1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <asm/nvram.h> 59 #include <asm/cache.h> 60 #include <asm/machdep.h> 61 #include <asm/uaccess.h> 62 #include <asm/time.h> 63 #include <asm/prom.h> 64 #include <asm/irq.h> 65 #include <asm/div64.h> 66 #include <asm/smp.h> 67 #include <asm/vdso_datapage.h> 68 #include <asm/firmware.h> 69 #include <asm/cputime.h> 70 #ifdef CONFIG_PPC_ISERIES 71 #include <asm/iseries/it_lp_queue.h> 72 #include <asm/iseries/hv_call_xm.h> 73 #endif 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/clocksource.h> 79 80 static cycle_t rtc_read(void); 81 static struct clocksource clocksource_rtc = { 82 .name = "rtc", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .shift = 22, 87 .mult = 0, /* To be filled in */ 88 .read = rtc_read, 89 }; 90 91 static cycle_t timebase_read(void); 92 static struct clocksource clocksource_timebase = { 93 .name = "timebase", 94 .rating = 400, 95 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 96 .mask = CLOCKSOURCE_MASK(64), 97 .shift = 22, 98 .mult = 0, /* To be filled in */ 99 .read = timebase_read, 100 }; 101 102 #define DECREMENTER_MAX 0x7fffffff 103 104 static int decrementer_set_next_event(unsigned long evt, 105 struct clock_event_device *dev); 106 static void decrementer_set_mode(enum clock_event_mode mode, 107 struct clock_event_device *dev); 108 109 static struct clock_event_device decrementer_clockevent = { 110 .name = "decrementer", 111 .rating = 200, 112 .shift = 16, 113 .mult = 0, /* To be filled in */ 114 .irq = 0, 115 .set_next_event = decrementer_set_next_event, 116 .set_mode = decrementer_set_mode, 117 .features = CLOCK_EVT_FEAT_ONESHOT, 118 }; 119 120 struct decrementer_clock { 121 struct clock_event_device event; 122 u64 next_tb; 123 }; 124 125 static DEFINE_PER_CPU(struct decrementer_clock, decrementers); 126 127 #ifdef CONFIG_PPC_ISERIES 128 static unsigned long __initdata iSeries_recal_titan; 129 static signed long __initdata iSeries_recal_tb; 130 131 /* Forward declaration is only needed for iSereis compiles */ 132 static void __init clocksource_init(void); 133 #endif 134 135 #define XSEC_PER_SEC (1024*1024) 136 137 #ifdef CONFIG_PPC64 138 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 139 #else 140 /* compute ((xsec << 12) * max) >> 32 */ 141 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 142 #endif 143 144 unsigned long tb_ticks_per_jiffy; 145 unsigned long tb_ticks_per_usec = 100; /* sane default */ 146 EXPORT_SYMBOL(tb_ticks_per_usec); 147 unsigned long tb_ticks_per_sec; 148 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 149 u64 tb_to_xs; 150 unsigned tb_to_us; 151 152 #define TICKLEN_SCALE NTP_SCALE_SHIFT 153 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 154 static u64 ticklen_to_xs; /* 0.64 fraction */ 155 156 /* If last_tick_len corresponds to about 1/HZ seconds, then 157 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 158 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 159 160 DEFINE_SPINLOCK(rtc_lock); 161 EXPORT_SYMBOL_GPL(rtc_lock); 162 163 static u64 tb_to_ns_scale __read_mostly; 164 static unsigned tb_to_ns_shift __read_mostly; 165 static unsigned long boot_tb __read_mostly; 166 167 static struct gettimeofday_struct do_gtod; 168 169 extern struct timezone sys_tz; 170 static long timezone_offset; 171 172 unsigned long ppc_proc_freq; 173 EXPORT_SYMBOL(ppc_proc_freq); 174 unsigned long ppc_tb_freq; 175 176 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 177 static DEFINE_PER_CPU(u64, last_jiffy); 178 179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 180 /* 181 * Factors for converting from cputime_t (timebase ticks) to 182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 183 * These are all stored as 0.64 fixed-point binary fractions. 