xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 89b15863)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77 
78 static u64 timebase_read(struct clocksource *);
79 static struct clocksource clocksource_timebase = {
80 	.name         = "timebase",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.read         = timebase_read,
85 };
86 
87 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
88 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
89 
90 static int decrementer_set_next_event(unsigned long evt,
91 				      struct clock_event_device *dev);
92 static int decrementer_shutdown(struct clock_event_device *evt);
93 
94 struct clock_event_device decrementer_clockevent = {
95 	.name			= "decrementer",
96 	.rating			= 200,
97 	.irq			= 0,
98 	.set_next_event		= decrementer_set_next_event,
99 	.set_state_oneshot_stopped = decrementer_shutdown,
100 	.set_state_shutdown	= decrementer_shutdown,
101 	.tick_resume		= decrementer_shutdown,
102 	.features		= CLOCK_EVT_FEAT_ONESHOT |
103 				  CLOCK_EVT_FEAT_C3STOP,
104 };
105 EXPORT_SYMBOL(decrementer_clockevent);
106 
107 DEFINE_PER_CPU(u64, decrementers_next_tb);
108 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
109 
110 #define XSEC_PER_SEC (1024*1024)
111 
112 #ifdef CONFIG_PPC64
113 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
114 #else
115 /* compute ((xsec << 12) * max) >> 32 */
116 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
117 #endif
118 
119 unsigned long tb_ticks_per_jiffy;
120 unsigned long tb_ticks_per_usec = 100; /* sane default */
121 EXPORT_SYMBOL(tb_ticks_per_usec);
122 unsigned long tb_ticks_per_sec;
123 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
124 
125 DEFINE_SPINLOCK(rtc_lock);
126 EXPORT_SYMBOL_GPL(rtc_lock);
127 
128 static u64 tb_to_ns_scale __read_mostly;
129 static unsigned tb_to_ns_shift __read_mostly;
130 static u64 boot_tb __read_mostly;
131 
132 extern struct timezone sys_tz;
133 static long timezone_offset;
134 
135 unsigned long ppc_proc_freq;
136 EXPORT_SYMBOL_GPL(ppc_proc_freq);
137 unsigned long ppc_tb_freq;
138 EXPORT_SYMBOL_GPL(ppc_tb_freq);
139 
140 bool tb_invalid;
141 
142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
143 /*
144  * Factor for converting from cputime_t (timebase ticks) to
145  * microseconds. This is stored as 0.64 fixed-point binary fraction.
146  */
147 u64 __cputime_usec_factor;
148 EXPORT_SYMBOL(__cputime_usec_factor);
149 
150 #ifdef CONFIG_PPC_SPLPAR
151 void (*dtl_consumer)(struct dtl_entry *, u64);
152 #endif
153 
154 static void calc_cputime_factors(void)
155 {
156 	struct div_result res;
157 
158 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
159 	__cputime_usec_factor = res.result_low;
160 }
161 
162 /*
163  * Read the SPURR on systems that have it, otherwise the PURR,
164  * or if that doesn't exist return the timebase value passed in.
165  */
166 static inline unsigned long read_spurr(unsigned long tb)
167 {
168 	if (cpu_has_feature(CPU_FTR_SPURR))
169 		return mfspr(SPRN_SPURR);
170 	if (cpu_has_feature(CPU_FTR_PURR))
171 		return mfspr(SPRN_PURR);
172 	return tb;
173 }
174 
175 #ifdef CONFIG_PPC_SPLPAR
176 
177 #include <asm/dtl.h>
178 
179 /*
180  * Scan the dispatch trace log and count up the stolen time.
181  * Should be called with interrupts disabled.
