_factor; 186 EXPORT_SYMBOL(__cputime_msec_factor); 187 u64 __cputime_sec_factor; 188 EXPORT_SYMBOL(__cputime_sec_factor); 189 u64 __cputime_clockt_factor; 190 EXPORT_SYMBOL(__cputime_clockt_factor); 191 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 192 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 193 194 static void calc_cputime_factors(void) 195 { 196 struct div_result res; 197 198 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 199 __cputime_jiffies_factor = res.result_low; 200 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 201 __cputime_msec_factor = res.result_low; 202 div128_by_32(1, 0, tb_ticks_per_sec, &res); 203 __cputime_sec_factor = res.result_low; 204 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 205 __cputime_clockt_factor = res.result_low; 206 } 207 208 /* 209 * Read the PURR on systems that have it, otherwise the timebase. 210 */ 211 static u64 read_purr(void) 212 { 213 if (cpu_has_feature(CPU_FTR_PURR)) 214 return mfspr(SPRN_PURR); 215 return mftb(); 216 } 217 218 /* 219 * Read the SPURR on systems that have it, otherwise the purr 220 */ 221 static u64 read_spurr(u64 purr) 222 { 223 /* 224 * cpus without PURR won't have a SPURR 225 * We already know the former when we use this, so tell gcc 226 */ 227 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR)) 228 return mfspr(SPRN_SPURR); 229 return purr; 230 } 231 232 /* 233 * Account time for a transition between system, hard irq 234 * or soft irq state. 235 */ 236 void account_system_vtime(struct task_struct *tsk) 237 { 238 u64 now, nowscaled, delta, deltascaled, sys_time; 239 unsigned long flags; 240 241 local_irq_save(flags); 242 now = read_purr(); 243 nowscaled = read_spurr(now); 244 delta = now - get_paca()->startpurr; 245 deltascaled = nowscaled - get_paca()->startspurr; 246 get_paca()->startpurr = now; 247 get_paca()->startspurr = nowscaled; 248 if (!in_interrupt()) { 249 /* deltascaled includes both user and system time. 250 * Hence scale it based on the purr ratio to estimate 251 * the system time */ 252 sys_time = get_paca()->system_time; 253 if (get_paca()->user_time) 254 deltascaled = deltascaled * sys_time / 255 (sys_time + get_paca()->user_time); 256 delta += sys_time; 257 get_paca()->system_time = 0; 258 } 259 if (in_irq() || idle_task(smp_processor_id()) != tsk) 260 account_system_time(tsk, 0, delta, deltascaled); 261 else 262 account_idle_time(delta); 263 per_cpu(cputime_last_delta, smp_processor_id()) = delta; 264 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled; 265 local_irq_restore(flags); 266 } 267 268 /* 269 * Transfer the user and system times accumulated in the paca 270 * by the exception entry and exit code to the generic process 271 * user and system time records. 272 * Must be called with interrupts disabled. 273 */ 274 void account_process_tick(struct task_struct *tsk, int user_tick) 275 { 276 cputime_t utime, utimescaled; 277 278 utime = get_paca()->user_time; 279 get_paca()->user_time = 0; 280 utimescaled = cputime_to_scaled(utime); 281 account_user_time(tsk, utime, utimescaled); 282 } 283 284 /* 285 * Stuff for accounting stolen time. 286 */ 287 struct cpu_purr_data { 288 int initialized; /* thread is running */ 289 u64 tb; /* last TB value read */ 290 u64 purr; /* last PURR value read */ 291 u64 spurr; /* last SPURR value read */ 292 }; 293 294 /* 295 * Each entry in the cpu_purr_data array is manipulated only by its 296 * "owner" cpu -- usually in the timer interrupt but also occasionally 297 * in process context for cpu online. As long as cpus do not touch 298 * each others' cpu_purr_data, disabling local interrupts is 299 * sufficient to serialize accesses. 