xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77 
78 static u64 rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80 	.name         = "rtc",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.read         = rtc_read,
85 };
86 
87 static u64 timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89 	.name         = "timebase",
90 	.rating       = 400,
91 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
92 	.mask         = CLOCKSOURCE_MASK(64),
93 	.read         = timebase_read,
94 };
95 
96 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
97 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
98 
99 static int decrementer_set_next_event(unsigned long evt,
100 				      struct clock_event_device *dev);
101 static int decrementer_shutdown(struct clock_event_device *evt);
102 
103 struct clock_event_device decrementer_clockevent = {
104 	.name			= "decrementer",
105 	.rating			= 200,
106 	.irq			= 0,
107 	.set_next_event		= decrementer_set_next_event,
108 	.set_state_oneshot_stopped = decrementer_shutdown,
109 	.set_state_shutdown	= decrementer_shutdown,
110 	.tick_resume		= decrementer_shutdown,
111 	.features		= CLOCK_EVT_FEAT_ONESHOT |
112 				  CLOCK_EVT_FEAT_C3STOP,
113 };
114 EXPORT_SYMBOL(decrementer_clockevent);
115 
116 DEFINE_PER_CPU(u64, decrementers_next_tb);
117 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
118 
119 #define XSEC_PER_SEC (1024*1024)
120 
121 #ifdef CONFIG_PPC64
122 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
123 #else
124 /* compute ((xsec << 12) * max) >> 32 */
125 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
126 #endif
127 
128 unsigned long tb_ticks_per_jiffy;
129 unsigned long tb_ticks_per_usec = 100; /* sane default */
130 EXPORT_SYMBOL(tb_ticks_per_usec);
131 unsigned long tb_ticks_per_sec;
132 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
133 
134 DEFINE_SPINLOCK(rtc_lock);
135 EXPORT_SYMBOL_GPL(rtc_lock);
136 
137 static u64 tb_to_ns_scale __read_mostly;
138 static unsigned tb_to_ns_shift __read_mostly;
139 static u64 boot_tb __read_mostly;
140 
141 extern struct timezone sys_tz;
142 static long timezone_offset;
143 
144 unsigned long ppc_proc_freq;
145 EXPORT_SYMBOL_GPL(ppc_proc_freq);
146 unsigned long ppc_tb_freq;
147 EXPORT_SYMBOL_GPL(ppc_tb_freq);
148 
149 bool tb_invalid;
150 
151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
152 /*
153  * Factor for converting from cputime_t (timebase ticks) to
154  * microseconds. This is stored as 0.64 fixed-point binary fraction.
155  */
156 u64 __cputime_usec_factor;
157 EXPORT_SYMBOL(__cputime_usec_factor);
158 
159 #ifdef CONFIG_PPC_SPLPAR
160 void (*dtl_consumer)(struct dtl_entry *, u64);
161 #endif
162 
163 static void calc_cputime_factors(void)
164 {
165 	struct div_result res;
166 
167 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
168 	__cputime_usec_factor = res.result_low;
169 }
170 
171 /*
172  * Read the SPURR on systems that have it, otherwise the PURR,
173  * or if that doesn't exist return the timebase value passed in.
174  */
175 static inline unsigned long read_spurr(unsigned long tb)
176 {
177 	if (cpu_has_feature(CPU_FTR_SPURR))
178 		return mfspr(SPRN_SPURR);
179 	if (cpu_has_feature(CPU_FTR_PURR))
180 		return mfspr(SPRN_PURR);
181 	return tb;
182 }
183 
184 #ifdef CONFIG_PPC_SPLPAR
185 
186 #include <asm/dtl.h>
187 
188 /*
189  * Scan the dispatch trace log and count up the stolen time.
190  * Should be called with interrupts disabled.