184 */ 185 u64 __cputime_jiffies_factor; 186 EXPORT_SYMBOL(__cputime_jiffies_factor); 187 u64 __cputime_msec_factor; 188 EXPORT_SYMBOL(__cputime_msec_factor); 189 u64 __cputime_sec_factor; 190 EXPORT_SYMBOL(__cputime_sec_factor); 191 u64 __cputime_clockt_factor; 192 EXPORT_SYMBOL(__cputime_clockt_factor); 193 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 195 196 static void calc_cputime_factors(void) 197 { 198 struct div_result res; 199 200 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 201 __cputime_jiffies_factor = res.result_low; 202 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 203 __cputime_msec_factor = res.result_low; 204 div128_by_32(1, 0, tb_ticks_per_sec, &res); 205 __cputime_sec_factor = res.result_low; 206 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 207 __cputime_clockt_factor = res.result_low; 208 } 209 210 /* 211 * Read the PURR on systems that have it, otherwise the timebase. 212 */ 213 static u64 read_purr(void) 214 { 215 if (cpu_has_feature(CPU_FTR_PURR)) 216 return mfspr(SPRN_PURR); 217 return mftb(); 218 } 219 220 /* 221 * Read the SPURR on systems that have it, otherwise the purr 222 */ 223 static u64 read_spurr(u64 purr) 224 { 225 /* 226 * cpus without PURR won't have a SPURR 227 * We already know the former when we use this, so tell gcc 228 */ 229 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR)) 230 return mfspr(SPRN_SPURR); 231 return purr; 232 } 233 234 /* 235 * Account time for a transition between system, hard irq 236 * or soft irq state. 237 */ 238 void account_system_vtime(struct task_struct *tsk) 239 { 240 u64 now, nowscaled, delta, deltascaled, sys_time; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 now = read_purr(); 245 nowscaled = read_spurr(now); 246 delta = now - get_paca()->startpurr; 247 deltascaled = nowscaled - get_paca()->startspurr; 248 get_paca()->startpurr = now; 249 get_paca()->startspurr = nowscaled; 250 if (!in_interrupt()) { 251 /* deltascaled includes both user and system time. 252 * Hence scale it based on the purr ratio to estimate 253 * the system time */ 254 sys_time = get_paca()->system_time; 255 if (get_paca()->user_time) 256 deltascaled = deltascaled * sys_time / 257 (sys_time + get_paca()->user_time); 258 delta += sys_time; 259 get_paca()->system_time = 0; 260 } 261 account_system_time(tsk, 0, delta); 262 account_system_time_scaled(tsk, deltascaled); 263 per_cpu(cputime_last_delta, smp_processor_id()) = delta; 264 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled; 265 local_irq_restore(flags); 266 } 267 268 /* 269 * Transfer the user and system times accumulated in the paca 270 * by the exception entry and exit code to the generic process 271 * user and system time records. 272 * Must be called with interrupts disabled. 273 */ 274 void account_process_tick(struct task_struct *tsk, int user_tick) 275 { 276 cputime_t utime, utimescaled; 277 278 utime = get_paca()->user_time; 279 get_paca()->user_time = 0; 280 account_user_time(tsk, utime); 281 282 utimescaled = cputime_to_scaled(utime); 283 account_user_time_scaled(tsk, utimescaled); 284 } 285 286 /* 287 * Stuff for accounting stolen time. 288 */ 289 struct cpu_purr_data { 290 int initialized; /* thread is running */ 291 u64 tb; /* last TB value read */ 292 u64 purr; /* last PURR value read */ 293 u64 spurr; /* last SPURR value read */ 294 }; 295 296 /* 297 * Each entry in the cpu_purr_data array is manipulated only by its 298 * "owner" cpu -- usually in the timer interrupt but also occasionally 299 * in process context for cpu online. As long as cpus do not touch 300 * each others' cpu_purr_data, disabling local interrupts is 301 * sufficient to serialize accesses. 302 */ 303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 304 305 static void snapshot_tb_and_purr(void *data) 306 { 307 unsigned long flags; 308 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 309 310 local_irq_save(flags); 311 p->tb = get_tb_or_rtc(); 312 p->purr = mfspr(SPRN_PURR); 313 wmb(); 314 p->initialized = 1; 315 local_irq_restore(flags); 316 } 317 318 /* 319 * Called during boot when all cpus have come up. 320 */ 321 void snapshot_timebases(void) 322 { 323 if (!cpu_has_feature(CPU_FTR_PURR)) 324 return; 325 on_each_cpu(snapshot_tb_and_purr, NULL, 1); 326 } 327 328 /* 329 * Must be called with interrupts disabled. 