182  */
183 static u64 scan_dispatch_log(u64 stop_tb)
184 {
185 	u64 i = local_paca->dtl_ridx;
186 	struct dtl_entry *dtl = local_paca->dtl_curr;
187 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
188 	struct lppaca *vpa = local_paca->lppaca_ptr;
189 	u64 tb_delta;
190 	u64 stolen = 0;
191 	u64 dtb;
192 
193 	if (!dtl)
194 		return 0;
195 
196 	if (i == be64_to_cpu(vpa->dtl_idx))
197 		return 0;
198 	while (i < be64_to_cpu(vpa->dtl_idx)) {
199 		dtb = be64_to_cpu(dtl->timebase);
200 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
201 			be32_to_cpu(dtl->ready_to_enqueue_time);
202 		barrier();
203 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
204 			/* buffer has overflowed */
205 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
206 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
207 			continue;
208 		}
209 		if (dtb > stop_tb)
210 			break;
211 		if (dtl_consumer)
212 			dtl_consumer(dtl, i);
213 		stolen += tb_delta;
214 		++i;
215 		++dtl;
216 		if (dtl == dtl_end)
217 			dtl = local_paca->dispatch_log;
218 	}
219 	local_paca->dtl_ridx = i;
220 	local_paca->dtl_curr = dtl;
221 	return stolen;
222 }
223 
224 /*
225  * Accumulate stolen time by scanning the dispatch trace log.
226  * Called on entry from user mode.
227  */
228 void notrace accumulate_stolen_time(void)
229 {
230 	u64 sst, ust;
231 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
232 	struct cpu_accounting_data *acct = &local_paca->accounting;
233 
234 	/* We are called early in the exception entry, before
235 	 * soft/hard_enabled are sync'ed to the expected state
236 	 * for the exception. We are hard disabled but the PACA
237 	 * needs to reflect that so various debug stuff doesn't
238 	 * complain
239 	 */
240 	irq_soft_mask_set(IRQS_DISABLED);
241 
242 	sst = scan_dispatch_log(acct->starttime_user);
243 	ust = scan_dispatch_log(acct->starttime);
244 	acct->stime -= sst;
245 	acct->utime -= ust;
246 	acct->steal_time += ust + sst;
247 
248 	irq_soft_mask_set(save_irq_soft_mask);
249 }
250 
251 static inline u64 calculate_stolen_time(u64 stop_tb)
252 {
253 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
254 		return 0;
255 
256 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
257 		return scan_dispatch_log(stop_tb);
258 
259 	return 0;
260 }
261 
262 #else /* CONFIG_PPC_SPLPAR */
263 static inline u64 calculate_stolen_time(u64 stop_tb)
264 {
265 	return 0;
266 }
267 
268 #endif /* CONFIG_PPC_SPLPAR */
269 
270 /*
271  * Account time for a transition between system, hard irq
272  * or soft irq state.
273  */
274 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
275 					unsigned long now, unsigned long stime)
276 {
277 	unsigned long stime_scaled = 0;
278 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
279 	unsigned long nowscaled, deltascaled;
280 	unsigned long utime, utime_scaled;
281 
282 	nowscaled = read_spurr(now);
283 	deltascaled = nowscaled - acct->startspurr;
284 	acct->startspurr = nowscaled;
285 	utime = acct->utime - acct->utime_sspurr;
286 	acct->utime_sspurr = acct->utime;
287 
288 	/*
289 	 * Because we don't read the SPURR on every kernel entry/exit,
290 	 * deltascaled includes both user and system SPURR ticks.
291 	 * Apportion these ticks to system SPURR ticks and user
292 	 * SPURR ticks in the same ratio as the system time (delta)
293 	 * and user time (udelta) values obtained from the timebase
294 	 * over the same interval.  The system ticks get accounted here;
295 	 * the user ticks get saved up in paca->user_time_scaled to be
296 	 * used by account_process_tick.