191  */
192 static u64 scan_dispatch_log(u64 stop_tb)
193 {
194 	u64 i = local_paca->dtl_ridx;
195 	struct dtl_entry *dtl = local_paca->dtl_curr;
196 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
197 	struct lppaca *vpa = local_paca->lppaca_ptr;
198 	u64 tb_delta;
199 	u64 stolen = 0;
200 	u64 dtb;
201 
202 	if (!dtl)
203 		return 0;
204 
205 	if (i == be64_to_cpu(vpa->dtl_idx))
206 		return 0;
207 	while (i < be64_to_cpu(vpa->dtl_idx)) {
208 		dtb = be64_to_cpu(dtl->timebase);
209 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
210 			be32_to_cpu(dtl->ready_to_enqueue_time);
211 		barrier();
212 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
213 			/* buffer has overflowed */
214 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
215 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
216 			continue;
217 		}
218 		if (dtb > stop_tb)
219 			break;
220 		if (dtl_consumer)
221 			dtl_consumer(dtl, i);
222 		stolen += tb_delta;
223 		++i;
224 		++dtl;
225 		if (dtl == dtl_end)
226 			dtl = local_paca->dispatch_log;
227 	}
228 	local_paca->dtl_ridx = i;
229 	local_paca->dtl_curr = dtl;
230 	return stolen;
231 }
232 
233 /*
234  * Accumulate stolen time by scanning the dispatch trace log.
235  * Called on entry from user mode.
236  */
237 void notrace accumulate_stolen_time(void)
238 {
239 	u64 sst, ust;
240 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
241 	struct cpu_accounting_data *acct = &local_paca->accounting;
242 
243 	/* We are called early in the exception entry, before
244 	 * soft/hard_enabled are sync'ed to the expected state
245 	 * for the exception. We are hard disabled but the PACA
246 	 * needs to reflect that so various debug stuff doesn't
247 	 * complain
248 	 */
249 	irq_soft_mask_set(IRQS_DISABLED);
250 
251 	sst = scan_dispatch_log(acct->starttime_user);
252 	ust = scan_dispatch_log(acct->starttime);
253 	acct->stime -= sst;
254 	acct->utime -= ust;
255 	acct->steal_time += ust + sst;
256 
257 	irq_soft_mask_set(save_irq_soft_mask);
258 }
259 
260 static inline u64 calculate_stolen_time(u64 stop_tb)
261 {
262 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
263 		return 0;
264 
265 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
266 		return scan_dispatch_log(stop_tb);
267 
268 	return 0;
269 }
270 
271 #else /* CONFIG_PPC_SPLPAR */
272 static inline u64 calculate_stolen_time(u64 stop_tb)
273 {
274 	return 0;
275 }
276 
277 #endif /* CONFIG_PPC_SPLPAR */
278 
279 /*
280  * Account time for a transition between system, hard irq
281  * or soft irq state.
282  */
283 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
284 					unsigned long now, unsigned long stime)
285 {
286 	unsigned long stime_scaled = 0;
287 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
288 	unsigned long nowscaled, deltascaled;
289 	unsigned long utime, utime_scaled;
290 
291 	nowscaled = read_spurr(now);
292 	deltascaled = nowscaled - acct->startspurr;
293 	acct->startspurr = nowscaled;
294 	utime = acct->utime - acct->utime_sspurr;
295 	acct->utime_sspurr = acct->utime;
296 
297 	/*
298 	 * Because we don't read the SPURR on every kernel entry/exit,
299 	 * deltascaled includes both user and system SPURR ticks.
300 	 * Apportion these ticks to system SPURR ticks and user
301 	 * SPURR ticks in the same ratio as the system time (delta)
302 	 * and user time (udelta) values obtained from the timebase
303 	 * over the same interval.  The system ticks get accounted here;
304 	 * the user ticks get saved up in paca->user_time_scaled to be
305 	 * used by account_process_tick.
