1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/processor.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <linux/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/asm-prototypes.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/timekeeper_internal.h> 77 78 static u64 timebase_read(struct clocksource *); 79 static struct clocksource clocksource_timebase = { 80 .name = "timebase", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = timebase_read, 85 }; 86 87 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 88 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 89 90 static int decrementer_set_next_event(unsigned long evt, 91 struct clock_event_device *dev); 92 static int decrementer_shutdown(struct clock_event_device *evt); 93 94 struct clock_event_device decrementer_clockevent = { 95 .name = "decrementer", 96 .rating = 200, 97 .irq = 0, 98 .set_next_event = decrementer_set_next_event, 99 .set_state_oneshot_stopped = decrementer_shutdown, 100 .set_state_shutdown = decrementer_shutdown, 101 .tick_resume = decrementer_shutdown, 102 .features = CLOCK_EVT_FEAT_ONESHOT | 103 CLOCK_EVT_FEAT_C3STOP, 104 }; 105 EXPORT_SYMBOL(decrementer_clockevent); 106 107 DEFINE_PER_CPU(u64, decrementers_next_tb); 108 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 109 110 #define XSEC_PER_SEC (1024*1024) 111 112 #ifdef CONFIG_PPC64 113 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 114 #else 115 /* compute ((xsec << 12) * max) >> 32 */ 116 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 117 #endif 118 119 unsigned long tb_ticks_per_jiffy; 120 unsigned long tb_ticks_per_usec = 100; /* sane default */ 121 EXPORT_SYMBOL(tb_ticks_per_usec); 122 unsigned long tb_ticks_per_sec; 123 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 124 125 DEFINE_SPINLOCK(rtc_lock); 126 EXPORT_SYMBOL_GPL(rtc_lock); 127 128 static u64 tb_to_ns_scale __read_mostly; 129 static unsigned tb_to_ns_shift __read_mostly; 130 static u64 boot_tb __read_mostly; 131 132 extern struct timezone sys_tz; 133 static long timezone_offset; 134 135 unsigned long ppc_proc_freq; 136 EXPORT_SYMBOL_GPL(ppc_proc_freq); 137 unsigned long ppc_tb_freq; 138 EXPORT_SYMBOL_GPL(ppc_tb_freq); 139 140 bool tb_invalid; 141 142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 143 /* 144 * Factor for converting from cputime_t (timebase ticks) to 145 * microseconds. This is stored as 0.64 fixed-point binary fraction. 146 */ 147 u64 __cputime_usec_factor; 148 EXPORT_SYMBOL(__cputime_usec_factor); 149 150 #ifdef CONFIG_PPC_SPLPAR 151 void (*dtl_consumer)(struct dtl_entry *, u64); 152 #endif 153 154 static void calc_cputime_factors(void) 155 { 156 struct div_result res; 157 158 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 159 __cputime_usec_factor = res.result_low; 160 } 161 162 /* 163 * Read the SPURR on systems that have it, otherwise the PURR, 164 * or if that doesn't exist return the timebase value passed in. 165 */ 166 static inline unsigned long read_spurr(unsigned long tb) 167 { 168 if (cpu_has_feature(CPU_FTR_SPURR)) 169 return mfspr(SPRN_SPURR); 170 if (cpu_has_feature(CPU_FTR_PURR)) 171 return mfspr(SPRN_PURR); 172 return tb; 173 } 174 175 #ifdef CONFIG_PPC_SPLPAR 176 177 #include <asm/dtl.h> 178 179 /* 180 * Scan the dispatch trace log and count up the stolen time. 181 * Should be called with interrupts disabled. 