xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 96c44507)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 
54 #include <asm/io.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
60 #include <asm/time.h>
61 #include <asm/prom.h>
62 #include <asm/irq.h>
63 #include <asm/div64.h>
64 #ifdef CONFIG_PPC64
65 #include <asm/systemcfg.h>
66 #include <asm/firmware.h>
67 #endif
68 #ifdef CONFIG_PPC_ISERIES
69 #include <asm/iSeries/ItLpQueue.h>
70 #include <asm/iSeries/HvCallXm.h>
71 #endif
72 
73 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
74 
75 EXPORT_SYMBOL(jiffies_64);
76 
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 extern int piranha_simulator;
80 #ifdef CONFIG_PPC_ISERIES
81 unsigned long iSeries_recal_titan = 0;
82 unsigned long iSeries_recal_tb = 0;
83 static unsigned long first_settimeofday = 1;
84 #endif
85 
86 /* The decrementer counts down by 128 every 128ns on a 601. */
87 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
88 
89 #define XSEC_PER_SEC (1024*1024)
90 
91 #ifdef CONFIG_PPC64
92 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
93 #else
94 /* compute ((xsec << 12) * max) >> 32 */
95 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
96 #endif
97 
98 unsigned long tb_ticks_per_jiffy;
99 unsigned long tb_ticks_per_usec = 100; /* sane default */
100 EXPORT_SYMBOL(tb_ticks_per_usec);
101 unsigned long tb_ticks_per_sec;
102 u64 tb_to_xs;
103 unsigned tb_to_us;
104 unsigned long processor_freq;
105 DEFINE_SPINLOCK(rtc_lock);
106 EXPORT_SYMBOL_GPL(rtc_lock);
107 
108 u64 tb_to_ns_scale;
109 unsigned tb_to_ns_shift;
110 
111 struct gettimeofday_struct do_gtod;
112 
113 extern unsigned long wall_jiffies;
114 
115 extern struct timezone sys_tz;
116 static long timezone_offset;
117 
118 void ppc_adjtimex(void);
119 
120 static unsigned adjusting_time = 0;
121 
122 unsigned long ppc_proc_freq;
123 unsigned long ppc_tb_freq;
124 
125 #ifdef CONFIG_PPC32	/* XXX for now */
126 #define boot_cpuid	0
127 #endif
128 
129 u64 tb_last_jiffy __cacheline_aligned_in_smp;
130 unsigned long tb_last_stamp;
131 
132 /*
133  * Note that on ppc32 this only stores the bottom 32 bits of
134  * the timebase value, but that's enough to tell when a jiffy
135  * has passed.
136  */
137 DEFINE_PER_CPU(unsigned long, last_jiffy);
138 
139 static __inline__ void timer_check_rtc(void)
140 {
141         /*
142          * update the rtc when needed, this should be performed on the
143          * right fraction of a second. Half or full second ?
144          * Full second works on mk48t59 clocks, others need testing.
145          * Note that this update is basically only used through
146          * the adjtimex system calls. Setting the HW clock in
147          * any other way is a /dev/rtc and userland business.
148          * This is still wrong by -0.5/+1.5 jiffies because of the
149          * timer interrupt resolution and possible delay, but here we
150          * hit a quantization limit which can only be solved by higher
151          * resolution timers and decoupling time management from timer
152          * interrupts. This is also wrong on the clocks
153          * which require being written at the half second boundary.
154          * We should have an rtc call that only sets the minutes and
155          * seconds like on Intel to avoid problems with non UTC clocks.
156          */
157         if (ntp_synced() &&
158 	    xtime.tv_sec - last_rtc_update >= 659 &&
159 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
160 	    jiffies - wall_jiffies == 1) {
161 		struct rtc_time tm;
162 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
163 		tm.tm_year -= 1900;
164 		tm.tm_mon -= 1;
165 		if (ppc_md.set_rtc_time(&tm) == 0)
166 			last_rtc_update = xtime.tv_sec + 1;
167 		else
168 			/* Try again one minute later */
169 			last_rtc_update += 60;
170         }
171 }
172 
173 /*
174  * This version of gettimeofday has microsecond resolution.