306 	 */
307 	stime_scaled = stime;
308 	utime_scaled = utime;
309 	if (deltascaled != stime + utime) {
310 		if (utime) {
311 			stime_scaled = deltascaled * stime / (stime + utime);
312 			utime_scaled = deltascaled - stime_scaled;
313 		} else {
314 			stime_scaled = deltascaled;
315 		}
316 	}
317 	acct->utime_scaled += utime_scaled;
318 #endif
319 
320 	return stime_scaled;
321 }
322 
323 static unsigned long vtime_delta(struct task_struct *tsk,
324 				 unsigned long *stime_scaled,
325 				 unsigned long *steal_time)
326 {
327 	unsigned long now, stime;
328 	struct cpu_accounting_data *acct = get_accounting(tsk);
329 
330 	WARN_ON_ONCE(!irqs_disabled());
331 
332 	now = mftb();
333 	stime = now - acct->starttime;
334 	acct->starttime = now;
335 
336 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
337 
338 	*steal_time = calculate_stolen_time(now);
339 
340 	return stime;
341 }
342 
343 void vtime_account_kernel(struct task_struct *tsk)
344 {
345 	unsigned long stime, stime_scaled, steal_time;
346 	struct cpu_accounting_data *acct = get_accounting(tsk);
347 
348 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
349 
350 	stime -= min(stime, steal_time);
351 	acct->steal_time += steal_time;
352 
353 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
354 		acct->gtime += stime;
355 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
356 		acct->utime_scaled += stime_scaled;
357 #endif
358 	} else {
359 		if (hardirq_count())
360 			acct->hardirq_time += stime;
361 		else if (in_serving_softirq())
362 			acct->softirq_time += stime;
363 		else
364 			acct->stime += stime;
365 
366 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
367 		acct->stime_scaled += stime_scaled;
368 #endif
369 	}
370 }
371 EXPORT_SYMBOL_GPL(vtime_account_kernel);
372 
373 void vtime_account_idle(struct task_struct *tsk)
374 {
375 	unsigned long stime, stime_scaled, steal_time;
376 	struct cpu_accounting_data *acct = get_accounting(tsk);
377 
378 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
379 	acct->idle_time += stime + steal_time;
380 }
381 
382 static void vtime_flush_scaled(struct task_struct *tsk,
383 			       struct cpu_accounting_data *acct)
384 {
385 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
386 	if (acct->utime_scaled)
387 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
388 	if (acct->stime_scaled)
389 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
390 
391 	acct->utime_scaled = 0;
392 	acct->utime_sspurr = 0;
393 	acct->stime_scaled = 0;
394 #endif
395 }
396 
397 /*
398  * Account the whole cputime accumulated in the paca
399  * Must be called with interrupts disabled.
400  * Assumes that vtime_account_kernel/idle() has been called
401  * recently (i.e. since the last entry from usermode) so that
402  * get_paca()->user_time_scaled is up to date.
403  */
404 void vtime_flush(struct task_struct *tsk)
405 {
406 	struct cpu_accounting_data *acct = get_accounting(tsk);
407 
408 	if (acct->utime)
409 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
410 
411 	if (acct->gtime)
412 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
413 
414 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
415 		account_steal_time(cputime_to_nsecs(acct->steal_time));
416 		acct->steal_time = 0;
417 	}
418 
419 	if (acct->idle_time)
420 		account_idle_time(cputime_to_nsecs(acct->idle_time));
421 
422 	if (acct->stime)
423 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
424 					  CPUTIME_SYSTEM);
425 
426 	if (acct->hardirq_time)
427 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
428 					  CPUTIME_IRQ);
429 	if (acct->softirq_time)
430 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
431 					  CPUTIME_SOFTIRQ);
432 
433 	vtime_flush_scaled(tsk, acct);
434 
435 	acct->utime = 0;
436 	acct->gtime = 0;
437 	acct->idle_time = 0;
438 	acct->stime = 0;
439 	acct->hardirq_time = 0;
440 	acct->softirq_time = 0;
441 }
442 
443 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
444 #define calc_cputime_factors()
445 #endif
446 
447 void __delay(unsigned long loops)
448 {
449 	unsigned long start;
450 	int diff;
451 
452 	spin_begin();
453 	if (__USE_RTC()) {
454 		start = get_rtcl();
455 		do {
456 			/* the RTCL register wraps at 1000000000 */
457 			diff = get_rtcl() - start;
458 			if (diff < 0)
459 				diff += 1000000000;
460 			spin_cpu_relax();
461 		} while (diff < loops);
462 	} else if (tb_invalid) {
463 		/*
464 		 * TB is in error state and isn't ticking anymore.
465 		 * HMI handler was unable to recover from TB error.
466 		 * Return immediately, so that kernel won't get stuck here.