182 */ 183 static u64 scan_dispatch_log(u64 stop_tb) 184 { 185 u64 i = local_paca->dtl_ridx; 186 struct dtl_entry *dtl = local_paca->dtl_curr; 187 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 188 struct lppaca *vpa = local_paca->lppaca_ptr; 189 u64 tb_delta; 190 u64 stolen = 0; 191 u64 dtb; 192 193 if (!dtl) 194 return 0; 195 196 if (i == be64_to_cpu(vpa->dtl_idx)) 197 return 0; 198 while (i < be64_to_cpu(vpa->dtl_idx)) { 199 dtb = be64_to_cpu(dtl->timebase); 200 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 201 be32_to_cpu(dtl->ready_to_enqueue_time); 202 barrier(); 203 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 204 /* buffer has overflowed */ 205 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 206 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 207 continue; 208 } 209 if (dtb > stop_tb) 210 break; 211 if (dtl_consumer) 212 dtl_consumer(dtl, i); 213 stolen += tb_delta; 214 ++i; 215 ++dtl; 216 if (dtl == dtl_end) 217 dtl = local_paca->dispatch_log; 218 } 219 local_paca->dtl_ridx = i; 220 local_paca->dtl_curr = dtl; 221 return stolen; 222 } 223 224 /* 225 * Accumulate stolen time by scanning the dispatch trace log. 226 * Called on entry from user mode. 227 */ 228 void notrace accumulate_stolen_time(void) 229 { 230 u64 sst, ust; 231 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 232 struct cpu_accounting_data *acct = &local_paca->accounting; 233 234 /* We are called early in the exception entry, before 235 * soft/hard_enabled are sync'ed to the expected state 236 * for the exception. We are hard disabled but the PACA 237 * needs to reflect that so various debug stuff doesn't 238 * complain 239 */ 240 irq_soft_mask_set(IRQS_DISABLED); 241 242 sst = scan_dispatch_log(acct->starttime_user); 243 ust = scan_dispatch_log(acct->starttime); 244 acct->stime -= sst; 245 acct->utime -= ust; 246 acct->steal_time += ust + sst; 247 248 irq_soft_mask_set(save_irq_soft_mask); 249 } 250 251 static inline u64 calculate_stolen_time(u64 stop_tb) 252 { 253 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 254 return 0; 255 256 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 257 return scan_dispatch_log(stop_tb); 258 259 return 0; 260 } 261 262 #else /* CONFIG_PPC_SPLPAR */ 263 static inline u64 calculate_stolen_time(u64 stop_tb) 264 { 265 return 0; 266 } 267 268 #endif /* CONFIG_PPC_SPLPAR */ 269 270 /* 271 * Account time for a transition between system, hard irq 272 * or soft irq state. 273 */ 274 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 275 unsigned long now, unsigned long stime) 276 { 277 unsigned long stime_scaled = 0; 278 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 279 unsigned long nowscaled, deltascaled; 280 unsigned long utime, utime_scaled; 281 282 nowscaled = read_spurr(now); 283 deltascaled = nowscaled - acct->startspurr; 284 acct->startspurr = nowscaled; 285 utime = acct->utime - acct->utime_sspurr; 286 acct->utime_sspurr = acct->utime; 287 288 /* 289 * Because we don't read the SPURR on every kernel entry/exit, 290 * deltascaled includes both user and system SPURR ticks. 291 * Apportion these ticks to system SPURR ticks and user 292 * SPURR ticks in the same ratio as the system time (delta) 293 * and user time (udelta) values obtained from the timebase 294 * over the same interval. The system ticks get accounted here; 295 * the user ticks get saved up in paca->user_time_scaled to be 296 * used by account_process_tick. 297 */ 298 stime_scaled = stime; 299 utime_scaled = utime; 300 if (deltascaled != stime + utime) { 301 if (utime) { 302 stime_scaled = deltascaled * stime / (stime + utime); 303 utime_scaled = deltascaled - stime_scaled; 304 } else { 305 stime_scaled = deltascaled; 306 } 307 } 308 acct->utime_scaled += utime_scaled; 309 #endif 310 311 return stime_scaled; 312 } 313 314 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 315 unsigned long *stime_scaled, 316 unsigned long *steal_time) 317 { 318 unsigned long now, stime; 319 320 WARN_ON_ONCE(!irqs_disabled()); 321 322 now = mftb(); 323 stime = now - acct->starttime; 324 acct->starttime = now; 325 326 *stime_scaled = vtime_delta_scaled(acct, now, stime); 327 328 *steal_time = calculate_stolen_time(now); 329 330 return stime; 331 } 332 333 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 334 unsigned long *stime, unsigned long *stime_scaled) 335 { 336 unsigned long steal_time; 337 338 *stime = vtime_delta(acct, stime_scaled, &steal_time); 339 *stime -= min(*stime, steal_time); 340 