330 */ 331 void calculate_steal_time(void) 332 { 333 u64 tb, purr; 334 s64 stolen; 335 struct cpu_purr_data *pme; 336 337 pme = &__get_cpu_var(cpu_purr_data); 338 if (!pme->initialized) 339 return; /* !CPU_FTR_PURR or early in early boot */ 340 tb = mftb(); 341 purr = mfspr(SPRN_PURR); 342 stolen = (tb - pme->tb) - (purr - pme->purr); 343 if (stolen > 0) 344 account_steal_time(current, stolen); 345 pme->tb = tb; 346 pme->purr = purr; 347 } 348 349 #ifdef CONFIG_PPC_SPLPAR 350 /* 351 * Must be called before the cpu is added to the online map when 352 * a cpu is being brought up at runtime. 353 */ 354 static void snapshot_purr(void) 355 { 356 struct cpu_purr_data *pme; 357 unsigned long flags; 358 359 if (!cpu_has_feature(CPU_FTR_PURR)) 360 return; 361 local_irq_save(flags); 362 pme = &__get_cpu_var(cpu_purr_data); 363 pme->tb = mftb(); 364 pme->purr = mfspr(SPRN_PURR); 365 pme->initialized = 1; 366 local_irq_restore(flags); 367 } 368 369 #endif /* CONFIG_PPC_SPLPAR */ 370 371 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 372 #define calc_cputime_factors() 373 #define calculate_steal_time() do { } while (0) 374 #endif 375 376 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 377 #define snapshot_purr() do { } while (0) 378 #endif 379 380 /* 381 * Called when a cpu comes up after the system has finished booting, 382 * i.e. as a result of a hotplug cpu action. 383 */ 384 void snapshot_timebase(void) 385 { 386 __get_cpu_var(last_jiffy) = get_tb_or_rtc(); 387 snapshot_purr(); 388 } 389 390 void __delay(unsigned long loops) 391 { 392 unsigned long start; 393 int diff; 394 395 if (__USE_RTC()) { 396 start = get_rtcl(); 397 do { 398 /* the RTCL register wraps at 1000000000 */ 399 diff = get_rtcl() - start; 400 if (diff < 0) 401 diff += 1000000000; 402 } while (diff < loops); 403 } else { 404 start = get_tbl(); 405 while (get_tbl() - start < loops) 406 HMT_low(); 407 HMT_medium(); 408 } 409 } 410 EXPORT_SYMBOL(__delay); 411 412 void udelay(unsigned long usecs) 413 { 414 __delay(tb_ticks_per_usec * usecs); 415 } 416 EXPORT_SYMBOL(udelay); 417 418 419 /* 420 * There are two copies of tb_to_xs and stamp_xsec so that no 421 * lock is needed to access and use these values in 422 * do_gettimeofday. We alternate the copies and as long as a 423 * reasonable time elapses between changes, there will never 424 * be inconsistent values. ntpd has a minimum of one minute 425 * between updates. 426 */ 427 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 428 u64 new_tb_to_xs) 429 { 430 unsigned temp_idx; 431 struct gettimeofday_vars *temp_varp; 432 433 temp_idx = (do_gtod.var_idx == 0); 434 temp_varp = &do_gtod.vars[temp_idx]; 435 436 temp_varp->tb_to_xs = new_tb_to_xs; 437 temp_varp->tb_orig_stamp = new_tb_stamp; 438 temp_varp->stamp_xsec = new_stamp_xsec; 439 smp_mb(); 440 do_gtod.varp = temp_varp; 441 do_gtod.var_idx = temp_idx; 442 443 /* 444 * tb_update_count is used to allow the userspace gettimeofday code 445 * to assure itself that it sees a consistent view of the tb_to_xs and 446 * stamp_xsec variables. It reads the tb_update_count, then reads 447 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 448 * the two values of tb_update_count match and are even then the 449 * tb_to_xs and stamp_xsec values are consistent. If not, then it 450 * loops back and reads them again until this criteria is met. 451 * We expect the caller to have done the first increment of 452 * vdso_data->tb_update_count already. 453 */ 454 vdso_data->tb_orig_stamp = new_tb_stamp; 455 vdso_data->stamp_xsec = new_stamp_xsec; 456 vdso_data->tb_to_xs = new_tb_to_xs; 457 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 458 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 459 smp_wmb(); 460 ++(vdso_data->tb_update_count); 461 } 462 463 #ifdef CONFIG_SMP 464 unsigned long profile_pc(struct pt_regs *regs) 465 { 466 unsigned long pc = instruction_pointer(regs); 467 468 if (in_lock_functions(pc)) 469 return regs->link; 470 471 return pc; 472 } 473 EXPORT_SYMBOL(profile_pc); 474 #endif 475 476 #ifdef CONFIG_PPC_ISERIES 477 478 /* 479 * This function recalibrates the timebase based on the 49-bit time-of-day 480 * value in the Titan chip. The Titan is much more accurate than the value 481 * returned by the service processor for the timebase frequency. 