467 		 */
468 		spin_cpu_relax();
469 	} else {
470 		start = get_tbl();
471 		while (get_tbl() - start < loops)
472 			spin_cpu_relax();
473 	}
474 	spin_end();
475 }
476 EXPORT_SYMBOL(__delay);
477 
478 void udelay(unsigned long usecs)
479 {
480 	__delay(tb_ticks_per_usec * usecs);
481 }
482 EXPORT_SYMBOL(udelay);
483 
484 #ifdef CONFIG_SMP
485 unsigned long profile_pc(struct pt_regs *regs)
486 {
487 	unsigned long pc = instruction_pointer(regs);
488 
489 	if (in_lock_functions(pc))
490 		return regs->link;
491 
492 	return pc;
493 }
494 EXPORT_SYMBOL(profile_pc);
495 #endif
496 
497 #ifdef CONFIG_IRQ_WORK
498 
499 /*
500  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
501  */
502 #ifdef CONFIG_PPC64
503 static inline unsigned long test_irq_work_pending(void)
504 {
505 	unsigned long x;
506 
507 	asm volatile("lbz %0,%1(13)"
508 		: "=r" (x)
509 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
510 	return x;
511 }
512 
513 static inline void set_irq_work_pending_flag(void)
514 {
515 	asm volatile("stb %0,%1(13)" : :
516 		"r" (1),
517 		"i" (offsetof(struct paca_struct, irq_work_pending)));
518 }
519 
520 static inline void clear_irq_work_pending(void)
521 {
522 	asm volatile("stb %0,%1(13)" : :
523 		"r" (0),
524 		"i" (offsetof(struct paca_struct, irq_work_pending)));
525 }
526 
527 #else /* 32-bit */
528 
529 DEFINE_PER_CPU(u8, irq_work_pending);
530 
531 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
532 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
533 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
534 
535 #endif /* 32 vs 64 bit */
536 
537 void arch_irq_work_raise(void)
538 {
539 	/*
540 	 * 64-bit code that uses irq soft-mask can just cause an immediate
541 	 * interrupt here that gets soft masked, if this is called under
542 	 * local_irq_disable(). It might be possible to prevent that happening
543 	 * by noticing interrupts are disabled and setting decrementer pending
544 	 * to be replayed when irqs are enabled. The problem there is that
545 	 * tracing can call irq_work_raise, including in code that does low
546 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
547 	 * which could get tangled up if we're messing with the same state
548 	 * here.
549 	 */
550 	preempt_disable();
551 	set_irq_work_pending_flag();
552 	set_dec(1);
553 	preempt_enable();
554 }
555 
556 #else  /* CONFIG_IRQ_WORK */
557 
558 #define test_irq_work_pending()	0
559 #define clear_irq_work_pending()
560 
561 #endif /* CONFIG_IRQ_WORK */
562 
563 /*
564  * timer_interrupt - gets called when the decrementer overflows,
565  * with interrupts disabled.
566  */
567 void timer_interrupt(struct pt_regs *regs)
568 {
569 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
570 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
571 	struct pt_regs *old_regs;
572 	u64 now;
573 
574 	/* Some implementations of hotplug will get timer interrupts while
575 	 * offline, just ignore these and we also need to set
576 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
577 	 * don't replay timer interrupt when return, otherwise we'll trap
578 	 * here infinitely :(
579 	 */
580 	if (unlikely(!cpu_online(smp_processor_id()))) {
581 		*next_tb = ~(u64)0;
582 		set_dec(decrementer_max);
583 		return;
584 	}
585 
586 	/* Ensure a positive value is written to the decrementer, or else
587 	 * some CPUs will continue to take decrementer exceptions. When the
588 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
589 	 * 31 bits, which is about 4 seconds on most systems, which gives
590 	 * the watchdog a chance of catching timer interrupt hard lockups.
591 	 */
592 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
593 		set_dec(0x7fffffff);
594 	else
595 		set_dec(decrementer_max);
596 
597 	/* Conditionally hard-enable interrupts now that the DEC has been
598 	 * bumped to its maximum value
599 	 */
600 	may_hard_irq_enable();
601 
602 
603 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
604 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
605 		do_IRQ(regs);
606 #endif
607 
608 	old_regs = set_irq_regs(regs);
609 	irq_enter();
610 	trace_timer_interrupt_entry(regs);
611 
612 	if (test_irq_work_pending()) {
613 		clear_irq_work_pending();
614 		irq_work_run();
615 	}
616 
617 	now = get_tb_or_rtc();
618 	if (now >= *next_tb) {
619 		*next_tb = ~(u64)0;
620 		if (evt->event_handler)
621 			evt->event_handler(evt);
622 		__this_cpu_inc(irq_stat.timer_irqs_event);
623 	} else {
624 		now = *next_tb - now;
625 		if (now <= decrementer_max)
626 			set_dec(now);
627 		/* We may have raced with new irq work */
628 		if (test_irq_work_pending())
629 			set_dec(1);
630 		__this_cpu_inc(irq_stat.timer_irqs_others);
631 	}
632 
633 	trace_timer_interrupt_exit(regs);
634 	irq_exit();
635 	set_irq_regs(old_regs);
636 }
637 EXPORT_SYMBOL(timer_interrupt);
638 
639 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
640 void timer_broadcast_interrupt(void)
641 {
642 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
643 
644 	*next_tb = ~(u64)0;
645 	tick_receive_broadcast();
646 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
647 }
648 #endif
649 
650 #ifdef CONFIG_SUSPEND
651 static void generic_suspend_disable_irqs(void)
652 {
653 	/* Disable the decrementer, so that it doesn't interfere
654 	 * with suspending.