300 */ 301 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 302 303 static void snapshot_tb_and_purr(void *data) 304 { 305 unsigned long flags; 306 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 307 308 local_irq_save(flags); 309 p->tb = get_tb_or_rtc(); 310 p->purr = mfspr(SPRN_PURR); 311 wmb(); 312 p->initialized = 1; 313 local_irq_restore(flags); 314 } 315 316 /* 317 * Called during boot when all cpus have come up. 318 */ 319 void snapshot_timebases(void) 320 { 321 if (!cpu_has_feature(CPU_FTR_PURR)) 322 return; 323 on_each_cpu(snapshot_tb_and_purr, NULL, 1); 324 } 325 326 /* 327 * Must be called with interrupts disabled. 328 */ 329 void calculate_steal_time(void) 330 { 331 u64 tb, purr; 332 s64 stolen; 333 struct cpu_purr_data *pme; 334 335 pme = &__get_cpu_var(cpu_purr_data); 336 if (!pme->initialized) 337 return; /* !CPU_FTR_PURR or early in early boot */ 338 tb = mftb(); 339 purr = mfspr(SPRN_PURR); 340 stolen = (tb - pme->tb) - (purr - pme->purr); 341 if (stolen > 0) { 342 if (idle_task(smp_processor_id()) != current) 343 account_steal_time(stolen); 344 else 345 account_idle_time(stolen); 346 } 347 pme->tb = tb; 348 pme->purr = purr; 349 } 350 351 #ifdef CONFIG_PPC_SPLPAR 352 /* 353 * Must be called before the cpu is added to the online map when 354 * a cpu is being brought up at runtime. 355 */ 356 static void snapshot_purr(void) 357 { 358 struct cpu_purr_data *pme; 359 unsigned long flags; 360 361 if (!cpu_has_feature(CPU_FTR_PURR)) 362 return; 363 local_irq_save(flags); 364 pme = &__get_cpu_var(cpu_purr_data); 365 pme->tb = mftb(); 366 pme->purr = mfspr(SPRN_PURR); 367 pme->initialized = 1; 368 local_irq_restore(flags); 369 } 370 371 #endif /* CONFIG_PPC_SPLPAR */ 372 373 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 374 #define calc_cputime_factors() 375 #define calculate_steal_time() do { } while (0) 376 #endif 377 378 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 379 #define snapshot_purr() do { } while (0) 380 #endif 381 382 /* 383 * Called when a cpu comes up after the system has finished booting, 384 * i.e. as a result of a hotplug cpu action. 385 */ 386 void snapshot_timebase(void) 387 { 388 __get_cpu_var(last_jiffy) = get_tb_or_rtc(); 389 snapshot_purr(); 390 } 391 392 void __delay(unsigned long loops) 393 { 394 unsigned long start; 395 int diff; 396 397 if (__USE_RTC()) { 398 start = get_rtcl(); 399 do { 400 /* the RTCL register wraps at 1000000000 */ 401 diff = get_rtcl() - start; 402 if (diff < 0) 403 diff += 1000000000; 404 } while (diff < loops); 405 } else { 406 start = get_tbl(); 407 while (get_tbl() - start < loops) 408 HMT_low(); 409 HMT_medium(); 410 } 411 } 412 EXPORT_SYMBOL(__delay); 413 414 void udelay(unsigned long usecs) 415 { 416 __delay(tb_ticks_per_usec * usecs); 417 } 418 EXPORT_SYMBOL(udelay); 419 420 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 421 u64 new_tb_to_xs) 422 { 423 /* 424 * tb_update_count is used to allow the userspace gettimeofday code 425 * to assure itself that it sees a consistent view of the tb_to_xs and 426 * stamp_xsec variables. It reads the tb_update_count, then reads 427 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 428 * the two values of tb_update_count match and are even then the 429 * tb_to_xs and stamp_xsec values are consistent. If not, then it 430 * loops back and reads them again until this criteria is met. 431 * We expect the caller to have done the first increment of 432 * vdso_data->tb_update_count already. 433 */ 434 vdso_data->tb_orig_stamp = new_tb_stamp; 435 vdso_data->stamp_xsec = new_stamp_xsec; 436 vdso_data->tb_to_xs = new_tb_to_xs; 437 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 438 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 439 vdso_data->stamp_xtime = xtime; 440 smp_wmb(); 441 ++(vdso_data->tb_update_count); 442 } 443 444 #ifdef CONFIG_SMP 445 unsigned long profile_pc(struct pt_regs *regs) 446 { 447 unsigned long pc = instruction_pointer(regs); 448 449 if (in_lock_functions(pc)) 450 return regs->link; 451 452 return pc; 453 } 454 EXPORT_SYMBOL(profile_pc); 455 #endif 456 457 #ifdef CONFIG_PPC_ISERIES 458 459 /* 460 * This function recalibrates the timebase based on the 49-bit time-of-day 461 * value in the Titan chip. The Titan is much more accurate than the value 462 * returned by the service processor for the timebase frequency. 