482 */ 483 484 static int __init iSeries_tb_recal(void) 485 { 486 struct div_result divres; 487 unsigned long titan, tb; 488 489 /* Make sure we only run on iSeries */ 490 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 491 return -ENODEV; 492 493 tb = get_tb(); 494 titan = HvCallXm_loadTod(); 495 if ( iSeries_recal_titan ) { 496 unsigned long tb_ticks = tb - iSeries_recal_tb; 497 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 498 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 499 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 500 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 501 char sign = '+'; 502 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 503 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 504 505 if ( tick_diff < 0 ) { 506 tick_diff = -tick_diff; 507 sign = '-'; 508 } 509 if ( tick_diff ) { 510 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 511 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 512 new_tb_ticks_per_jiffy, sign, tick_diff ); 513 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 514 tb_ticks_per_sec = new_tb_ticks_per_sec; 515 calc_cputime_factors(); 516 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 517 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 518 tb_to_xs = divres.result_low; 519 do_gtod.varp->tb_to_xs = tb_to_xs; 520 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 521 vdso_data->tb_to_xs = tb_to_xs; 522 } 523 else { 524 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 525 " new tb_ticks_per_jiffy = %lu\n" 526 " old tb_ticks_per_jiffy = %lu\n", 527 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 528 } 529 } 530 } 531 iSeries_recal_titan = titan; 532 iSeries_recal_tb = tb; 533 534 /* Called here as now we know accurate values for the timebase */ 535 clocksource_init(); 536 return 0; 537 } 538 late_initcall(iSeries_tb_recal); 539 540 /* Called from platform early init */ 541 void __init iSeries_time_init_early(void) 542 { 543 iSeries_recal_tb = get_tb(); 544 iSeries_recal_titan = HvCallXm_loadTod(); 545 } 546 #endif /* CONFIG_PPC_ISERIES */ 547 548 /* 549 * For iSeries shared processors, we have to let the hypervisor 550 * set the hardware decrementer. We set a virtual decrementer 551 * in the lppaca and call the hypervisor if the virtual 552 * decrementer is less than the current value in the hardware 553 * decrementer. (almost always the new decrementer value will 554 * be greater than the current hardware decementer so the hypervisor 555 * call will not be needed) 556 */ 557 558 /* 559 * timer_interrupt - gets called when the decrementer overflows, 560 * with interrupts disabled. 561 */ 562 void timer_interrupt(struct pt_regs * regs) 563 { 564 struct pt_regs *old_regs; 565 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers); 566 struct clock_event_device *evt = &decrementer->event; 567 u64 now; 568 569 /* Ensure a positive value is written to the decrementer, or else 570 * some CPUs will continuue to take decrementer exceptions */ 571 set_dec(DECREMENTER_MAX); 572 573 #ifdef CONFIG_PPC32 574 if (atomic_read(&ppc_n_lost_interrupts) != 0) 575 do_IRQ(regs); 576 #endif 577 578 now = get_tb_or_rtc(); 579 if (now < decrementer->next_tb) { 580 /* not time for this event yet */ 581 now = decrementer->next_tb - now; 582 if (now <= DECREMENTER_MAX) 583 set_dec((int)now); 584 return; 585 } 586 old_regs = set_irq_regs(regs); 587 irq_enter(); 588 589 calculate_steal_time(); 590 591 #ifdef CONFIG_PPC_ISERIES 592 if (firmware_has_feature(FW_FEATURE_ISERIES)) 593 get_lppaca()->int_dword.fields.decr_int = 0; 594 #endif 595 596 if (evt->event_handler) 597 evt->event_handler(evt); 598 599 #ifdef CONFIG_PPC_ISERIES 600 