655 	 */
656 
657 	set_dec(decrementer_max);
658 	local_irq_disable();
659 	set_dec(decrementer_max);
660 }
661 
662 static void generic_suspend_enable_irqs(void)
663 {
664 	local_irq_enable();
665 }
666 
667 /* Overrides the weak version in kernel/power/main.c */
668 void arch_suspend_disable_irqs(void)
669 {
670 	if (ppc_md.suspend_disable_irqs)
671 		ppc_md.suspend_disable_irqs();
672 	generic_suspend_disable_irqs();
673 }
674 
675 /* Overrides the weak version in kernel/power/main.c */
676 void arch_suspend_enable_irqs(void)
677 {
678 	generic_suspend_enable_irqs();
679 	if (ppc_md.suspend_enable_irqs)
680 		ppc_md.suspend_enable_irqs();
681 }
682 #endif
683 
684 unsigned long long tb_to_ns(unsigned long long ticks)
685 {
686 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
687 }
688 EXPORT_SYMBOL_GPL(tb_to_ns);
689 
690 /*
691  * Scheduler clock - returns current time in nanosec units.
692  *
693  * Note: mulhdu(a, b) (multiply high double unsigned) returns
694  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
695  * are 64-bit unsigned numbers.
696  */
697 notrace unsigned long long sched_clock(void)
698 {
699 	if (__USE_RTC())
700 		return get_rtc();
701 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
702 }
703 
704 
705 #ifdef CONFIG_PPC_PSERIES
706 
707 /*
708  * Running clock - attempts to give a view of time passing for a virtualised
709  * kernels.
710  * Uses the VTB register if available otherwise a next best guess.
711  */
712 unsigned long long running_clock(void)
713 {
714 	/*
715 	 * Don't read the VTB as a host since KVM does not switch in host
716 	 * timebase into the VTB when it takes a guest off the CPU, reading the
717 	 * VTB would result in reading 'last switched out' guest VTB.
718 	 *
719 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
720 	 * would be unsafe to rely only on the #ifdef above.
721 	 */
722 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
723 	    cpu_has_feature(CPU_FTR_ARCH_207S))
724 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
725 
726 	/*
727 	 * This is a next best approximation without a VTB.
728 	 * On a host which is running bare metal there should never be any stolen
729 	 * time and on a host which doesn't do any virtualisation TB *should* equal
730 	 * VTB so it makes no difference anyway.
731 	 */
732 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
733 }
734 #endif
735 
736 static int __init get_freq(char *name, int cells, unsigned long *val)
737 {
738 	struct device_node *cpu;
739 	const __be32 *fp;
740 	int found = 0;
741 
742 	/* The cpu node should have timebase and clock frequency properties */
743 	cpu = of_find_node_by_type(NULL, "cpu");
744 
745 	if (cpu) {
746 		fp = of_get_property(cpu, name, NULL);
747 		if (fp) {
748 			found = 1;
749 			*val = of_read_ulong(fp, cells);
750 		}
751 
752 		of_node_put(cpu);
753 	}
754 
755 	return found;
756 }
757 
758 static void start_cpu_decrementer(void)
759 {
760 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
761 	unsigned int tcr;
762 
763 	/* Clear any pending timer interrupts */
764 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
765 
766 	tcr = mfspr(SPRN_TCR);
767 	/*
768 	 * The watchdog may have already been enabled by u-boot. So leave
769 	 * TRC[WP] (Watchdog Period) alone.