acct->steal_time += steal_time; 341 } 342 343 void vtime_account_kernel(struct task_struct *tsk) 344 { 345 struct cpu_accounting_data *acct = get_accounting(tsk); 346 unsigned long stime, stime_scaled; 347 348 vtime_delta_kernel(acct, &stime, &stime_scaled); 349 350 if (tsk->flags & PF_VCPU) { 351 acct->gtime += stime; 352 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 353 acct->utime_scaled += stime_scaled; 354 #endif 355 } else { 356 acct->stime += stime; 357 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 358 acct->stime_scaled += stime_scaled; 359 #endif 360 } 361 } 362 EXPORT_SYMBOL_GPL(vtime_account_kernel); 363 364 void vtime_account_idle(struct task_struct *tsk) 365 { 366 unsigned long stime, stime_scaled, steal_time; 367 struct cpu_accounting_data *acct = get_accounting(tsk); 368 369 stime = vtime_delta(acct, &stime_scaled, &steal_time); 370 acct->idle_time += stime + steal_time; 371 } 372 373 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 374 unsigned long *field) 375 { 376 unsigned long stime, stime_scaled; 377 378 vtime_delta_kernel(acct, &stime, &stime_scaled); 379 *field += stime; 380 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 381 acct->stime_scaled += stime_scaled; 382 #endif 383 } 384 385 void vtime_account_softirq(struct task_struct *tsk) 386 { 387 struct cpu_accounting_data *acct = get_accounting(tsk); 388 vtime_account_irq_field(acct, &acct->softirq_time); 389 } 390 391 void vtime_account_hardirq(struct task_struct *tsk) 392 { 393 struct cpu_accounting_data *acct = get_accounting(tsk); 394 vtime_account_irq_field(acct, &acct->hardirq_time); 395 } 396 397 static void vtime_flush_scaled(struct task_struct *tsk, 398 struct cpu_accounting_data *acct) 399 { 400 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 401 if (acct->utime_scaled) 402 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 403 if (acct->stime_scaled) 404 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 405 406 acct->utime_scaled = 0; 407 acct->utime_sspurr = 0; 408 acct->stime_scaled = 0; 409 #endif 410 } 411 412 /* 413 * Account the whole cputime accumulated in the paca 414 * Must be called with interrupts disabled. 415 * Assumes that vtime_account_kernel/idle() has been called 416 * recently (i.e. since the last entry from usermode) so that 417 * get_paca()->user_time_scaled is up to date. 418 */ 419 void vtime_flush(struct task_struct *tsk) 420 { 421 struct cpu_accounting_data *acct = get_accounting(tsk); 422 423 if (acct->utime) 424 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 425 426 if (acct->gtime) 427 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 428 429 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 430 account_steal_time(cputime_to_nsecs(acct->steal_time)); 431 acct->steal_time = 0; 432 } 433 434 if (acct->idle_time) 435 account_idle_time(cputime_to_nsecs(acct->idle_time)); 436 437 if (acct->stime) 438 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 439 CPUTIME_SYSTEM); 440 441 if (acct->hardirq_time) 442 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 443 CPUTIME_IRQ); 444 if (acct->softirq_time) 445 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 446 CPUTIME_SOFTIRQ); 447 448 vtime_flush_scaled(tsk, acct); 449 450 acct->utime = 0; 451 acct->gtime = 0; 452 acct->idle_time = 0; 453 acct->stime = 0; 454 acct->hardirq_time = 0; 455 acct->softirq_time = 0; 456 } 457 458 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 459 #define calc_cputime_factors() 460 #endif 461 462 void __delay(unsigned long loops) 463 { 464 unsigned long start; 465 466 spin_begin(); 467 if (tb_invalid) { 468 /* 469 * TB is in error state and isn't ticking anymore. 470 * HMI handler was unable to recover from TB error. 