175  */
176 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
177 {
178 	unsigned long sec, usec;
179 	u64 tb_ticks, xsec;
180 	struct gettimeofday_vars *temp_varp;
181 	u64 temp_tb_to_xs, temp_stamp_xsec;
182 
183 	/*
184 	 * These calculations are faster (gets rid of divides)
185 	 * if done in units of 1/2^20 rather than microseconds.
186 	 * The conversion to microseconds at the end is done
187 	 * without a divide (and in fact, without a multiply)
188 	 */
189 	temp_varp = do_gtod.varp;
190 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
191 	temp_tb_to_xs = temp_varp->tb_to_xs;
192 	temp_stamp_xsec = temp_varp->stamp_xsec;
193 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
194 	sec = xsec / XSEC_PER_SEC;
195 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
196 	usec = SCALE_XSEC(usec, 1000000);
197 
198 	tv->tv_sec = sec;
199 	tv->tv_usec = usec;
200 }
201 
202 void do_gettimeofday(struct timeval *tv)
203 {
204 	if (__USE_RTC()) {
205 		/* do this the old way */
206 		unsigned long flags, seq;
207 		unsigned int sec, nsec, usec, lost;
208 
209 		do {
210 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
211 			sec = xtime.tv_sec;
212 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
213 			lost = jiffies - wall_jiffies;
214 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
215 		usec = nsec / 1000 + lost * (1000000 / HZ);
216 		while (usec >= 1000000) {
217 			usec -= 1000000;
218 			++sec;
219 		}
220 		tv->tv_sec = sec;
221 		tv->tv_usec = usec;
222 		return;
223 	}
224 	__do_gettimeofday(tv, get_tb());
225 }
226 
227 EXPORT_SYMBOL(do_gettimeofday);
228 
229 /* Synchronize xtime with do_gettimeofday */
230 
231 static inline void timer_sync_xtime(unsigned long cur_tb)
232 {
233 #ifdef CONFIG_PPC64
234 	/* why do we do this? */
235 	struct timeval my_tv;
236 
237 	__do_gettimeofday(&my_tv, cur_tb);
238 
239 	if (xtime.tv_sec <= my_tv.tv_sec) {
240 		xtime.tv_sec = my_tv.tv_sec;
241 		xtime.tv_nsec = my_tv.tv_usec * 1000;
242 	}
243 #endif
244 }
245 
246 /*
247  * There are two copies of tb_to_xs and stamp_xsec so that no
248  * lock is needed to access and use these values in
249  * do_gettimeofday.  We alternate the copies and as long as a
250  * reasonable time elapses between changes, there will never
251  * be inconsistent values.  ntpd has a minimum of one minute
252  * between updates.
253  */
254 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
255 			       u64 new_tb_to_xs)
256 {
257 	unsigned temp_idx;
258 	struct gettimeofday_vars *temp_varp;
259 
260 	temp_idx = (do_gtod.var_idx == 0);
261 	temp_varp = &do_gtod.vars[temp_idx];
262 
263 	temp_varp->tb_to_xs = new_tb_to_xs;
264 	temp_varp->tb_orig_stamp = new_tb_stamp;
265 	temp_varp->stamp_xsec = new_stamp_xsec;
266 	smp_mb();
267 	do_gtod.varp = temp_varp;
268 	do_gtod.var_idx = temp_idx;
269 
270 #ifdef CONFIG_PPC64
271 	/*
272 	 * tb_update_count is used to allow the userspace gettimeofday code
273 	 * to assure itself that it sees a consistent view of the tb_to_xs and
274 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
275 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
276 	 * the two values of tb_update_count match and are even then the
277 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
278 	 * loops back and reads them again until this criteria is met.