463 */ 464 465 static int __init iSeries_tb_recal(void) 466 { 467 struct div_result divres; 468 unsigned long titan, tb; 469 470 /* Make sure we only run on iSeries */ 471 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 472 return -ENODEV; 473 474 tb = get_tb(); 475 titan = HvCallXm_loadTod(); 476 if ( iSeries_recal_titan ) { 477 unsigned long tb_ticks = tb - iSeries_recal_tb; 478 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 479 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 480 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 481 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 482 char sign = '+'; 483 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 484 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 485 486 if ( tick_diff < 0 ) { 487 tick_diff = -tick_diff; 488 sign = '-'; 489 } 490 if ( tick_diff ) { 491 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 492 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 493 new_tb_ticks_per_jiffy, sign, tick_diff ); 494 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 495 tb_ticks_per_sec = new_tb_ticks_per_sec; 496 calc_cputime_factors(); 497 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 498 tb_to_xs = divres.result_low; 499 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 500 vdso_data->tb_to_xs = tb_to_xs; 501 } 502 else { 503 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 504 " new tb_ticks_per_jiffy = %lu\n" 505 " old tb_ticks_per_jiffy = %lu\n", 506 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 507 } 508 } 509 } 510 iSeries_recal_titan = titan; 511 iSeries_recal_tb = tb; 512 513 /* Called here as now we know accurate values for the timebase */ 514 clocksource_init(); 515 return 0; 516 } 517 late_initcall(iSeries_tb_recal); 518 519 /* Called from platform early init */ 520 void __init iSeries_time_init_early(void) 521 { 522 iSeries_recal_tb = get_tb(); 523 iSeries_recal_titan = HvCallXm_loadTod(); 524 } 525 #endif /* CONFIG_PPC_ISERIES */ 526 527 /* 528 * For iSeries shared processors, we have to let the hypervisor 529 * set the hardware decrementer. We set a virtual decrementer 530 * in the lppaca and call the hypervisor if the virtual 531 * decrementer is less than the current value in the hardware 532 * decrementer. (almost always the new decrementer value will 533 * be greater than the current hardware decementer so the hypervisor 534 * call will not be needed) 535 */ 536 537 /* 538 * timer_interrupt - gets called when the decrementer overflows, 539 * with interrupts disabled. 540 */ 541 void timer_interrupt(struct pt_regs * regs) 542 { 543 struct pt_regs *old_regs; 544 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers); 545 struct clock_event_device *evt = &decrementer->event; 546 u64 now; 547 548 /* Ensure a positive value is written to the decrementer, or else 549 * some CPUs will continuue to take decrementer exceptions */ 550 set_dec(DECREMENTER_MAX); 551 552 #ifdef CONFIG_PPC32 553 if (atomic_read(&ppc_n_lost_interrupts) != 0) 554 do_IRQ(regs); 555 #endif 556 557 now = get_tb_or_rtc(); 558 if (now < decrementer->next_tb) { 559 /* not time for this event yet */ 560 now = decrementer->next_tb - now; 561 if (now <= DECREMENTER_MAX) 562 set_dec((int)now); 563 return; 564 } 565 old_regs = set_irq_regs(regs); 566 irq_enter(); 567 568 calculate_steal_time(); 569 570 #ifdef CONFIG_PPC_ISERIES 571 if (firmware_has_feature(FW_FEATURE_ISERIES)) 572 get_lppaca()->int_dword.fields.decr_int = 0; 573 #endif 574 575 if (evt->event_handler) 576 evt->event_handler(evt); 577 578 #ifdef CONFIG_PPC_ISERIES 579 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 580 process_hvlpevents(); 581 #endif 582 583 #ifdef CONFIG_PPC64 584 /* collect purr register values often, for accurate calculations */ 585 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 586 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 587 cu->current_tb = mfspr(SPRN_PURR); 588 } 589 #endif 590 591 irq_exit(); 592 set_irq_regs(old_regs); 593 } 594 595 void wakeup_decrementer(void) 596 { 597 unsigned long ticks; 598 599 /* 600 * The timebase gets saved on sleep and restored on wakeup, 601 * so all we need to do is to reset the decrementer. 