471 * Return immediately, so that kernel won't get stuck here. 472 */ 473 spin_cpu_relax(); 474 } else { 475 start = mftb(); 476 while (mftb() - start < loops) 477 spin_cpu_relax(); 478 } 479 spin_end(); 480 } 481 EXPORT_SYMBOL(__delay); 482 483 void udelay(unsigned long usecs) 484 { 485 __delay(tb_ticks_per_usec * usecs); 486 } 487 EXPORT_SYMBOL(udelay); 488 489 #ifdef CONFIG_SMP 490 unsigned long profile_pc(struct pt_regs *regs) 491 { 492 unsigned long pc = instruction_pointer(regs); 493 494 if (in_lock_functions(pc)) 495 return regs->link; 496 497 return pc; 498 } 499 EXPORT_SYMBOL(profile_pc); 500 #endif 501 502 #ifdef CONFIG_IRQ_WORK 503 504 /* 505 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 506 */ 507 #ifdef CONFIG_PPC64 508 static inline unsigned long test_irq_work_pending(void) 509 { 510 unsigned long x; 511 512 asm volatile("lbz %0,%1(13)" 513 : "=r" (x) 514 : "i" (offsetof(struct paca_struct, irq_work_pending))); 515 return x; 516 } 517 518 static inline void set_irq_work_pending_flag(void) 519 { 520 asm volatile("stb %0,%1(13)" : : 521 "r" (1), 522 "i" (offsetof(struct paca_struct, irq_work_pending))); 523 } 524 525 static inline void clear_irq_work_pending(void) 526 { 527 asm volatile("stb %0,%1(13)" : : 528 "r" (0), 529 "i" (offsetof(struct paca_struct, irq_work_pending))); 530 } 531 532 #else /* 32-bit */ 533 534 DEFINE_PER_CPU(u8, irq_work_pending); 535 536 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 537 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 538 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 539 540 #endif /* 32 vs 64 bit */ 541 542 void arch_irq_work_raise(void) 543 { 544 /* 545 * 64-bit code that uses irq soft-mask can just cause an immediate 546 * interrupt here that gets soft masked, if this is called under 547 * local_irq_disable(). It might be possible to prevent that happening 548 * by noticing interrupts are disabled and setting decrementer pending 549 * to be replayed when irqs are enabled. The problem there is that 550 * tracing can call irq_work_raise, including in code that does low 551 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 552 * which could get tangled up if we're messing with the same state 553 * here. 554 */ 555 preempt_disable(); 556 set_irq_work_pending_flag(); 557 set_dec(1); 558 preempt_enable(); 559 } 560 561 #else /* CONFIG_IRQ_WORK */ 562 563 #define test_irq_work_pending() 0 564 #define clear_irq_work_pending() 565 566 #endif /* CONFIG_IRQ_WORK */ 567 568 /* 569 * timer_interrupt - gets called when the decrementer overflows, 570 * with interrupts disabled. 571 */ 572 void timer_interrupt(struct pt_regs *regs) 573 { 574 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 575 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 576 struct pt_regs *old_regs; 577 u64 now; 578 579 /* Some implementations of hotplug will get timer interrupts while 580 * offline, just ignore these and we also need to set 581 * decrementers_next_tb as MAX to make sure __check_irq_replay 582 * don't replay timer interrupt when return, otherwise we'll trap 583 * here infinitely :( 584 */ 585 if (unlikely(!cpu_online(smp_processor_id()))) { 586 *next_tb = ~(u64)0; 587 set_dec(decrementer_max); 588 return; 589 } 590 591 /* Ensure a positive value is written to the decrementer, or else 592 * some CPUs will continue to take decrementer exceptions. When the 593 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 594 * 31 bits, which is about 4 seconds on most systems, which gives 595 * the watchdog a chance of catching timer interrupt hard lockups. 