279 	 */
280 	++(systemcfg->tb_update_count);
281 	smp_wmb();
282 	systemcfg->tb_orig_stamp = new_tb_stamp;
283 	systemcfg->stamp_xsec = new_stamp_xsec;
284 	systemcfg->tb_to_xs = new_tb_to_xs;
285 	smp_wmb();
286 	++(systemcfg->tb_update_count);
287 #endif
288 }
289 
290 /*
291  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
292  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
293  * difference tb - tb_orig_stamp small enough to always fit inside a
294  * 32 bits number. This is a requirement of our fast 32 bits userland
295  * implementation in the vdso. If we "miss" a call to this function
296  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
297  * with a too big difference, then the vdso will fallback to calling
298  * the syscall
299  */
300 static __inline__ void timer_recalc_offset(u64 cur_tb)
301 {
302 	unsigned long offset;
303 	u64 new_stamp_xsec;
304 
305 	if (__USE_RTC())
306 		return;
307 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
308 	if ((offset & 0x80000000u) == 0)
309 		return;
310 	new_stamp_xsec = do_gtod.varp->stamp_xsec
311 		+ mulhdu(offset, do_gtod.varp->tb_to_xs);
312 	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
313 }
314 
315 #ifdef CONFIG_SMP
316 unsigned long profile_pc(struct pt_regs *regs)
317 {
318 	unsigned long pc = instruction_pointer(regs);
319 
320 	if (in_lock_functions(pc))
321 		return regs->link;
322 
323 	return pc;
324 }
325 EXPORT_SYMBOL(profile_pc);
326 #endif
327 
328 #ifdef CONFIG_PPC_ISERIES
329 
330 /*
331  * This function recalibrates the timebase based on the 49-bit time-of-day
332  * value in the Titan chip.  The Titan is much more accurate than the value
333  * returned by the service processor for the timebase frequency.
334  */
335 
336 static void iSeries_tb_recal(void)
337 {
338 	struct div_result divres;
339 	unsigned long titan, tb;
340 	tb = get_tb();
341 	titan = HvCallXm_loadTod();
342 	if ( iSeries_recal_titan ) {
343 		unsigned long tb_ticks = tb - iSeries_recal_tb;
344 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
345 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
346 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
347 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
348 		char sign = '+';
349 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
350 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
351 
352 		if ( tick_diff < 0 ) {
353 			tick_diff = -tick_diff;
354 			sign = '-';
355 		}
356 		if ( tick_diff ) {
357 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
358 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
359 						new_tb_ticks_per_jiffy, sign, tick_diff );
360 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
361 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
362 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
363 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
364 				tb_to_xs = divres.result_low;
365 				do_gtod.varp->tb_to_xs = tb_to_xs;
366 				systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
367 				systemcfg->tb_to_xs = tb_to_xs;
368 			}
369 			else {
370 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
371 					"                   new tb_ticks_per_jiffy = %lu\n"
372 					"                   old tb_ticks_per_jiffy = %lu\n",
373 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
374 			}
375 		}
376 	}
377 	iSeries_recal_titan = titan;
378 	iSeries_recal_tb = tb;
379 }
380 #endif
381 
382 /*
383  * For iSeries shared processors, we have to let the hypervisor
384  * set the hardware decrementer.  We set a virtual decrementer
385  * in the lppaca and call the hypervisor if the virtual
386  * decrementer is less than the current value in the hardware
387  * decrementer. (almost always the new decrementer value will
388  * be greater than the current hardware decementer so the hypervisor
389  * call will not be needed)
390  */
391 
392 /*
393  * timer_interrupt - gets called when the decrementer overflows,
394  * with interrupts disabled.