297 	 */
298 	stime_scaled = stime;
299 	utime_scaled = utime;
300 	if (deltascaled != stime + utime) {
301 		if (utime) {
302 			stime_scaled = deltascaled * stime / (stime + utime);
303 			utime_scaled = deltascaled - stime_scaled;
304 		} else {
305 			stime_scaled = deltascaled;
306 		}
307 	}
308 	acct->utime_scaled += utime_scaled;
309 #endif
310 
311 	return stime_scaled;
312 }
313 
314 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
315 				 unsigned long *stime_scaled,
316 				 unsigned long *steal_time)
317 {
318 	unsigned long now, stime;
319 
320 	WARN_ON_ONCE(!irqs_disabled());
321 
322 	now = mftb();
323 	stime = now - acct->starttime;
324 	acct->starttime = now;
325 
326 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
327 
328 	*steal_time = calculate_stolen_time(now);
329 
330 	return stime;
331 }
332 
333 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
334 			       unsigned long *stime, unsigned long *stime_scaled)
335 {
336 	unsigned long steal_time;
337 
338 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
339 	*stime -= min(*stime, steal_time);
340 	acct->steal_time += steal_time;
341 }
342 
343 void vtime_account_kernel(struct task_struct *tsk)
344 {
345 	struct cpu_accounting_data *acct = get_accounting(tsk);
346 	unsigned long stime, stime_scaled;
347 
348 	vtime_delta_kernel(acct, &stime, &stime_scaled);
349 
350 	if (tsk->flags & PF_VCPU) {
351 		acct->gtime += stime;
352 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
353 		acct->utime_scaled += stime_scaled;
354 #endif
355 	} else {
356 		acct->stime += stime;
357 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
358 		acct->stime_scaled += stime_scaled;
359 #endif
360 	}
361 }
362 EXPORT_SYMBOL_GPL(vtime_account_kernel);
363 
364 void vtime_account_idle(struct task_struct *tsk)
365 {
366 	unsigned long stime, stime_scaled, steal_time;
367 	struct cpu_accounting_data *acct = get_accounting(tsk);
368 
369 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
370 	acct->idle_time += stime + steal_time;
371 }
372 
373 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
374 				    unsigned long *field)
375 {
376 	unsigned long stime, stime_scaled;
377 
378 	vtime_delta_kernel(acct, &stime, &stime_scaled);
379 	*field += stime;
380 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
381 	acct->stime_scaled += stime_scaled;
382 #endif
383 }
384 
385 void vtime_account_softirq(struct task_struct *tsk)
386 {
387 	struct cpu_accounting_data *acct = get_accounting(tsk);
388 	vtime_account_irq_field(acct, &acct->softirq_time);
389 }
390 
391 void vtime_account_hardirq(struct task_struct *tsk)
392 {
393 	struct cpu_accounting_data *acct = get_accounting(tsk);
394 	vtime_account_irq_field(acct, &acct->hardirq_time);
395 }
396 
397 static void vtime_flush_scaled(struct task_struct *tsk,
398 			       struct cpu_accounting_data *acct)
399 {
400 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
401 	if (acct->utime_scaled)
402 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
403 	if (acct->stime_scaled)
404 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
405 
406 	acct->utime_scaled = 0;
407 	acct->utime_sspurr = 0;
408 	acct->stime_scaled = 0;
409 #endif
410 }
411 
412 /*
413  * Account the whole cputime accumulated in the paca
414  * Must be called with interrupts disabled.
415  * Assumes that vtime_account_kernel/idle() has been called
416  * recently (i.e. since the last entry from usermode) so that
417  * get_paca()->user_time_scaled is up to date.
418  */
419 void vtime_flush(struct task_struct *tsk)
420 {
421 	struct cpu_accounting_data *acct = get_accounting(tsk);
422 
423 	if (acct->utime)
424 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
425 
426 	if (acct->gtime)
427 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
428 
429 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
430 		account_steal_time(cputime_to_nsecs(acct->steal_time));
431 		acct->steal_time = 0;
432 	}
433 
434 	if (acct->idle_time)
435 		account_idle_time(cputime_to_nsecs(acct->idle_time));
436 
437 	if (acct->stime)
438 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
439 					  CPUTIME_SYSTEM);
440 
441 	if (acct->hardirq_time)
442 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
443 					  CPUTIME_IRQ);
444 	if (acct->softirq_time)
445 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
446 					  CPUTIME_SOFTIRQ);
447 
448 	vtime_flush_scaled(tsk, acct);
449 
450 	acct->utime = 0;
451 	acct->gtime = 0;
452 	acct->idle_time = 0;
453 	acct->stime = 0;
454 	acct->hardirq_time = 0;
455 	acct->softirq_time = 0;
456 }
457 
458 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
459 #define calc_cputime_factors()
460 #endif
461 
462 void __delay(unsigned long loops)
463 {
464 	unsigned long start;
465 
466 	spin_begin();
467 	if (tb_invalid) {
468 		/*
469 		 * TB is in error state and isn't ticking anymore.
470 		 * HMI handler was unable to recover from TB error.
471 		 * Return immediately, so that kernel won't get stuck here.