596 */ 597 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 598 set_dec(0x7fffffff); 599 else 600 set_dec(decrementer_max); 601 602 /* Conditionally hard-enable interrupts now that the DEC has been 603 * bumped to its maximum value 604 */ 605 may_hard_irq_enable(); 606 607 608 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 609 if (atomic_read(&ppc_n_lost_interrupts) != 0) 610 do_IRQ(regs); 611 #endif 612 613 old_regs = set_irq_regs(regs); 614 irq_enter(); 615 trace_timer_interrupt_entry(regs); 616 617 if (test_irq_work_pending()) { 618 clear_irq_work_pending(); 619 irq_work_run(); 620 } 621 622 now = get_tb(); 623 if (now >= *next_tb) { 624 *next_tb = ~(u64)0; 625 if (evt->event_handler) 626 evt->event_handler(evt); 627 __this_cpu_inc(irq_stat.timer_irqs_event); 628 } else { 629 now = *next_tb - now; 630 if (now <= decrementer_max) 631 set_dec(now); 632 /* We may have raced with new irq work */ 633 if (test_irq_work_pending()) 634 set_dec(1); 635 __this_cpu_inc(irq_stat.timer_irqs_others); 636 } 637 638 trace_timer_interrupt_exit(regs); 639 irq_exit(); 640 set_irq_regs(old_regs); 641 } 642 EXPORT_SYMBOL(timer_interrupt); 643 644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 645 void timer_broadcast_interrupt(void) 646 { 647 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 648 649 *next_tb = ~(u64)0; 650 tick_receive_broadcast(); 651 __this_cpu_inc(irq_stat.broadcast_irqs_event); 652 } 653 #endif 654 655 #ifdef CONFIG_SUSPEND 656 static void generic_suspend_disable_irqs(void) 657 { 658 /* Disable the decrementer, so that it doesn't interfere 659 * with suspending. 660 */ 661 662 set_dec(decrementer_max); 663 local_irq_disable(); 664 set_dec(decrementer_max); 665 } 666 667 static void generic_suspend_enable_irqs(void) 668 { 669 local_irq_enable(); 670 } 671 672 /* Overrides the weak version in kernel/power/main.c */ 673 void arch_suspend_disable_irqs(void) 674 { 675 if (ppc_md.suspend_disable_irqs) 676 ppc_md.suspend_disable_irqs(); 677 generic_suspend_disable_irqs(); 678 } 679 680 /* Overrides the weak version in kernel/power/main.c */ 681 void arch_suspend_enable_irqs(void) 682 { 683 generic_suspend_enable_irqs(); 684 if (ppc_md.suspend_enable_irqs) 685 ppc_md.suspend_enable_irqs(); 686 } 687 #endif 688 689 unsigned long long tb_to_ns(unsigned long long ticks) 690 { 691 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 692 } 693 EXPORT_SYMBOL_GPL(tb_to_ns); 694 695 /* 696 * Scheduler clock - returns current time in nanosec units. 697 * 698 * Note: mulhdu(a, b) (multiply high double unsigned) returns 699 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 700 * are 64-bit unsigned numbers. 701 */ 702 notrace unsigned long long sched_clock(void) 703 { 704 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 705 } 706 707 708 #ifdef CONFIG_PPC_PSERIES 709 710 /* 711 * Running clock - attempts to give a view of time passing for a virtualised 712 * kernels. 713 * Uses the VTB register if available otherwise a next best guess. 714 */ 715 unsigned long long running_clock(void) 716 { 717 /* 718 * Don't read the VTB as a host since KVM does not switch in host 719 * timebase into the VTB when it takes a guest off the CPU, reading the 720 * VTB would result in reading 'last switched out' guest VTB. 721 * 722 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 723 * would be unsafe to rely only on the #ifdef above. 724 */ 725 if (firmware_has_feature(FW_FEATURE_LPAR) && 726 cpu_has_feature(CPU_FTR_ARCH_207S)) 727 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 728 729 /* 730 * This is a next best approximation without a VTB. 731 * On a host which is running bare metal there should never be any stolen 732 * time and on a host which doesn't do any virtualisation TB *should* equal 733 * VTB so it makes no difference anyway. 734 */ 735 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 736 } 737 #endif 738 739 static int __init get_freq(char *name, int cells, unsigned long *val) 740 { 741 struct device_node *cpu; 742 const __be32 *fp; 743 int found = 0; 744 745 /* The cpu node should have timebase and clock frequency properties */ 746 cpu = of_find_node_by_type(NULL, "cpu"); 747 748 if (cpu) { 749 fp = of_get_property(cpu, name, NULL); 750 if (fp) { 751 found = 1; 752 *val = of_read_ulong(fp, cells); 753 } 754 755 of_node_put(cpu); 756 } 757 758 return found; 759 } 760 761 static void start_cpu_decrementer(void) 762 { 763 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 764 unsigned int tcr; 765 766 /* Clear any pending timer interrupts */ 767 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 768 769 tcr = mfspr(SPRN_TCR); 770 /* 771 * The watchdog may have already been enabled by u-boot. So leave 772 * TRC[WP] (Watchdog Period) alone. 