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 601 process_hvlpevents(); 602 #endif 603 604 #ifdef CONFIG_PPC64 605 /* collect purr register values often, for accurate calculations */ 606 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 607 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 608 cu->current_tb = mfspr(SPRN_PURR); 609 } 610 #endif 611 612 irq_exit(); 613 set_irq_regs(old_regs); 614 } 615 616 void wakeup_decrementer(void) 617 { 618 unsigned long ticks; 619 620 /* 621 * The timebase gets saved on sleep and restored on wakeup, 622 * so all we need to do is to reset the decrementer. 623 */ 624 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 625 if (ticks < tb_ticks_per_jiffy) 626 ticks = tb_ticks_per_jiffy - ticks; 627 else 628 ticks = 1; 629 set_dec(ticks); 630 } 631 632 #ifdef CONFIG_SUSPEND 633 void generic_suspend_disable_irqs(void) 634 { 635 preempt_disable(); 636 637 /* Disable the decrementer, so that it doesn't interfere 638 * with suspending. 639 */ 640 641 set_dec(0x7fffffff); 642 local_irq_disable(); 643 set_dec(0x7fffffff); 644 } 645 646 void generic_suspend_enable_irqs(void) 647 { 648 wakeup_decrementer(); 649 650 local_irq_enable(); 651 preempt_enable(); 652 } 653 654 /* Overrides the weak version in kernel/power/main.c */ 655 void arch_suspend_disable_irqs(void) 656 { 657 if (ppc_md.suspend_disable_irqs) 658 ppc_md.suspend_disable_irqs(); 659 generic_suspend_disable_irqs(); 660 } 661 662 /* Overrides the weak version in kernel/power/main.c */ 663 void arch_suspend_enable_irqs(void) 664 { 665 generic_suspend_enable_irqs(); 666 if (ppc_md.suspend_enable_irqs) 667 ppc_md.suspend_enable_irqs(); 668 } 669 #endif 670 671 #ifdef CONFIG_SMP 672 void __init smp_space_timers(unsigned int max_cpus) 673 { 674 int i; 675 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 676 677 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 678 previous_tb -= tb_ticks_per_jiffy; 679 680 for_each_possible_cpu(i) { 681 if (i == boot_cpuid) 682 continue; 683 per_cpu(last_jiffy, i) = previous_tb; 684 } 685 } 686 #endif 687 688 /* 689 * Scheduler clock - returns current time in nanosec units. 690 * 691 * Note: mulhdu(a, b) (multiply high double unsigned) returns 692 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 693 * are 64-bit unsigned numbers. 694 */ 695 unsigned long long sched_clock(void) 696 { 697 if (__USE_RTC()) 698 return get_rtc(); 699 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 700 } 701 702 static int __init get_freq(char *name, int cells, unsigned long *val) 703 { 704 struct device_node *cpu; 705 const unsigned int *fp; 706 int found = 0; 707 708 /* The cpu node should have timebase and clock frequency properties */ 709 cpu = of_find_node_by_type(NULL, "cpu"); 710 711 if (cpu) { 712 fp = of_get_property(cpu, name, NULL); 713 if (fp) { 714 found = 1; 715 *val = of_read_ulong(fp, cells); 716 } 717 718 of_node_put(cpu); 719 } 720 721 return found; 722 } 723 724 void __init generic_calibrate_decr(void) 725 { 726 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 727 728 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 729 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 730 731 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 732 "(not found)\n"); 733 } 734 735 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 736 737 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 738 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 739 740 printk(KERN_ERR "WARNING: Estimating processor frequency " 741 "(not found)\n"); 742 } 743 744 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 745 /* Clear any pending timer interrupts */ 746 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 747 748 /* Enable decrementer interrupt */ 749 mtspr(SPRN_TCR, TCR_DIE); 750 #endif 751 } 752 753 int update_persistent_clock(struct timespec now) 754 { 755 struct rtc_time tm; 756 757 if (!ppc_md.set_rtc_time) 758 return 0; 759 760 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 761 tm.tm_year -= 