395  */
396 void timer_interrupt(struct pt_regs * regs)
397 {
398 	int next_dec;
399 	int cpu = smp_processor_id();
400 	unsigned long ticks;
401 
402 #ifdef CONFIG_PPC32
403 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
404 		do_IRQ(regs);
405 #endif
406 
407 	irq_enter();
408 
409 	profile_tick(CPU_PROFILING, regs);
410 
411 #ifdef CONFIG_PPC_ISERIES
412 	get_paca()->lppaca.int_dword.fields.decr_int = 0;
413 #endif
414 
415 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
416 	       >= tb_ticks_per_jiffy) {
417 		/* Update last_jiffy */
418 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
419 		/* Handle RTCL overflow on 601 */
420 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
421 			per_cpu(last_jiffy, cpu) -= 1000000000;
422 
423 		/*
424 		 * We cannot disable the decrementer, so in the period
425 		 * between this cpu's being marked offline in cpu_online_map
426 		 * and calling stop-self, it is taking timer interrupts.
427 		 * Avoid calling into the scheduler rebalancing code if this
428 		 * is the case.
429 		 */
430 		if (!cpu_is_offline(cpu))
431 			update_process_times(user_mode(regs));
432 
433 		/*
434 		 * No need to check whether cpu is offline here; boot_cpuid
435 		 * should have been fixed up by now.
436 		 */
437 		if (cpu != boot_cpuid)
438 			continue;
439 
440 		write_seqlock(&xtime_lock);
441 		tb_last_jiffy += tb_ticks_per_jiffy;
442 		tb_last_stamp = per_cpu(last_jiffy, cpu);
443 		timer_recalc_offset(tb_last_jiffy);
444 		do_timer(regs);
445 		timer_sync_xtime(tb_last_jiffy);
446 		timer_check_rtc();
447 		write_sequnlock(&xtime_lock);
448 		if (adjusting_time && (time_adjust == 0))
449 			ppc_adjtimex();
450 	}
451 
452 	next_dec = tb_ticks_per_jiffy - ticks;
453 	set_dec(next_dec);
454 
455 #ifdef CONFIG_PPC_ISERIES
456 	if (hvlpevent_is_pending())
457 		process_hvlpevents(regs);
458 #endif
459 
460 #ifdef CONFIG_PPC64
461 	/* collect purr register values often, for accurate calculations */
462 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
463 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
464 		cu->current_tb = mfspr(SPRN_PURR);
465 	}
466 #endif
467 
468 	irq_exit();
469 }
470 
471 void wakeup_decrementer(void)
472 {
473 	int i;
474 
475 	set_dec(tb_ticks_per_jiffy);
476 	/*
477 	 * We don't expect this to be called on a machine with a 601,
478 	 * so using get_tbl is fine.
479 	 */
480 	tb_last_stamp = tb_last_jiffy = get_tb();
481 	for_each_cpu(i)
482 		per_cpu(last_jiffy, i) = tb_last_stamp;
483 }
484 
485 #ifdef CONFIG_SMP
486 void __init smp_space_timers(unsigned int max_cpus)
487 {
488 	int i;
489 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
490 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
491 
492 	for_each_cpu(i) {
493 		if (i != boot_cpuid) {
494 			previous_tb += offset;
495 			per_cpu(last_jiffy, i) = previous_tb;
496 		}
497 	}
498 }
499 #endif
500 
501 /*
502  * Scheduler clock - returns current time in nanosec units.
503  *
504  * Note: mulhdu(a, b) (multiply high double unsigned) returns
505  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
506  * are 64-bit unsigned numbers.