472 		 */
473 		spin_cpu_relax();
474 	} else {
475 		start = mftb();
476 		while (mftb() - start < loops)
477 			spin_cpu_relax();
478 	}
479 	spin_end();
480 }
481 EXPORT_SYMBOL(__delay);
482 
483 void udelay(unsigned long usecs)
484 {
485 	__delay(tb_ticks_per_usec * usecs);
486 }
487 EXPORT_SYMBOL(udelay);
488 
489 #ifdef CONFIG_SMP
490 unsigned long profile_pc(struct pt_regs *regs)
491 {
492 	unsigned long pc = instruction_pointer(regs);
493 
494 	if (in_lock_functions(pc))
495 		return regs->link;
496 
497 	return pc;
498 }
499 EXPORT_SYMBOL(profile_pc);
500 #endif
501 
502 #ifdef CONFIG_IRQ_WORK
503 
504 /*
505  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
506  */
507 #ifdef CONFIG_PPC64
508 static inline unsigned long test_irq_work_pending(void)
509 {
510 	unsigned long x;
511 
512 	asm volatile("lbz %0,%1(13)"
513 		: "=r" (x)
514 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
515 	return x;
516 }
517 
518 static inline void set_irq_work_pending_flag(void)
519 {
520 	asm volatile("stb %0,%1(13)" : :
521 		"r" (1),
522 		"i" (offsetof(struct paca_struct, irq_work_pending)));
523 }
524 
525 static inline void clear_irq_work_pending(void)
526 {
527 	asm volatile("stb %0,%1(13)" : :
528 		"r" (0),
529 		"i" (offsetof(struct paca_struct, irq_work_pending)));
530 }
531 
532 #else /* 32-bit */
533 
534 DEFINE_PER_CPU(u8, irq_work_pending);
535 
536 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
537 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
538 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
539 
540 #endif /* 32 vs 64 bit */
541 
542 void arch_irq_work_raise(void)
543 {
544 	/*
545 	 * 64-bit code that uses irq soft-mask can just cause an immediate
546 	 * interrupt here that gets soft masked, if this is called under
547 	 * local_irq_disable(). It might be possible to prevent that happening
548 	 * by noticing interrupts are disabled and setting decrementer pending
549 	 * to be replayed when irqs are enabled. The problem there is that
550 	 * tracing can call irq_work_raise, including in code that does low
551 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
552 	 * which could get tangled up if we're messing with the same state
553 	 * here.
554 	 */
555 	preempt_disable();
556 	set_irq_work_pending_flag();
557 	set_dec(1);
558 	preempt_enable();
559 }
560 
561 #else  /* CONFIG_IRQ_WORK */
562 
563 #define test_irq_work_pending()	0
564 #define clear_irq_work_pending()
565 
566 #endif /* CONFIG_IRQ_WORK */
567 
568 /*
569  * timer_interrupt - gets called when the decrementer overflows,
570  * with interrupts disabled.
571  */
572 void timer_interrupt(struct pt_regs *regs)
573 {
574 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
575 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
576 	struct pt_regs *old_regs;
577 	u64 now;
578 
579 	/* Some implementations of hotplug will get timer interrupts while
580 	 * offline, just ignore these and we also need to set
581 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
582 	 * don't replay timer interrupt when return, otherwise we'll trap
583 	 * here infinitely :(
584 	 */
585 	if (unlikely(!cpu_online(smp_processor_id()))) {
586 		*next_tb = ~(u64)0;
587 		set_dec(decrementer_max);
588 		return;
589 	}
590 
591 	/* Ensure a positive value is written to the decrementer, or else
592 	 * some CPUs will continue to take decrementer exceptions. When the
593 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
594 	 * 31 bits, which is about 4 seconds on most systems, which gives
595 	 * the watchdog a chance of catching timer interrupt hard lockups.