773 */ 774 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 775 tcr |= TCR_DIE; /* Enable decrementer */ 776 mtspr(SPRN_TCR, tcr); 777 #endif 778 } 779 780 void __init generic_calibrate_decr(void) 781 { 782 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 783 784 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 785 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 786 787 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 788 "(not found)\n"); 789 } 790 791 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 792 793 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 794 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 795 796 printk(KERN_ERR "WARNING: Estimating processor frequency " 797 "(not found)\n"); 798 } 799 } 800 801 int update_persistent_clock64(struct timespec64 now) 802 { 803 struct rtc_time tm; 804 805 if (!ppc_md.set_rtc_time) 806 return -ENODEV; 807 808 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 809 810 return ppc_md.set_rtc_time(&tm); 811 } 812 813 static void __read_persistent_clock(struct timespec64 *ts) 814 { 815 struct rtc_time tm; 816 static int first = 1; 817 818 ts->tv_nsec = 0; 819 /* XXX this is a litle fragile but will work okay in the short term */ 820 if (first) { 821 first = 0; 822 if (ppc_md.time_init) 823 timezone_offset = ppc_md.time_init(); 824 825 /* get_boot_time() isn't guaranteed to be safe to call late */ 826 if (ppc_md.get_boot_time) { 827 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 828 return; 829 } 830 } 831 if (!ppc_md.get_rtc_time) { 832 ts->tv_sec = 0; 833 return; 834 } 835 ppc_md.get_rtc_time(&tm); 836 837 ts->tv_sec = rtc_tm_to_time64(&tm); 838 } 839 840 void read_persistent_clock64(struct timespec64 *ts) 841 { 842 __read_persistent_clock(ts); 843 844 /* Sanitize it in case real time clock is set below EPOCH */ 845 if (ts->tv_sec < 0) { 846 ts->tv_sec = 0; 847 ts->tv_nsec = 0; 848 } 849 850 } 851 852 /* clocksource code */ 853 static notrace u64 timebase_read(struct clocksource *cs) 854 { 855 return (u64)get_tb(); 856 } 857 858 859 void update_vsyscall(struct timekeeper *tk) 860 { 861 struct timespec64 xt; 862 struct clocksource *clock = tk->tkr_mono.clock; 863 u32 mult = tk->tkr_mono.mult; 864 u32 shift = tk->tkr_mono.shift; 865 u64 cycle_last = tk->tkr_mono.cycle_last; 866 u64 new_tb_to_xs, new_stamp_xsec; 867 u64 frac_sec; 868 869 if (clock != &clocksource_timebase) 870 return; 871 872 xt.tv_sec = tk->xtime_sec; 873 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 874 875 /* Make userspace gettimeofday spin until we're done. */ 876 ++vdso_data->tb_update_count; 877 smp_mb(); 878 879 /* 880 * This computes ((2^20 / 1e9) * mult) >> shift as a 881 * 0.64 fixed-point fraction. 882 * The computation in the else clause below won't overflow 883 * (as long as the timebase frequency is >= 1.049 MHz) 884 * but loses precision because we lose the low bits of the constant 885 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. 886 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns 887 * over a second. (Shift values are usually 22, 23 or 24.) 888 * For high frequency clocks such as the 512MHz timebase clock 889 * on POWER[6789], the mult value is small (e.g. 32768000) 890 * and so we can shift the constant by 16 initially 891 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the 892 * remaining shifts after the multiplication, which gives a 893 * more accurate result (e.g. with mult = 32768000, shift = 24, 894 * the error is only about 1.2e-12, or 0.7ns over 10 minutes). 