507  */
508 unsigned long long sched_clock(void)
509 {
510 	if (__USE_RTC())
511 		return get_rtc();
512 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
513 }
514 
515 int do_settimeofday(struct timespec *tv)
516 {
517 	time_t wtm_sec, new_sec = tv->tv_sec;
518 	long wtm_nsec, new_nsec = tv->tv_nsec;
519 	unsigned long flags;
520 	long int tb_delta;
521 	u64 new_xsec;
522 
523 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
524 		return -EINVAL;
525 
526 	write_seqlock_irqsave(&xtime_lock, flags);
527 
528 	/*
529 	 * Updating the RTC is not the job of this code. If the time is
530 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
531 	 * is cleared.  Tools like clock/hwclock either copy the RTC
532 	 * to the system time, in which case there is no point in writing
533 	 * to the RTC again, or write to the RTC but then they don't call
534 	 * settimeofday to perform this operation.
535 	 */
536 #ifdef CONFIG_PPC_ISERIES
537 	if (first_settimeofday) {
538 		iSeries_tb_recal();
539 		first_settimeofday = 0;
540 	}
541 #endif
542 	tb_delta = tb_ticks_since(tb_last_stamp);
543 	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
544 
545 	new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
546 
547 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
548 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
549 
550  	set_normalized_timespec(&xtime, new_sec, new_nsec);
551 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
552 
553 	/* In case of a large backwards jump in time with NTP, we want the
554 	 * clock to be updated as soon as the PLL is again in lock.
555 	 */
556 	last_rtc_update = new_sec - 658;
557 
558 	ntp_clear();
559 
560 	new_xsec = (u64)new_nsec * XSEC_PER_SEC;
561 	do_div(new_xsec, NSEC_PER_SEC);
562 	new_xsec += (u64)new_sec * XSEC_PER_SEC;
563 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
564 
565 #ifdef CONFIG_PPC64
566 	systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
567 	systemcfg->tz_dsttime = sys_tz.tz_dsttime;
568 #endif
569 
570 	write_sequnlock_irqrestore(&xtime_lock, flags);
571 	clock_was_set();
572 	return 0;
573 }
574 
575 EXPORT_SYMBOL(do_settimeofday);
576 
577 void __init generic_calibrate_decr(void)
578 {
579 	struct device_node *cpu;
580 	unsigned int *fp;
581 	int node_found;
582 
583 	/*
584 	 * The cpu node should have a timebase-frequency property
585 	 * to tell us the rate at which the decrementer counts.
586 	 */
587 	cpu = of_find_node_by_type(NULL, "cpu");
588 
589 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
590 	node_found = 0;
591 	if (cpu != 0) {
592 		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
593 						  NULL);
594 		if (fp != 0) {
595 			node_found = 1;
596 			ppc_tb_freq = *fp;
597 		}
598 	}
599 	if (!node_found)
600 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
601 				"(not found)\n");
602 
603 	ppc_proc_freq = DEFAULT_PROC_FREQ;
604 	node_found = 0;
605 	if (cpu != 0) {
606 		fp = (unsigned int *)get_property(cpu, "clock-frequency",
607 						  NULL);
608 		if (fp != 0) {
609 			node_found = 1;
610 			ppc_proc_freq = *fp;
611 		}
612 	}
613 	if (!node_found)
614 		printk(KERN_ERR "WARNING: Estimating processor frequency "
615 				"(not found)\n");
616 
617 	of_node_put(cpu);
618 }
619 
620 unsigned long get_boot_time(void)
621 {
622 	struct rtc_time tm;
623 
624 	if (ppc_md.get_boot_time)
625 		return ppc_md.get_boot_time();
626 	if (!ppc_md.get_rtc_time)
627 		return 0;
628 	ppc_md.get_rtc_time(&tm);
629 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
630 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
631 }
632 
633 /* This function is only called on the boot processor */
634 void __init time_init(void)
635 {
636 	unsigned long flags;
637 	unsigned long tm = 0;
638 	struct div_result res;
639 	u64 scale;
640 	unsigned shift;
641 
642         if (ppc_md.time_init != NULL)
643                 timezone_offset = ppc_md.time_init();
644 
645 	if (__USE_RTC()) {
646 		/* 601 processor: dec counts down by 128 every 128ns */
647 		ppc_tb_freq = 1000000000;
648 		tb_last_stamp = get_rtcl();
649 		tb_last_jiffy = tb_last_stamp;
650 	} else {
651 		/* Normal PowerPC with timebase register */
652 		ppc_md.calibrate_decr();
653 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
654 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
655 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
656 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
657 		tb_last_stamp = tb_last_jiffy = get_tb();
658 	}
659 
660 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
661 	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
662 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
663 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
664 	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
665 	tb_to_xs = res.result_low;
666 
667 #ifdef CONFIG_PPC64
668 	get_paca()->default_decr = tb_ticks_per_jiffy;
669 #endif
670 
671 	/*
672 	 * Compute scale factor for sched_clock.