602 */ 603 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 604 if (ticks < tb_ticks_per_jiffy) 605 ticks = tb_ticks_per_jiffy - ticks; 606 else 607 ticks = 1; 608 set_dec(ticks); 609 } 610 611 #ifdef CONFIG_SUSPEND 612 void generic_suspend_disable_irqs(void) 613 { 614 preempt_disable(); 615 616 /* Disable the decrementer, so that it doesn't interfere 617 * with suspending. 618 */ 619 620 set_dec(0x7fffffff); 621 local_irq_disable(); 622 set_dec(0x7fffffff); 623 } 624 625 void generic_suspend_enable_irqs(void) 626 { 627 wakeup_decrementer(); 628 629 local_irq_enable(); 630 preempt_enable(); 631 } 632 633 /* Overrides the weak version in kernel/power/main.c */ 634 void arch_suspend_disable_irqs(void) 635 { 636 if (ppc_md.suspend_disable_irqs) 637 ppc_md.suspend_disable_irqs(); 638 generic_suspend_disable_irqs(); 639 } 640 641 /* Overrides the weak version in kernel/power/main.c */ 642 void arch_suspend_enable_irqs(void) 643 { 644 generic_suspend_enable_irqs(); 645 if (ppc_md.suspend_enable_irqs) 646 ppc_md.suspend_enable_irqs(); 647 } 648 #endif 649 650 #ifdef CONFIG_SMP 651 void __init smp_space_timers(unsigned int max_cpus) 652 { 653 int i; 654 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 655 656 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 657 previous_tb -= tb_ticks_per_jiffy; 658 659 for_each_possible_cpu(i) { 660 if (i == boot_cpuid) 661 continue; 662 per_cpu(last_jiffy, i) = previous_tb; 663 } 664 } 665 #endif 666 667 /* 668 * Scheduler clock - returns current time in nanosec units. 669 * 670 * Note: mulhdu(a, b) (multiply high double unsigned) returns 671 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 672 * are 64-bit unsigned numbers. 673 */ 674 unsigned long long sched_clock(void) 675 { 676 if (__USE_RTC()) 677 return get_rtc(); 678 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 679 } 680 681 static int __init get_freq(char *name, int cells, unsigned long *val) 682 { 683 struct device_node *cpu; 684 const unsigned int *fp; 685 int found = 0; 686 687 /* The cpu node should have timebase and clock frequency properties */ 688 cpu = of_find_node_by_type(NULL, "cpu"); 689 690 if (cpu) { 691 fp = of_get_property(cpu, name, NULL); 692 if (fp) { 693 found = 1; 694 *val = of_read_ulong(fp, cells); 695 } 696 697 of_node_put(cpu); 698 } 699 700 return found; 701 } 702 703 void __init generic_calibrate_decr(void) 704 { 705 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 706 707 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 708 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 709 710 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 711 "(not found)\n"); 712 } 713 714 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 715 716 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 717 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 718 719 printk(KERN_ERR "WARNING: Estimating processor frequency " 720 "(not found)\n"); 721 } 722 723 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 724 /* Clear any pending timer interrupts */ 725 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 726 727 /* Enable decrementer interrupt */ 728 mtspr(SPRN_TCR, TCR_DIE); 729 #endif 730 } 731 732 int update_persistent_clock(struct timespec now) 733 { 734 struct rtc_time tm; 735 736 if (!ppc_md.set_rtc_time) 737 return 0; 738 739 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 740 tm.tm_year -= 1900; 741 tm.tm_mon -= 1; 742 743 return ppc_md.set_rtc_time(&tm); 744 } 745 746 unsigned long read_persistent_clock(void) 747 { 748 struct rtc_time