770 	 */
771 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
772 	tcr |= TCR_DIE;		/* Enable decrementer */
773 	mtspr(SPRN_TCR, tcr);
774 #endif
775 }
776 
777 void __init generic_calibrate_decr(void)
778 {
779 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
780 
781 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
782 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
783 
784 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
785 				"(not found)\n");
786 	}
787 
788 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
789 
790 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
791 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
792 
793 		printk(KERN_ERR "WARNING: Estimating processor frequency "
794 				"(not found)\n");
795 	}
796 }
797 
798 int update_persistent_clock64(struct timespec64 now)
799 {
800 	struct rtc_time tm;
801 
802 	if (!ppc_md.set_rtc_time)
803 		return -ENODEV;
804 
805 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
806 
807 	return ppc_md.set_rtc_time(&tm);
808 }
809 
810 static void __read_persistent_clock(struct timespec64 *ts)
811 {
812 	struct rtc_time tm;
813 	static int first = 1;
814 
815 	ts->tv_nsec = 0;
816 	/* XXX this is a litle fragile but will work okay in the short term */
817 	if (first) {
818 		first = 0;
819 		if (ppc_md.time_init)
820 			timezone_offset = ppc_md.time_init();
821 
822 		/* get_boot_time() isn't guaranteed to be safe to call late */
823 		if (ppc_md.get_boot_time) {
824 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
825 			return;
826 		}
827 	}
828 	if (!ppc_md.get_rtc_time) {
829 		ts->tv_sec = 0;
830 		return;
831 	}
832 	ppc_md.get_rtc_time(&tm);
833 
834 	ts->tv_sec = rtc_tm_to_time64(&tm);
835 }
836 
837 void read_persistent_clock64(struct timespec64 *ts)
838 {
839 	__read_persistent_clock(ts);
840 
841 	/* Sanitize it in case real time clock is set below EPOCH */
842 	if (ts->tv_sec < 0) {
843 		ts->tv_sec = 0;
844 		ts->tv_nsec = 0;
845 	}
846 
847 }
848 
849 /* clocksource code */
850 static notrace u64 rtc_read(struct clocksource *cs)
851 {
852 	return (u64)get_rtc();
853 }
854 
855 static notrace u64 timebase_read(struct clocksource *cs)
856 {
857 	return (u64)get_tb();
858 }
859 
860 
861 void update_vsyscall(struct timekeeper *tk)
862 {
863 	struct timespec64 xt;
864 	struct clocksource *clock = tk->tkr_mono.clock;
865 	u32 mult = tk->tkr_mono.mult;
866 	u32 shift = tk->tkr_mono.shift;
867 	u64 cycle_last = tk->tkr_mono.cycle_last;
868 	u64 new_tb_to_xs, new_stamp_xsec;
869 	u64 frac_sec;
870 
871 	if (clock != &clocksource_timebase)
872 		return;
873 
874 	xt.tv_sec = tk->xtime_sec;
875 	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
876 
877 	/* Make userspace gettimeofday spin until we're done. */
878 	++vdso_data->tb_update_count;
879 	smp_mb();
880 
881 	/*
882 	 * This computes ((2^20 / 1e9) * mult) >> shift as a
883 	 * 0.64 fixed-point fraction.
884 	 * The computation in the else clause below won't overflow
885 	 * (as long as the timebase frequency is >= 1.049 MHz)
886 	 * but loses precision because we lose the low bits of the constant
887 	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
888 	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
889 	 * over a second.  (Shift values are usually 22, 23 or 24.)
890 	 * For high frequency clocks such as the 512MHz timebase clock
891 	 * on POWER[6789], the mult value is small (e.g. 32768000)
892 	 * and so we can shift the constant by 16 initially
893 	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
894 	 * remaining shifts after the multiplication, which gives a
895 	 * more accurate result (e.g. with mult = 32768000, shift = 24,
896 	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
897 	 */
898 	if (mult <= 62500000 && clock->shift >= 16)
899 		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
900 	else
901 		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
902 
903 	/*
904 	 * Compute the fractional second in units of 2^-32 seconds.
905 	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
906 	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
907 	 * it in units of 2^-32 seconds.
908 	 * We assume shift <= 32 because clocks_calc_mult_shift()
909 	 * generates shift values in the range 0 - 32.
910 	 */
911 	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
912 	do_div(frac_sec, NSEC_PER_SEC);
913 
914 	/*
915 	 * Work out new stamp_xsec value for any legacy users of systemcfg.
916 	 * stamp_xsec is in units of 2^-20 seconds.