673 	 * The calibrate_decr() function has set tb_ticks_per_sec,
674 	 * which is the timebase frequency.
675 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
676 	 * the 128-bit result as a 64.64 fixed-point number.
677 	 * We then shift that number right until it is less than 1.0,
678 	 * giving us the scale factor and shift count to use in
679 	 * sched_clock().
680 	 */
681 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
682 	scale = res.result_low;
683 	for (shift = 0; res.result_high != 0; ++shift) {
684 		scale = (scale >> 1) | (res.result_high << 63);
685 		res.result_high >>= 1;
686 	}
687 	tb_to_ns_scale = scale;
688 	tb_to_ns_shift = shift;
689 
690 #ifdef CONFIG_PPC_ISERIES
691 	if (!piranha_simulator)
692 #endif
693 		tm = get_boot_time();
694 
695 	write_seqlock_irqsave(&xtime_lock, flags);
696 	xtime.tv_sec = tm;
697 	xtime.tv_nsec = 0;
698 	do_gtod.varp = &do_gtod.vars[0];
699 	do_gtod.var_idx = 0;
700 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
701 	__get_cpu_var(last_jiffy) = tb_last_stamp;
702 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
703 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
704 	do_gtod.varp->tb_to_xs = tb_to_xs;
705 	do_gtod.tb_to_us = tb_to_us;
706 #ifdef CONFIG_PPC64
707 	systemcfg->tb_orig_stamp = tb_last_jiffy;
708 	systemcfg->tb_update_count = 0;
709 	systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
710 	systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
711 	systemcfg->tb_to_xs = tb_to_xs;
712 #endif
713 
714 	time_freq = 0;
715 
716 	/* If platform provided a timezone (pmac), we correct the time */
717         if (timezone_offset) {
718 		sys_tz.tz_minuteswest = -timezone_offset / 60;
719 		sys_tz.tz_dsttime = 0;
720 		xtime.tv_sec -= timezone_offset;
721         }
722 
723 	last_rtc_update = xtime.tv_sec;
724 	set_normalized_timespec(&wall_to_monotonic,
725 	                        -xtime.tv_sec, -xtime.tv_nsec);
726 	write_sequnlock_irqrestore(&xtime_lock, flags);
727 
728 	/* Not exact, but the timer interrupt takes care of this */
729 	set_dec(tb_ticks_per_jiffy);
730 }
731 
732 /*
733  * After adjtimex is called, adjust the conversion of tb ticks
734  * to microseconds to keep do_gettimeofday synchronized
735  * with ntpd.
736  *
737  * Use the time_adjust, time_freq and time_offset computed by adjtimex to
738  * adjust the frequency.
739  */
740 
741 /* #define DEBUG_PPC_ADJTIMEX 1 */
742 
743 void ppc_adjtimex(void)
744 {
745 #ifdef CONFIG_PPC64
746 	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
747 		new_tb_to_xs, new_xsec, new_stamp_xsec;
748 	unsigned long tb_ticks_per_sec_delta;
749 	long delta_freq, ltemp;
750 	struct div_result divres;
751 	unsigned long flags;
752 	long singleshot_ppm = 0;
753 
754 	/*
755 	 * Compute parts per million frequency adjustment to
756 	 * accomplish the time adjustment implied by time_offset to be
757 	 * applied over the elapsed time indicated by time_constant.