895 */ 896 if (mult <= 62500000 && clock->shift >= 16) 897 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); 898 else 899 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 900 901 /* 902 * Compute the fractional second in units of 2^-32 seconds. 903 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift 904 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives 905 * it in units of 2^-32 seconds. 906 * We assume shift <= 32 because clocks_calc_mult_shift() 907 * generates shift values in the range 0 - 32. 908 */ 909 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); 910 do_div(frac_sec, NSEC_PER_SEC); 911 912 /* 913 * Work out new stamp_xsec value for any legacy users of systemcfg. 914 * stamp_xsec is in units of 2^-20 seconds. 915 */ 916 new_stamp_xsec = frac_sec >> 12; 917 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; 918 919 /* 920 * tb_update_count is used to allow the userspace gettimeofday code 921 * to assure itself that it sees a consistent view of the tb_to_xs and 922 * stamp_xsec variables. It reads the tb_update_count, then reads 923 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 924 * the two values of tb_update_count match and are even then the 925 * tb_to_xs and stamp_xsec values are consistent. If not, then it 926 * loops back and reads them again until this criteria is met. 927 */ 928 vdso_data->tb_orig_stamp = cycle_last; 929 vdso_data->stamp_xsec = new_stamp_xsec; 930 vdso_data->tb_to_xs = new_tb_to_xs; 931 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; 932 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; 933 vdso_data->stamp_xtime_sec = xt.tv_sec; 934 vdso_data->stamp_xtime_nsec = xt.tv_nsec; 935 vdso_data->stamp_sec_fraction = frac_sec; 936 vdso_data->hrtimer_res = hrtimer_resolution; 937 smp_wmb(); 938 ++(vdso_data->tb_update_count); 939 } 940 941 void update_vsyscall_tz(void) 942 { 943 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 944 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 945 } 946 947 static void __init clocksource_init(void) 948 { 949 struct clocksource *clock = &clocksource_timebase; 950 951 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 952 printk(KERN_ERR "clocksource: %s is already registered\n", 953 clock->name); 954 return; 955 } 956 957 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 958 clock->name, clock->mult, clock->shift); 959 } 960 961 static int decrementer_set_next_event(unsigned long evt, 962 struct clock_event_device *dev) 963 { 964 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 965 set_dec(evt); 966 967 /* We may have raced with new irq work */ 968 if (test_irq_work_pending()) 969 set_dec(1); 970 971 return 0; 972 } 973 974 static int decrementer_shutdown(struct clock_event_device *dev) 975 { 976 decrementer_set_next_event(decrementer_max, dev); 977 return 0; 978 } 979 980 static void register_decrementer_clockevent(int cpu) 981 { 982 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 983 984 *dec = decrementer_clockevent; 985 dec->cpumask = cpumask_of(cpu); 986 987 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 988 989 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 990 dec->name, dec->mult, dec->shift, cpu); 991 992 /* Set values for KVM, see kvm_emulate_dec() */ 993 decrementer_clockevent.mult = dec->mult; 994 decrementer_clockevent.shift = dec->shift; 995 } 996 997 static void enable_large_decrementer(void) 998 { 999 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1000 return; 1001 1002 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 1003 return; 1004 1005 /* 1006 * If we're running as the hypervisor we need to enable the LD manually 1007 * otherwise firmware should have done it for us. 1008 */ 1009 if (cpu_has_feature(CPU_FTR_HVMODE)) 1010 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 1011 } 1012 1013 static void __init set_decrementer_max(void) 1014 { 1015 struct device_node *cpu; 1016 u32 bits = 32; 1017 1018 /* Prior to ISAv3 the decrementer is always 32 bit */ 1019 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1020 