tm; 749 static int first = 1; 750 751 /* XXX this is a litle fragile but will work okay in the short term */ 752 if (first) { 753 first = 0; 754 if (ppc_md.time_init) 755 timezone_offset = ppc_md.time_init(); 756 757 /* get_boot_time() isn't guaranteed to be safe to call late */ 758 if (ppc_md.get_boot_time) 759 return ppc_md.get_boot_time() -timezone_offset; 760 } 761 if (!ppc_md.get_rtc_time) 762 return 0; 763 ppc_md.get_rtc_time(&tm); 764 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 765 tm.tm_hour, tm.tm_min, tm.tm_sec); 766 } 767 768 /* clocksource code */ 769 static cycle_t rtc_read(void) 770 { 771 return (cycle_t)get_rtc(); 772 } 773 774 static cycle_t timebase_read(void) 775 { 776 return (cycle_t)get_tb(); 777 } 778 779 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) 780 { 781 u64 t2x, stamp_xsec; 782 783 if (clock != &clocksource_timebase) 784 return; 785 786 /* Make userspace gettimeofday spin until we're done. */ 787 ++vdso_data->tb_update_count; 788 smp_mb(); 789 790 /* XXX this assumes clock->shift == 22 */ 791 /* 4611686018 ~= 2^(20+64-22) / 1e9 */ 792 t2x = (u64) clock->mult * 4611686018ULL; 793 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 794 do_div(stamp_xsec, 1000000000); 795 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 796 update_gtod(clock->cycle_last, stamp_xsec, t2x); 797 } 798 799 void update_vsyscall_tz(void) 800 { 801 /* Make userspace gettimeofday spin until we're done. */ 802 ++vdso_data->tb_update_count; 803 smp_mb(); 804 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 805 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 806 smp_mb(); 807 ++vdso_data->tb_update_count; 808 } 809 810 static void __init clocksource_init(void) 811 { 812 struct clocksource *clock; 813 814 if (__USE_RTC()) 815 clock = &clocksource_rtc; 816 else 817 clock = &clocksource_timebase; 818 819 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); 820 821 if (clocksource_register(clock)) { 822 printk(KERN_ERR "clocksource: %s is already registered\n", 823 clock->name); 824 return; 825 } 826 827 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 828 clock->name, clock->mult, clock->shift); 829 } 830 831 static int decrementer_set_next_event(unsigned long evt, 832 struct clock_event_device *dev) 833 { 834 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt; 835 set_dec(evt); 836 return 0; 837 } 838 839 static void decrementer_set_mode(enum clock_event_mode mode, 840 struct clock_event_device *dev) 841 { 842 if (mode != CLOCK_EVT_MODE_ONESHOT) 843 decrementer_set_next_event(DECREMENTER_MAX, dev); 844 } 845 846 static void register_decrementer_clockevent(int cpu) 847 { 848 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event; 849 850 *dec = decrementer_clockevent; 851 dec->cpumask = cpumask_of(cpu); 852 853 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", 854 dec->name, dec->mult, dec->shift, cpu); 855 856 clockevents_register_device(dec); 857 } 858 859 static void __init init_decrementer_clockevent(void) 860 { 861 int cpu = smp_processor_id(); 862 863 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC, 864 decrementer_clockevent.shift); 865 decrementer_clockevent.max_delta_ns = 866 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 867 decrementer_clockevent.min_delta_ns = 868 clockevent_delta2ns(2, &decrementer_clockevent); 869 870 register_decrementer_clockevent(cpu); 871 } 872 873 void secondary_cpu_time_init(void) 874 { 875 /* FIME: Should make unrelatred change to move snapshot_timebase 876 * call here ! */ 877 register_decrementer_clockevent(smp_processor_id()); 878 } 879 880 /* This function is only called on the boot processor */ 881 void __init time_init(void) 882 { 883 unsigned long flags; 884 struct div_result res; 885 u64 scale, x; 886 unsigned shift; 887 888 if (__USE_RTC()) { 889 /* 601 processor: dec counts down by 128 every 128ns */ 890 ppc_tb_freq = 1000000000; 891 tb_last_jiffy = get_rtcl(); 892 } else { 893 /* Normal PowerPC with timebase register */ 894 ppc_md.calibrate_decr(); 895 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 896 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 897 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 898 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 899 tb_last_jiffy = get_tb(); 900 } 901 902 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 903 tb_ticks_per_sec = ppc_tb_freq; 904 tb_ticks_per_usec = ppc_tb_freq / 1000000; 905 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 906 calc_cputime_factors(); 907 908 /* 909 * Calculate the length of each tick in ns. It will not be 910 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 911 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 912 * rounded up. 913 */ 914 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 915 do_div(x, ppc_tb_freq); 916 tick_nsec = x; 917 last_tick_len = x << TICKLEN_SCALE; 918 919 /* 920 * Compute ticklen_to_xs, which is a factor which gets multiplied 921 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 922 * It is computed as: 923 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 924 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 925 * which turns out to be N = 51 - SHIFT_HZ. 926 * This gives the result as a 0.64 fixed-point fraction. 927 * That value is reduced by an offset amounting to 1 xsec per 928 * 2^31 timebase ticks to avoid problems with time going backwards 929 * by 1 xsec when we do timer_recalc_offset due to losing the 930 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 931 * since there are 2^20 xsec in a second. 932 */ 933 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 934 tb_ticks_per_jiffy << SHIFT_HZ, &res); 935 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 936 ticklen_to_xs = res.result_low; 937 938 /* Compute tb_to_xs from tick_nsec */ 939 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 940 941 /* 942 * Compute scale factor for sched_clock. 943 * The calibrate_decr() function has set tb_ticks_per_sec, 944 * which is the timebase frequency. 945 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 946 * the 128-bit result as a 64.64 fixed-point number. 947 * We then shift that number right until it is less than 1.0, 948 * giving us the scale factor and shift count to use in 949 * sched_clock(). 950 */ 951 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 952 scale = res.result_low; 953 for (shift = 0; res.result_high != 0; ++shift) { 954 scale = (scale >> 1) | (res.result_high << 63); 955 res.result_high >>= 1; 956 } 957 tb_to_ns_scale = scale; 958 tb_to_ns_shift = shift; 959 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 960 boot_tb = get_tb_or_rtc(); 961 962 write_seqlock_irqsave(&xtime_lock, flags); 963 964 /* If platform provided a timezone (pmac), we correct the time */ 965 if (timezone_offset) { 966 sys_tz.tz_minuteswest = -timezone_offset / 60; 967 sys_tz.tz_dsttime = 0; 968 } 969 970 vdso_data->tb_orig_stamp = tb_last_jiffy; 971 vdso_data->tb_update_count = 0; 972 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 973 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 974 vdso_data->tb_to_xs = tb_to_xs; 975 976 write_sequnlock_irqrestore(&xtime_lock, flags); 977 978 /* Register the clocksource, if we're not running on iSeries */ 979 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 980 clocksource_init(); 981 982 init_decrementer_clockevent(); 983 } 984 985 986 #define FEBRUARY 2 987 #define STARTOFTIME 1970 988 #define SECDAY 86400L 989 #define SECYR (SECDAY * 365) 990 #define leapyear(year) ((year) % 4 == 0 && \ 991 ((year) % 100 != 0 || (year) % 400 == 0)) 992 #define days_in_year(a) (leapyear(a) ? 