758 	 * Use SHIFT_USEC to get it into the same units as
759 	 * time_freq.
760 	 */
761 	if ( time_offset < 0 ) {
762 		ltemp = -time_offset;
763 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
764 		ltemp >>= SHIFT_KG + time_constant;
765 		ltemp = -ltemp;
766 	} else {
767 		ltemp = time_offset;
768 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
769 		ltemp >>= SHIFT_KG + time_constant;
770 	}
771 
772 	/* If there is a single shot time adjustment in progress */
773 	if ( time_adjust ) {
774 #ifdef DEBUG_PPC_ADJTIMEX
775 		printk("ppc_adjtimex: ");
776 		if ( adjusting_time == 0 )
777 			printk("starting ");
778 		printk("single shot time_adjust = %ld\n", time_adjust);
779 #endif
780 
781 		adjusting_time = 1;
782 
783 		/*
784 		 * Compute parts per million frequency adjustment
785 		 * to match time_adjust
786 		 */
787 		singleshot_ppm = tickadj * HZ;
788 		/*
789 		 * The adjustment should be tickadj*HZ to match the code in
790 		 * linux/kernel/timer.c, but experiments show that this is too
791 		 * large. 3/4 of tickadj*HZ seems about right
792 		 */
793 		singleshot_ppm -= singleshot_ppm / 4;
794 		/* Use SHIFT_USEC to get it into the same units as time_freq */
795 		singleshot_ppm <<= SHIFT_USEC;
796 		if ( time_adjust < 0 )
797 			singleshot_ppm = -singleshot_ppm;
798 	}
799 	else {
800 #ifdef DEBUG_PPC_ADJTIMEX
801 		if ( adjusting_time )
802 			printk("ppc_adjtimex: ending single shot time_adjust\n");
803 #endif
804 		adjusting_time = 0;
805 	}
806 
807 	/* Add up all of the frequency adjustments */
808 	delta_freq = time_freq + ltemp + singleshot_ppm;
809 
810 	/*
811 	 * Compute a new value for tb_ticks_per_sec based on
812 	 * the frequency adjustment
813 	 */
814 	den = 1000000 * (1 << (SHIFT_USEC - 8));
815 	if ( delta_freq < 0 ) {
816 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
817 		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
818 	}
819 	else {
820 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
821 		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
822 	}
823 
824 #ifdef DEBUG_PPC_ADJTIMEX
825 	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
826 	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
827 #endif
828 
829 	/*
830 	 * Compute a new value of tb_to_xs (used to convert tb to
831 	 * microseconds) and a new value of stamp_xsec which is the
832 	 * time (in 1/2^20 second units) corresponding to
833 	 * tb_orig_stamp.  This new value of stamp_xsec compensates
834 	 * for the change in frequency (implied by the new tb_to_xs)
835 	 * which guarantees that the current time remains the same.