596 	 */
597 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
598 		set_dec(0x7fffffff);
599 	else
600 		set_dec(decrementer_max);
601 
602 	/* Conditionally hard-enable interrupts now that the DEC has been
603 	 * bumped to its maximum value
604 	 */
605 	may_hard_irq_enable();
606 
607 
608 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
609 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
610 		do_IRQ(regs);
611 #endif
612 
613 	old_regs = set_irq_regs(regs);
614 	irq_enter();
615 	trace_timer_interrupt_entry(regs);
616 
617 	if (test_irq_work_pending()) {
618 		clear_irq_work_pending();
619 		irq_work_run();
620 	}
621 
622 	now = get_tb();
623 	if (now >= *next_tb) {
624 		*next_tb = ~(u64)0;
625 		if (evt->event_handler)
626 			evt->event_handler(evt);
627 		__this_cpu_inc(irq_stat.timer_irqs_event);
628 	} else {
629 		now = *next_tb - now;
630 		if (now <= decrementer_max)
631 			set_dec(now);
632 		/* We may have raced with new irq work */
633 		if (test_irq_work_pending())
634 			set_dec(1);
635 		__this_cpu_inc(irq_stat.timer_irqs_others);
636 	}
637 
638 	trace_timer_interrupt_exit(regs);
639 	irq_exit();
640 	set_irq_regs(old_regs);
641 }
642 EXPORT_SYMBOL(timer_interrupt);
643 
644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
645 void timer_broadcast_interrupt(void)
646 {
647 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
648 
649 	*next_tb = ~(u64)0;
650 	tick_receive_broadcast();
651 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
652 }
653 #endif
654 
655 #ifdef CONFIG_SUSPEND
656 static void generic_suspend_disable_irqs(void)
657 {
658 	/* Disable the decrementer, so that it doesn't interfere
659 	 * with suspending.
660 	 */
661 
662 	set_dec(decrementer_max);
663 	local_irq_disable();
664 	set_dec(decrementer_max);
665 }
666 
667 static void generic_suspend_enable_irqs(void)
668 {
669 	local_irq_enable();
670 }
671 
672 /* Overrides the weak version in kernel/power/main.c */
673 void arch_suspend_disable_irqs(void)
674 {
675 	if (ppc_md.suspend_disable_irqs)
676 		ppc_md.suspend_disable_irqs();
677 	generic_suspend_disable_irqs();
678 }
679 
680 /* Overrides the weak version in kernel/power/main.c */
681 void arch_suspend_enable_irqs(void)
682 {
683 	generic_suspend_enable_irqs();
684 	if (ppc_md.suspend_enable_irqs)
685 		ppc_md.suspend_enable_irqs();
686 }
687 #endif
688 
689 unsigned long long tb_to_ns(unsigned long long ticks)
690 {
691 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
692 }
693 EXPORT_SYMBOL_GPL(tb_to_ns);
694 
695 /*
696  * Scheduler clock - returns current time in nanosec units.
697  *
698  * Note: mulhdu(a, b) (multiply high double unsigned) returns
699  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
700  * are 64-bit unsigned numbers.
701  */
702 notrace unsigned long long sched_clock(void)
703 {
704 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
705 }
706 
707 
708 #ifdef CONFIG_PPC_PSERIES
709 
710 /*
711  * Running clock - attempts to give a view of time passing for a virtualised
712  * kernels.
713  * Uses the VTB register if available otherwise a next best guess.
714  */
715 unsigned long long running_clock(void)
716 {
717 	/*
718 	 * Don't read the VTB as a host since KVM does not switch in host
719 	 * timebase into the VTB when it takes a guest off the CPU, reading the
720 	 * VTB would result in reading 'last switched out' guest VTB.
721 	 *
722 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
723 	 * would be unsafe to rely only on the #ifdef above.
724 	 */
725 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
726 	    cpu_has_feature(CPU_FTR_ARCH_207S))
727 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
728 
729 	/*
730 	 * This is a next best approximation without a VTB.
731 	 * On a host which is running bare metal there should never be any stolen
732 	 * time and on a host which doesn't do any virtualisation TB *should* equal
733 	 * VTB so it makes no difference anyway.
734 	 */
735 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
736 }
737 #endif
738 
739 static int __init get_freq(char *name, int cells, unsigned long *val)
740 {
741 	struct device_node *cpu;
742 	const __be32 *fp;
743 	int found = 0;
744 
745 	/* The cpu node should have timebase and clock frequency properties */
746 	cpu = of_find_node_by_type(NULL, "cpu");
747 
748 	if (cpu) {
749 		fp = of_get_property(cpu, name, NULL);
750 		if (fp) {
751 			found = 1;
752 			*val = of_read_ulong(fp, cells);
753 		}
754 
755 		of_node_put(cpu);
756 	}
757 
758 	return found;
759 }
760 
761 static void start_cpu_decrementer(void)
762 {
763 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
764 	unsigned int tcr;
765 
766 	/* Clear any pending timer interrupts */
767 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
768 
769 	tcr = mfspr(SPRN_TCR);
770 	/*
771 	 * The watchdog may have already been enabled by u-boot. So leave
772 	 * TRC[WP] (Watchdog Period) alone.