1900; 762 tm.tm_mon -= 1; 763 764 return ppc_md.set_rtc_time(&tm); 765 } 766 767 unsigned long read_persistent_clock(void) 768 { 769 struct rtc_time tm; 770 static int first = 1; 771 772 /* XXX this is a litle fragile but will work okay in the short term */ 773 if (first) { 774 first = 0; 775 if (ppc_md.time_init) 776 timezone_offset = ppc_md.time_init(); 777 778 /* get_boot_time() isn't guaranteed to be safe to call late */ 779 if (ppc_md.get_boot_time) 780 return ppc_md.get_boot_time() -timezone_offset; 781 } 782 if (!ppc_md.get_rtc_time) 783 return 0; 784 ppc_md.get_rtc_time(&tm); 785 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 786 tm.tm_hour, tm.tm_min, tm.tm_sec); 787 } 788 789 /* clocksource code */ 790 static cycle_t rtc_read(void) 791 { 792 return (cycle_t)get_rtc(); 793 } 794 795 static cycle_t timebase_read(void) 796 { 797 return (cycle_t)get_tb(); 798 } 799 800 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) 801 { 802 u64 t2x, stamp_xsec; 803 804 if (clock != &clocksource_timebase) 805 return; 806 807 /* Make userspace gettimeofday spin until we're done. */ 808 ++vdso_data->tb_update_count; 809 smp_mb(); 810 811 /* XXX this assumes clock->shift == 22 */ 812 /* 4611686018 ~= 2^(20+64-22) / 1e9 */ 813 t2x = (u64) clock->mult * 4611686018ULL; 814 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 815 do_div(stamp_xsec, 1000000000); 816 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 817 update_gtod(clock->cycle_last, stamp_xsec, t2x); 818 } 819 820 void update_vsyscall_tz(void) 821 { 822 /* Make userspace gettimeofday spin until we're done. */ 823 ++vdso_data->tb_update_count; 824 smp_mb(); 825 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 826 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 827 smp_mb(); 828 ++vdso_data->tb_update_count; 829 } 830 831 static void __init clocksource_init(void) 832 { 833 struct clocksource *clock; 834 835 if (__USE_RTC()) 836 clock = &clocksource_rtc; 837 else 838 clock = &clocksource_timebase; 839 840 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); 841 842 if (clocksource_register(clock)) { 843 printk(KERN_ERR "clocksource: %s is already registered\n", 844 clock->name); 845 return; 846 } 847 848 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 849 clock->name, clock->mult, clock->shift); 850 } 851 852 static int decrementer_set_next_event(unsigned long evt, 853 struct clock_event_device *dev) 854 { 855 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt; 856 set_dec(evt); 857 return 0; 858 } 859 860 static void decrementer_set_mode(enum clock_event_mode mode, 861 struct clock_event_device *dev) 862 { 863 if (mode != CLOCK_EVT_MODE_ONESHOT) 864 decrementer_set_next_event(DECREMENTER_MAX, dev); 865 } 866 867 static void register_decrementer_clockevent(int cpu) 868 { 869 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event; 870 871 *dec = decrementer_clockevent; 872 dec->cpumask = cpumask_of_cpu(cpu); 873 874 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", 875 dec->name, dec->mult, dec->shift, cpu); 876 877 clockevents_register_device(dec); 878 } 879 880 static void __init init_decrementer_clockevent(void) 881 { 882 int cpu = smp_processor_id(); 883 884 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC, 885 decrementer_clockevent.shift); 886 decrementer_clockevent.max_delta_ns = 887 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 888 decrementer_clockevent.min_delta_ns = 889 clockevent_delta2ns(2, &decrementer_clockevent); 890 891 register_decrementer_clockevent(cpu); 892 } 893 894 void secondary_cpu_time_init(void) 895 { 896 /* FIME: Should make unrelatred change to move snapshot_timebase 897 * call here ! */ 898 register_decrementer_clockevent(smp_processor_id()); 899 } 900 901 /* This function is only called on the boot processor */ 902 void __init time_init(void) 903 { 904 unsigned long flags; 905 struct div_result res; 906 u64 scale, x; 907 unsigned shift; 908 909 if (__USE_RTC()) { 910 /* 601 processor: dec counts down by 128 every 