836 	 */
837 	write_seqlock_irqsave( &xtime_lock, flags );
838 	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
839 	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
840 	new_tb_to_xs = divres.result_low;
841 	new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
842 
843 	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
844 	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
845 
846 	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
847 
848 	write_sequnlock_irqrestore( &xtime_lock, flags );
849 #endif /* CONFIG_PPC64 */
850 }
851 
852 
853 #define FEBRUARY	2
854 #define	STARTOFTIME	1970
855 #define SECDAY		86400L
856 #define SECYR		(SECDAY * 365)
857 #define	leapyear(year)		((year) % 4 == 0 && \
858 				 ((year) % 100 != 0 || (year) % 400 == 0))
859 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
860 #define	days_in_month(a) 	(month_days[(a) - 1])
861 
862 static int month_days[12] = {
863 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
864 };
865 
866 /*
867  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
868  */
869 void GregorianDay(struct rtc_time * tm)
870 {
871 	int leapsToDate;
872 	int lastYear;
873 	int day;
874 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
875 
876 	lastYear = tm->tm_year - 1;
877 
878 	/*
879 	 * Number of leap corrections to apply up to end of last year
880 	 */
881 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
882 
883 	/*
884 	 * This year is a leap year if it is divisible by 4 except when it is
885 	 * divisible by 100 unless it is divisible by 400
886 	 *
887 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
888 	 */
889 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
890 
891 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
892 		   tm->tm_mday;
893 
894 	tm->tm_wday = day % 7;
895 }
896 
897 void to_tm(int tim, struct rtc_time * tm)
898 {
899 	register int    i;
900 	register long   hms, day;
901 
902 	day = tim / SECDAY;
903 	hms = tim % SECDAY;
904 
905 	/* Hours, minutes, seconds are easy */
906 	tm->tm_hour = hms / 3600;
907 	tm->tm_min = (hms % 3600) / 60;
908 	tm->tm_sec = (hms % 3600) % 60;
909 
910 	/* Number of years in days */
911 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
912 		day -= days_in_year(i);
913 	tm->tm_year = i;
914 
915 	/* Number of months in days left */
916 	if (leapyear(tm->tm_year))
917 		days_in_month(FEBRUARY) = 29;
918 	for (i = 1; day >= days_in_month(i); i++)
919 		day -= days_in_month(i);
920 	days_in_month(FEBRUARY) = 28;
921 	tm->tm_mon = i;
922 
923 	/* Days are what is left over (+1) from all that. */
924 	tm->tm_mday = day + 1;
925 
926 	/*
927 	 * Determine the day of week
928 	 */
929 	GregorianDay(tm);
930 }
931 
932 /* Auxiliary function to compute scaling factors */
933 /* Actually the choice of a timebase running at 1/4 the of the bus
934  * frequency giving resolution of a few tens of nanoseconds is quite nice.
935  * It makes this computation very precise (27-28 bits typically) which
936  * is optimistic considering the stability of most processor clock
937  * oscillators and the precision with which the timebase frequency
938  * is measured but does not harm.
939  */
940 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
941 {
942         unsigned mlt=0, tmp, err;
943         /* No concern for performance, it's done once: use a stupid
944          * but safe and compact method to find the multiplier.
945          */
946 
947         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
948                 if (mulhwu(inscale, mlt|tmp) < outscale)
949 			mlt |= tmp;
950         }
951 
952         /* We might still be off by 1 for the best approximation.
953          * A side effect of this is that if outscale is too large
954          * the returned value will be zero.
955          * Many corner cases have been checked and seem to work,
956          * some might have been forgotten in the test however.
957          */
958 
959         err = inscale * (mlt+1);
960         if (err <= inscale/2)
961 		mlt++;
962         return mlt;
963 }
964 
965 /*
966  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
967  * result.
968  */
969 void div128_by_32(u64 dividend_high, u64 dividend_low,
970 		  unsigned divisor, struct div_result *dr)
971 {
972 	unsigned long a, b, c, d;
973 	unsigned long w, x, y, z;
974 	u64 ra, rb, rc;
975 
976 	a = dividend_high >> 32;
977 	b = dividend_high & 0xffffffff;
978 	c = dividend_low >> 32;
979 	d = dividend_low & 0xffffffff;
980 
981 	w = a / divisor;
982 	ra = ((u64)(a - (w * divisor)) << 32) + b;
983 
984 	rb = ((u64) do_div(ra, divisor) << 32) + c;
985 	x = ra;
986 
987 	rc = ((u64) do_div(rb, divisor) << 32) + d;
988 	y = rb;
989 
990 	do_div(rc, divisor);
991 	z = rc;
992 
993 	dr->result_high = ((u64)w << 32) + x;
994 	dr->result_low  = ((u64)y << 32) + z;
995 
996 }
997