917 	 */
918 	new_stamp_xsec = frac_sec >> 12;
919 	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
920 
921 	/*
922 	 * tb_update_count is used to allow the userspace gettimeofday code
923 	 * to assure itself that it sees a consistent view of the tb_to_xs and
924 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
925 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
926 	 * the two values of tb_update_count match and are even then the
927 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
928 	 * loops back and reads them again until this criteria is met.
929 	 */
930 	vdso_data->tb_orig_stamp = cycle_last;
931 	vdso_data->stamp_xsec = new_stamp_xsec;
932 	vdso_data->tb_to_xs = new_tb_to_xs;
933 	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
934 	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
935 	vdso_data->stamp_xtime_sec = xt.tv_sec;
936 	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
937 	vdso_data->stamp_sec_fraction = frac_sec;
938 	vdso_data->hrtimer_res = hrtimer_resolution;
939 	smp_wmb();
940 	++(vdso_data->tb_update_count);
941 }
942 
943 void update_vsyscall_tz(void)
944 {
945 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
946 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
947 }
948 
949 static void __init clocksource_init(void)
950 {
951 	struct clocksource *clock;
952 
953 	if (__USE_RTC())
954 		clock = &clocksource_rtc;
955 	else
956 		clock = &clocksource_timebase;
957 
958 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
959 		printk(KERN_ERR "clocksource: %s is already registered\n",
960 		       clock->name);
961 		return;
962 	}
963 
964 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
965 	       clock->name, clock->mult, clock->shift);
966 }
967 
968 static int decrementer_set_next_event(unsigned long evt,
969 				      struct clock_event_device *dev)
970 {
971 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
972 	set_dec(evt);
973 
974 	/* We may have raced with new irq work */
975 	if (test_irq_work_pending())
976 		set_dec(1);
977 
978 	return 0;
979 }
980 
981 static int decrementer_shutdown(struct clock_event_device *dev)
982 {
983 	decrementer_set_next_event(decrementer_max, dev);
984 	return 0;
985 }
986 
987 static void register_decrementer_clockevent(int cpu)
988 {
989 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
990 
991 	*dec = decrementer_clockevent;
992 	dec->cpumask = cpumask_of(cpu);
993 
994 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
995 
996 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
997 		    dec->name, dec->mult, dec->shift, cpu);
998 
999 	/* Set values for KVM, see kvm_emulate_dec() */
1000 	decrementer_clockevent.mult = dec->mult;
1001 	decrementer_clockevent.shift = dec->shift;
1002 }
1003 
1004 static void enable_large_decrementer(void)
1005 {
1006 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007 		return;
1008 
1009 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1010 		return;
1011 
1012 	/*
1013 	 * If we're running as the hypervisor we need to enable the LD manually
1014 	 * otherwise firmware should have done it for us.
1015 	 */
1016 	if (cpu_has_feature(CPU_FTR_HVMODE))
1017 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1018 }
1019 
1020 static void __init set_decrementer_max(void)
1021 {
1022 	struct device_node *cpu;
1023 	u32 bits = 32;
1024 
1025 	/* Prior to ISAv3 the decrementer is always 32 bit */
1026 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027 		return;
1028 
1029 	cpu = of_find_node_by_type(NULL, "cpu");
1030 
1031 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1032 		if (bits > 64 || bits < 32) {
1033 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1034 			bits = 32;
1035 		}
1036 
1037 		/* calculate the signed maximum given this many bits */
1038 		decrementer_max = (1ul << (bits - 1)) - 1;
1039 	}
1040 
1041 	of_node_put(cpu);
1042 
1043 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1044 		bits, decrementer_max);
1045 }
1046 
1047 static void __init init_decrementer_clockevent(void)
1048 {
1049 	register_decrementer_clockevent(smp_processor_id());
1050 }
1051 
1052 void secondary_cpu_time_init(void)
1053 {
1054 	/* Enable and test the large decrementer for this cpu */
1055 	enable_large_decrementer();
1056 
1057 	/* Start the decrementer on CPUs that have manual control
1058 	 * such as BookE
1059 	 */
1060 	start_cpu_decrementer();
1061 
1062 	/* FIME: Should make unrelatred change to move snapshot_timebase
1063 	 * call here ! */
1064 	register_decrementer_clockevent(smp_processor_id());
1065 }
1066 
1067 /* This function is only called on the boot processor */
1068 void __init time_init(void)
1069 {
1070 	struct div_result res;
1071 	u64 scale;
1072 	unsigned shift;
1073 
1074 	if (__USE_RTC()) {
1075 		/* 601 processor: dec counts down by 128 every 128ns */
1076 		ppc_tb_freq = 1000000000;
1077 	} else {
1078 		/* Normal PowerPC with timebase register */
1079 		ppc_md.calibrate_decr();
1080 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1081 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1082 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1083 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1084 	}
1085 
1086 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1087 	tb_ticks_per_sec = ppc_tb_freq;
1088 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1089 	calc_cputime_factors();
1090 
1091 	/*
1092 	 * Compute scale factor for sched_clock.