128ns */ 911 ppc_tb_freq = 1000000000; 912 tb_last_jiffy = get_rtcl(); 913 } else { 914 /* Normal PowerPC with timebase register */ 915 ppc_md.calibrate_decr(); 916 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 917 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 918 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 919 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 920 tb_last_jiffy = get_tb(); 921 } 922 923 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 924 tb_ticks_per_sec = ppc_tb_freq; 925 tb_ticks_per_usec = ppc_tb_freq / 1000000; 926 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 927 calc_cputime_factors(); 928 929 /* 930 * Calculate the length of each tick in ns. It will not be 931 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 932 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 933 * rounded up. 934 */ 935 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 936 do_div(x, ppc_tb_freq); 937 tick_nsec = x; 938 last_tick_len = x << TICKLEN_SCALE; 939 940 /* 941 * Compute ticklen_to_xs, which is a factor which gets multiplied 942 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 943 * It is computed as: 944 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 945 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 946 * which turns out to be N = 51 - SHIFT_HZ. 947 * This gives the result as a 0.64 fixed-point fraction. 948 * That value is reduced by an offset amounting to 1 xsec per 949 * 2^31 timebase ticks to avoid problems with time going backwards 950 * by 1 xsec when we do timer_recalc_offset due to losing the 951 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 952 * since there are 2^20 xsec in a second. 953 */ 954 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 955 tb_ticks_per_jiffy << SHIFT_HZ, &res); 956 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 957 ticklen_to_xs = res.result_low; 958 959 /* Compute tb_to_xs from tick_nsec */ 960 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 961 962 /* 963 * Compute scale factor for sched_clock. 964 * The calibrate_decr() function has set tb_ticks_per_sec, 965 * which is the timebase frequency. 966 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 967 * the 128-bit result as a 64.64 fixed-point number. 968 * We then shift that number right until it is less than 1.0, 969 * giving us the scale factor and shift count to use in 970 * sched_clock(). 971 */ 972 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 973 scale = res.result_low; 974 for (shift = 0; res.result_high != 0; ++shift) { 975 scale = (scale >> 1) | (res.result_high << 63); 976 res.result_high >>= 1; 977 } 978 tb_to_ns_scale = scale; 979 tb_to_ns_shift = shift; 980 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 981 boot_tb = get_tb_or_rtc(); 982 983 write_seqlock_irqsave(&xtime_lock, flags); 984 985 /* If platform provided a timezone (pmac), we correct the time */ 986 if (timezone_offset) { 987 sys_tz.tz_minuteswest = -timezone_offset / 60; 988 sys_tz.tz_dsttime = 0; 989 } 990 991 do_gtod.varp = &do_gtod.vars[0]; 992 do_gtod.var_idx = 0; 993 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 994 __get_cpu_var(last_jiffy) = tb_last_jiffy; 995 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 996 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 997 do_gtod.varp->tb_to_xs = tb_to_xs; 998 do_gtod.tb_to_us = tb_to_us; 999 1000 vdso_data->tb_orig_stamp = tb_last_jiffy; 1001 vdso_data->tb_update_count = 0; 1002 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1003 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1004 vdso_data->tb_to_xs = tb_to_xs; 1005 1006 write_sequnlock_irqrestore(&xtime_lock, flags); 1007 1008 /* Register the clocksource, if we're not running on iSeries */ 1009 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 1010 clocksource_init(); 1011 1012 init_decrementer_clockevent(); 1013 } 1014 1015 1016 #define FEBRUARY 2 1017 #define STARTOFTIME 1970 1018 #define SECDAY 86400L 1019 #define SECYR (SECDAY * 365) 1020 #define leapyear(year) ((year) % 4 == 0 && \ 1021 ((year) % 100 != 0 || (year) % 400 == 0)) 1022 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1023 #define days_in_month(a) (month_days[(a) - 1]) 1024 1025 static int month_days[12] = { 1026 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1027 }; 1028 1029 /* 1030 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1031 */ 1032 void GregorianDay(struct rtc_time * tm) 1033 { 1034 int leapsToDate; 1035 int lastYear; 1036 int day; 1037 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1038 1039 lastYear = tm->tm_year - 1; 1040 1041 /* 1042 * Number of leap corrections to apply up to end of last year 1043 */ 1044 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1045 1046 /* 1047 * This year is a leap year if it is divisible by 4 except when it is 1048 * divisible by 100 unless it is divisible by 400 1049 * 1050 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1051 */ 1052 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1053 1054 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1055 tm->tm_mday; 1056 1057 tm->tm_wday = day % 7; 1058 } 1059 1060 void to_tm(int tim, struct rtc_time * tm) 1061 { 1062 register int i; 1063 register long hms, day; 1064 1065 day = tim / SECDAY; 1066 hms = tim % SECDAY; 1067 1068 /* Hours, minutes, seconds are easy */ 1069 tm->tm_hour = hms / 3600; 1070 tm->tm_min = (hms % 3600) / 60; 1071 tm->tm_sec = (hms % 3600) % 60; 1072 1073 /* Number of years in days */ 1074 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1075 day -= days_in_year(i); 1076 tm->tm_year = i; 1077 1078 /* Number of months in days left */ 1079 if (leapyear(tm->tm_year)) 1080 days_in_month(FEBRUARY) = 29; 1081 for (i = 1; day >= days_in_month(i); i++) 1082 day -= days_in_month(i); 1083 days_in_month(FEBRUARY) = 28; 1084 tm->tm_mon = i; 1085 1086 /* Days are what is left over (+1) from all that. */ 1087 tm->tm_mday = day + 1; 1088 1089 /* 1090 * Determine the day of week 1091 */ 1092 GregorianDay(tm); 1093 } 1094 1095 /* Auxiliary function to compute scaling factors */ 1096 /* Actually the choice of a timebase running at 1/4 the of the bus 1097 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1098 * It makes this computation very precise (27-28 bits typically) which 1099 * is optimistic considering the stability of most processor clock 1100 * oscillators and the precision with which the timebase frequency 1101 * is measured but does not harm. 1102 */ 1103 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1104 { 1105 unsigned mlt=0, tmp, err; 1106 /* No concern for performance, it's done once: use a stupid 1107 * but safe and compact method to find the multiplier. 1108 */ 1109 1110 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1111 if (mulhwu(inscale, mlt|tmp) < outscale) 1112 mlt |= tmp; 1113 } 1114 1115 /* We might still be off by 1 for the best approximation. 1116 * A side effect of this is that if outscale is too large 1117 * the returned value will be zero. 1118 * Many corner cases have been checked and seem to work, 1119 * some might have been forgotten in the test however. 1120 */ 1121 1122 err = inscale * (mlt+1); 1123 if (err <= inscale/2) 1124 mlt++; 1125 return mlt; 1126 } 1127 1128 /* 1129 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1130 * result. 1131 */ 1132 void div128_by_32(u64 dividend_high, u64 dividend_low, 1133 unsigned divisor, struct div_result *dr) 1134 { 1135 unsigned long a, b, c, d; 1136 unsigned long w, x, y, z; 1137 u64 ra, rb, rc; 1138 1139 a = dividend_high >> 32; 1140 b = dividend_high & 0xffffffff; 1141 c = dividend_low >> 32; 1142 d = dividend_low & 0xffffffff; 1143 1144 w = a / divisor; 1145 ra = ((u64)(a - (w * divisor)) << 32) + b; 1146 1147 rb = ((u64) do_div(ra, divisor) << 32) + c; 1148 x = ra; 1149 1150 rc = ((u64) do_div(rb, divisor) << 32) + d; 1151 y = rb; 1152 1153 do_div(rc, divisor); 1154 z = rc; 1155 1156 dr->result_high = ((u64)w << 32) + x; 1157 dr->result_low = ((u64)y << 32) + z; 1158 1159 } 1160