773 	 */
774 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
775 	tcr |= TCR_DIE;		/* Enable decrementer */
776 	mtspr(SPRN_TCR, tcr);
777 #endif
778 }
779 
780 void __init generic_calibrate_decr(void)
781 {
782 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
783 
784 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
785 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
786 
787 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
788 				"(not found)\n");
789 	}
790 
791 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
792 
793 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
794 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
795 
796 		printk(KERN_ERR "WARNING: Estimating processor frequency "
797 				"(not found)\n");
798 	}
799 }
800 
801 int update_persistent_clock64(struct timespec64 now)
802 {
803 	struct rtc_time tm;
804 
805 	if (!ppc_md.set_rtc_time)
806 		return -ENODEV;
807 
808 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
809 
810 	return ppc_md.set_rtc_time(&tm);
811 }
812 
813 static void __read_persistent_clock(struct timespec64 *ts)
814 {
815 	struct rtc_time tm;
816 	static int first = 1;
817 
818 	ts->tv_nsec = 0;
819 	/* XXX this is a litle fragile but will work okay in the short term */
820 	if (first) {
821 		first = 0;
822 		if (ppc_md.time_init)
823 			timezone_offset = ppc_md.time_init();
824 
825 		/* get_boot_time() isn't guaranteed to be safe to call late */
826 		if (ppc_md.get_boot_time) {
827 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
828 			return;
829 		}
830 	}
831 	if (!ppc_md.get_rtc_time) {
832 		ts->tv_sec = 0;
833 		return;
834 	}
835 	ppc_md.get_rtc_time(&tm);
836 
837 	ts->tv_sec = rtc_tm_to_time64(&tm);
838 }
839 
840 void read_persistent_clock64(struct timespec64 *ts)
841 {
842 	__read_persistent_clock(ts);
843 
844 	/* Sanitize it in case real time clock is set below EPOCH */
845 	if (ts->tv_sec < 0) {
846 		ts->tv_sec = 0;
847 		ts->tv_nsec = 0;
848 	}
849 
850 }
851 
852 /* clocksource code */
853 static notrace u64 timebase_read(struct clocksource *cs)
854 {
855 	return (u64)get_tb();
856 }
857 
858 
859 void update_vsyscall(struct timekeeper *tk)
860 {
861 	struct timespec64 xt;
862 	struct clocksource *clock = tk->tkr_mono.clock;
863 	u32 mult = tk->tkr_mono.mult;
864 	u32 shift = tk->tkr_mono.shift;
865 	u64 cycle_last = tk->tkr_mono.cycle_last;
866 	u64 new_tb_to_xs, new_stamp_xsec;
867 	u64 frac_sec;
868 
869 	if (clock != &clocksource_timebase)
870 		return;
871 
872 	xt.tv_sec = tk->xtime_sec;
873 	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
874 
875 	/* Make userspace gettimeofday spin until we're done. */
876 	++vdso_data->tb_update_count;
877 	smp_mb();
878 
879 	/*
880 	 * This computes ((2^20 / 1e9) * mult) >> shift as a
881 	 * 0.64 fixed-point fraction.
882 	 * The computation in the else clause below won't overflow
883 	 * (as long as the timebase frequency is >= 1.049 MHz)
884 	 * but loses precision because we lose the low bits of the constant
885 	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
886 	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
887 	 * over a second.  (Shift values are usually 22, 23 or 24.)
888 	 * For high frequency clocks such as the 512MHz timebase clock
889 	 * on POWER[6789], the mult value is small (e.g. 32768000)
890 	 * and so we can shift the constant by 16 initially
891 	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
892 	 * remaining shifts after the multiplication, which gives a
893 	 * more accurate result (e.g. with mult = 32768000, shift = 24,
894 	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
895 	 */
896 	if (mult <= 62500000 && clock->shift >= 16)
897 		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
898 	else
899 		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
900 
901 	/*
902 	 * Compute the fractional second in units of 2^-32 seconds.
903 	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
904 	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
905 	 * it in units of 2^-32 seconds.
906 	 * We assume shift <= 32 because clocks_calc_mult_shift()
907 	 * generates shift values in the range 0 - 32.
908 	 */
909 	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
910 	do_div(frac_sec, NSEC_PER_SEC);
911 
912 	/*
913 	 * Work out new stamp_xsec value for any legacy users of systemcfg.