366 : 365) 993 #define days_in_month(a) (month_days[(a) - 1]) 994 995 static int month_days[12] = { 996 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 997 }; 998 999 /* 1000 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1001 */ 1002 void GregorianDay(struct rtc_time * tm) 1003 { 1004 int leapsToDate; 1005 int lastYear; 1006 int day; 1007 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1008 1009 lastYear = tm->tm_year - 1; 1010 1011 /* 1012 * Number of leap corrections to apply up to end of last year 1013 */ 1014 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1015 1016 /* 1017 * This year is a leap year if it is divisible by 4 except when it is 1018 * divisible by 100 unless it is divisible by 400 1019 * 1020 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1021 */ 1022 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1023 1024 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1025 tm->tm_mday; 1026 1027 tm->tm_wday = day % 7; 1028 } 1029 1030 void to_tm(int tim, struct rtc_time * tm) 1031 { 1032 register int i; 1033 register long hms, day; 1034 1035 day = tim / SECDAY; 1036 hms = tim % SECDAY; 1037 1038 /* Hours, minutes, seconds are easy */ 1039 tm->tm_hour = hms / 3600; 1040 tm->tm_min = (hms % 3600) / 60; 1041 tm->tm_sec = (hms % 3600) % 60; 1042 1043 /* Number of years in days */ 1044 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1045 day -= days_in_year(i); 1046 tm->tm_year = i; 1047 1048 /* Number of months in days left */ 1049 if (leapyear(tm->tm_year)) 1050 days_in_month(FEBRUARY) = 29; 1051 for (i = 1; day >= days_in_month(i); i++) 1052 day -= days_in_month(i); 1053 days_in_month(FEBRUARY) = 28; 1054 tm->tm_mon = i; 1055 1056 /* Days are what is left over (+1) from all that. */ 1057 tm->tm_mday = day + 1; 1058 1059 /* 1060 * Determine the day of week 1061 */ 1062 GregorianDay(tm); 1063 } 1064 1065 /* Auxiliary function to compute scaling factors */ 1066 /* Actually the choice of a timebase running at 1/4 the of the bus 1067 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1068 * It makes this computation very precise (27-28 bits typically) which 1069 * is optimistic considering the stability of most processor clock 1070 * oscillators and the precision with which the timebase frequency 1071 * is measured but does not harm. 1072 */ 1073 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1074 { 1075 unsigned mlt=0, tmp, err; 1076 /* No concern for performance, it's done once: use a stupid 1077 * but safe and compact method to find the multiplier. 1078 */ 1079 1080 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1081 if (mulhwu(inscale, mlt|tmp) < outscale) 1082 mlt |= tmp; 1083 } 1084 1085 /* We might still be off by 1 for the best approximation. 1086 * A side effect of this is that if outscale is too large 1087 * the returned value will be zero. 1088 * Many corner cases have been checked and seem to work, 1089 * some might have been forgotten in the test however. 1090 */ 1091 1092 err = inscale * (mlt+1); 1093 if (err <= inscale/2) 1094 mlt++; 1095 return mlt; 1096 } 1097 1098 /* 1099 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1100 * result. 1101 */ 1102 void div128_by_32(u64 dividend_high, u64 dividend_low, 1103 unsigned divisor, struct div_result *dr) 1104 { 1105 unsigned long a, b, c, d; 1106 unsigned long w, x, y, z; 1107 u64 ra, rb, rc; 1108 1109 a = dividend_high >> 32; 1110 b = dividend_high & 0xffffffff; 1111 c = dividend_low >> 32; 1112 d = dividend_low & 0xffffffff; 1113 1114 w = a / divisor; 1115 ra = ((u64)(a - (w * divisor)) << 32) + b; 1116 1117 rb = ((u64) do_div(ra, divisor) << 32) + c; 1118 x = ra; 1119 1120 rc = ((u64) do_div(rb, divisor) << 32) + d; 1121 y = rb; 1122 1123 do_div(rc, divisor); 1124 z = rc; 1125 1126 dr->result_high = ((u64)w << 32) + x; 1127 dr->result_low = ((u64)y << 32) + z; 1128 1129 } 1130 1131 static int __init rtc_init(void) 1132 { 1133 struct platform_device *pdev; 1134 1135 if (!ppc_md.get_rtc_time) 1136 return -ENODEV; 1137 1138 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1139 if (IS_ERR(pdev)) 1140 return PTR_ERR(pdev); 1141 1142 return 0; 1143 } 1144 1145 module_init(rtc_init); 1146