1093 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1094 	 * which is the timebase frequency.
1095 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1096 	 * the 128-bit result as a 64.64 fixed-point number.
1097 	 * We then shift that number right until it is less than 1.0,
1098 	 * giving us the scale factor and shift count to use in
1099 	 * sched_clock().
1100 	 */
1101 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1102 	scale = res.result_low;
1103 	for (shift = 0; res.result_high != 0; ++shift) {
1104 		scale = (scale >> 1) | (res.result_high << 63);
1105 		res.result_high >>= 1;
1106 	}
1107 	tb_to_ns_scale = scale;
1108 	tb_to_ns_shift = shift;
1109 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1110 	boot_tb = get_tb_or_rtc();
1111 
1112 	/* If platform provided a timezone (pmac), we correct the time */
1113 	if (timezone_offset) {
1114 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1115 		sys_tz.tz_dsttime = 0;
1116 	}
1117 
1118 	vdso_data->tb_update_count = 0;
1119 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1120 
1121 	/* initialise and enable the large decrementer (if we have one) */
1122 	set_decrementer_max();
1123 	enable_large_decrementer();
1124 
1125 	/* Start the decrementer on CPUs that have manual control
1126 	 * such as BookE
1127 	 */
1128 	start_cpu_decrementer();
1129 
1130 	/* Register the clocksource */
1131 	clocksource_init();
1132 
1133 	init_decrementer_clockevent();
1134 	tick_setup_hrtimer_broadcast();
1135 
1136 	of_clk_init(NULL);
1137 }
1138 
1139 /*
1140  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141  * result.
1142  */
1143 void div128_by_32(u64 dividend_high, u64 dividend_low,
1144 		  unsigned divisor, struct div_result *dr)
1145 {
1146 	unsigned long a, b, c, d;
1147 	unsigned long w, x, y, z;
1148 	u64 ra, rb, rc;
1149 
1150 	a = dividend_high >> 32;
1151 	b = dividend_high & 0xffffffff;
1152 	c = dividend_low >> 32;
1153 	d = dividend_low & 0xffffffff;
1154 
1155 	w = a / divisor;
1156 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1157 
1158 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1159 	x = ra;
1160 
1161 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1162 	y = rb;
1163 
1164 	do_div(rc, divisor);
1165 	z = rc;
1166 
1167 	dr->result_high = ((u64)w << 32) + x;
1168 	dr->result_low  = ((u64)y << 32) + z;
1169 
1170 }
1171 
1172 /* We don't need to calibrate delay, we use the CPU timebase for that */
1173 void calibrate_delay(void)
1174 {
1175 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1176 	 * as the number of __delay(1) in a jiffy, so make it so
1177 	 */
1178 	loops_per_jiffy = tb_ticks_per_jiffy;
1179 }
1180 
1181 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1182 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1183 {
1184 	ppc_md.get_rtc_time(tm);
1185 	return 0;
1186 }
1187 
1188 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1189 {
1190 	if (!ppc_md.set_rtc_time)
1191 		return -EOPNOTSUPP;
1192 
1193 	if (ppc_md.set_rtc_time(tm) < 0)
1194 		return -EOPNOTSUPP;
1195 
1196 	return 0;
1197 }
1198 
1199 static const struct rtc_class_ops rtc_generic_ops = {
1200 	.read_time = rtc_generic_get_time,
1201 	.set_time = rtc_generic_set_time,
1202 };
1203 
1204 static int __init rtc_init(void)
1205 {
1206 	struct platform_device *pdev;
1207 
1208 	if (!ppc_md.get_rtc_time)
1209 		return -ENODEV;
1210 
1211 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1212 					     &rtc_generic_ops,
1213 					     sizeof(rtc_generic_ops));
1214 
1215 	return PTR_ERR_OR_ZERO(pdev);
1216 }
1217 
1218 device_initcall(rtc_init);
1219 #endif
1220