914 	 * stamp_xsec is in units of 2^-20 seconds.
915 	 */
916 	new_stamp_xsec = frac_sec >> 12;
917 	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
918 
919 	/*
920 	 * tb_update_count is used to allow the userspace gettimeofday code
921 	 * to assure itself that it sees a consistent view of the tb_to_xs and
922 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
923 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
924 	 * the two values of tb_update_count match and are even then the
925 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
926 	 * loops back and reads them again until this criteria is met.
927 	 */
928 	vdso_data->tb_orig_stamp = cycle_last;
929 	vdso_data->stamp_xsec = new_stamp_xsec;
930 	vdso_data->tb_to_xs = new_tb_to_xs;
931 	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
932 	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
933 	vdso_data->stamp_xtime_sec = xt.tv_sec;
934 	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
935 	vdso_data->stamp_sec_fraction = frac_sec;
936 	vdso_data->hrtimer_res = hrtimer_resolution;
937 	smp_wmb();
938 	++(vdso_data->tb_update_count);
939 }
940 
941 void update_vsyscall_tz(void)
942 {
943 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
944 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
945 }
946 
947 static void __init clocksource_init(void)
948 {
949 	struct clocksource *clock = &clocksource_timebase;
950 
951 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
952 		printk(KERN_ERR "clocksource: %s is already registered\n",
953 		       clock->name);
954 		return;
955 	}
956 
957 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
958 	       clock->name, clock->mult, clock->shift);
959 }
960 
961 static int decrementer_set_next_event(unsigned long evt,
962 				      struct clock_event_device *dev)
963 {
964 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
965 	set_dec(evt);
966 
967 	/* We may have raced with new irq work */
968 	if (test_irq_work_pending())
969 		set_dec(1);
970 
971 	return 0;
972 }
973 
974 static int decrementer_shutdown(struct clock_event_device *dev)
975 {
976 	decrementer_set_next_event(decrementer_max, dev);
977 	return 0;
978 }
979 
980 static void register_decrementer_clockevent(int cpu)
981 {
982 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
983 
984 	*dec = decrementer_clockevent;
985 	dec->cpumask = cpumask_of(cpu);
986 
987 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
988 
989 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
990 		    dec->name, dec->mult, dec->shift, cpu);
991 
992 	/* Set values for KVM, see kvm_emulate_dec() */
993 	decrementer_clockevent.mult = dec->mult;
994 	decrementer_clockevent.shift = dec->shift;
995 }
996 
997 static void enable_large_decrementer(void)
998 {
999 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1000 		return;
1001 
1002 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1003 		return;
1004 
1005 	/*
1006 	 * If we're running as the hypervisor we need to enable the LD manually
1007 	 * otherwise firmware should have done it for us.
1008 	 */
1009 	if (cpu_has_feature(CPU_FTR_HVMODE))
1010 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1011 }
1012 
1013 static void __init set_decrementer_max(void)
1014 {
1015 	struct device_node *cpu;
1016 	u32 bits = 32;
1017 
1018 	/* Prior to ISAv3 the decrementer is always 32 bit */
1019 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1020 		return;
1021 
1022 	cpu = of_find_node_by_type(NULL, "cpu");
1023 
1024 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1025 		if (bits > 64 || bits < 32) {
1026 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1027 			bits = 32;
1028 		}
1029 
1030 		/* calculate the signed maximum given this many bits */
1031 		decrementer_max = (1ul << (bits - 1)) - 1;
1032 	}
1033 
1034 	of_node_put(cpu);
1035 
1036 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1037 		bits, decrementer_max);
1038 }
1039 
1040 static void __init init_decrementer_clockevent(void)
1041 {
1042 	register_decrementer_clockevent(smp_processor_id());
1043 }
1044 
1045 void secondary_cpu_time_init(void)
1046 {
1047 	/* Enable and test the large decrementer for this cpu */
1048 	enable_large_decrementer();
1049 
1050 	/* Start the decrementer on CPUs that have manual control
1051 	 * such as BookE
1052 	 */
1053 	start_cpu_decrementer();
1054 
1055 	/* FIME: Should make unrelatred change to move snapshot_timebase
1056 	 * call here ! */
1057 	register_decrementer_clockevent(smp_processor_id());
1058 }
1059 
1060 /* This function is only called on the boot processor */
1061 void __init time_init(void)
1062 {
1063 	struct div_result res;
1064 	u64 scale;
1065 	unsigned shift;
1066 
1067 	/* Normal PowerPC with timebase register */
1068 	ppc_md.calibrate_decr();
1069 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1070 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1071 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1072 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1073 
1074 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1075 	tb_ticks_per_sec = ppc_tb_freq;
1076 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1077 	calc_cputime_factors();
1078 
1079 	/*
1080 	 * Compute scale factor for sched_clock.
1081 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1082 	 * which is the timebase frequency.
1083 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1084 	 * the 128-bit result as a 64.64 fixed-point number.
1085 	 * We then shift that number right until it is less than 1.0,
1086 	 * giving us the scale factor and shift count to use in
1087 	 * sched_clock().
1088 	 */
1089 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1090 	scale = res.result_low;
1091 	for (shift = 0; res.result_high != 0; ++shift) {
1092 		scale = (scale >> 1) | (res.result_high << 63);
1093 		res.result_high >>= 1;
1094 	}
1095 	tb_to_ns_scale = scale;
1096 	tb_to_ns_shift = shift;
1097 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1098 	boot_tb = get_tb();
1099 
1100 	/* If platform provided a timezone (pmac), we correct the time */
1101 	if (timezone_offset) {
1102 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1103 		sys_tz.tz_dsttime = 0;
1104 	}
1105 
1106 	vdso_data->tb_update_count = 0;
1107 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1108 
1109 	/* initialise and enable the large decrementer (if we have one) */
1110 	set_decrementer_max();
1111 	enable_large_decrementer();
1112 
1113 	/* Start the decrementer on CPUs that have manual control
1114 	 * such as BookE
1115 	 */
1116 	start_cpu_decrementer();
1117 
1118 	/* Register the clocksource */
1119 	clocksource_init();
1120 
1121 	init_decrementer_clockevent();
1122 	tick_setup_hrtimer_broadcast();
1123 
1124 	of_clk_init(NULL);
1125 }
1126 
1127 /*
1128  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1129  * result.
1130  */
1131 void div128_by_32(u64 dividend_high, u64 dividend_low,
1132 		  unsigned divisor, struct div_result *dr)
1133 {
1134 	unsigned long a, b, c, d;
1135 	unsigned long w, x, y, z;
1136 	u64 ra, rb, rc;
1137 
1138 	a = dividend_high >> 32;
1139 	b = dividend_high & 0xffffffff;
1140 	c = dividend_low >> 32;
1141 	d = dividend_low & 0xffffffff;
1142 
1143 	w = a / divisor;
1144 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1145 
1146 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1147 	x = ra;
1148 
1149 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1150 	y = rb;
1151 
1152 	do_div(rc, divisor);
1153 	z = rc;
1154 
1155 	dr->result_high = ((u64)w << 32) + x;
1156 	dr->result_low  = ((u64)y << 32) + z;
1157 
1158 }
1159 
1160 /* We don't need to calibrate delay, we use the CPU timebase for that */
1161 void calibrate_delay(void)
1162 {
1163 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1164 	 * as the number of __delay(1) in a jiffy, so make it so
1165 	 */
1166 	loops_per_jiffy = tb_ticks_per_jiffy;
1167 }
1168 
1169 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1170 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1171 {
1172 	ppc_md.get_rtc_time(tm);
1173 	return 0;
1174 }
1175 
1176 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1177 {
1178 	if (!ppc_md.set_rtc_time)
1179 		return -EOPNOTSUPP;
1180 
1181 	if (ppc_md.set_rtc_time(tm) < 0)
1182 		return -EOPNOTSUPP;
1183 
1184 	return 0;
1185 }
1186 
1187 static const struct rtc_class_ops rtc_generic_ops = {
1188 	.read_time = rtc_generic_get_time,
1189 	.set_time = rtc_generic_set_time,
1190 };
1191 
1192 static int __init rtc_init(void)
1193 {
1194 	struct platform_device *pdev;
1195 
1196 	if (!ppc_md.get_rtc_time)
1197 		return -ENODEV;
1198 
1199 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1200 					     &rtc_generic_ops,
1201 					     sizeof(rtc_generic_ops));
1202 
1203 	return PTR_ERR_OR_ZERO(pdev);
1204 }
1205 
1206 device_initcall(rtc_init);
1207 #endif
1208