return; 1021 1022 cpu = of_find_node_by_type(NULL, "cpu"); 1023 1024 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 1025 if (bits > 64 || bits < 32) { 1026 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 1027 bits = 32; 1028 } 1029 1030 /* calculate the signed maximum given this many bits */ 1031 decrementer_max = (1ul << (bits - 1)) - 1; 1032 } 1033 1034 of_node_put(cpu); 1035 1036 pr_info("time_init: %u bit decrementer (max: %llx)\n", 1037 bits, decrementer_max); 1038 } 1039 1040 static void __init init_decrementer_clockevent(void) 1041 { 1042 register_decrementer_clockevent(smp_processor_id()); 1043 } 1044 1045 void secondary_cpu_time_init(void) 1046 { 1047 /* Enable and test the large decrementer for this cpu */ 1048 enable_large_decrementer(); 1049 1050 /* Start the decrementer on CPUs that have manual control 1051 * such as BookE 1052 */ 1053 start_cpu_decrementer(); 1054 1055 /* FIME: Should make unrelatred change to move snapshot_timebase 1056 * call here ! */ 1057 register_decrementer_clockevent(smp_processor_id()); 1058 } 1059 1060 /* This function is only called on the boot processor */ 1061 void __init time_init(void) 1062 { 1063 struct div_result res; 1064 u64 scale; 1065 unsigned shift; 1066 1067 /* Normal PowerPC with timebase register */ 1068 ppc_md.calibrate_decr(); 1069 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1070 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1071 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1072 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1073 1074 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1075 tb_ticks_per_sec = ppc_tb_freq; 1076 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1077 calc_cputime_factors(); 1078 1079 /* 1080 * Compute scale factor for sched_clock. 1081 * The calibrate_decr() function has set tb_ticks_per_sec, 1082 * which is the timebase frequency. 1083 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1084 * the 128-bit result as a 64.64 fixed-point number. 1085 * We then shift that number right until it is less than 1.0, 1086 * giving us the scale factor and shift count to use in 1087 * sched_clock(). 1088 */ 1089 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1090 scale = res.result_low; 1091 for (shift = 0; res.result_high != 0; ++shift) { 1092 scale = (scale >> 1) | (res.result_high << 63); 1093 res.result_high >>= 1; 1094 } 1095 tb_to_ns_scale = scale; 1096 tb_to_ns_shift = shift; 1097 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1098 boot_tb = get_tb(); 1099 1100 /* If platform provided a timezone (pmac), we correct the time */ 1101 if (timezone_offset) { 1102 sys_tz.tz_minuteswest = -timezone_offset / 60; 1103 sys_tz.tz_dsttime = 0; 1104 } 1105 1106 vdso_data->tb_update_count = 0; 1107 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1108 1109 /* initialise and enable the large decrementer (if we have one) */ 1110 set_decrementer_max(); 1111 enable_large_decrementer(); 1112 1113 /* Start the decrementer on CPUs that have manual control 1114 * such as BookE 1115 */ 1116 start_cpu_decrementer(); 1117 1118 /* Register the clocksource */ 1119 clocksource_init(); 1120 1121 init_decrementer_clockevent(); 1122 tick_setup_hrtimer_broadcast(); 1123 1124 of_clk_init(NULL); 1125 } 1126 1127 /* 1128 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1129 * result. 1130 */ 1131 void div128_by_32(u64 dividend_high, u64 dividend_low, 1132 unsigned divisor, struct div_result *dr) 1133 { 1134 unsigned long a, b, c, d; 1135 unsigned long w, x, y, z; 1136 u64 ra, rb, rc; 1137 1138 a = dividend_high >> 32; 1139 b = dividend_high & 0xffffffff; 1140 c = dividend_low >> 32; 1141 d = dividend_low & 0xffffffff; 1142 1143 w = a / divisor; 1144 ra = ((u64)(a - (w * divisor)) << 32) + b; 1145 1146 rb = ((u64) do_div(ra, divisor) << 32) + c; 1147 x = ra; 1148 1149 rc = ((u64) do_div(rb, divisor) << 32) + d; 1150 y = rb; 1151 1152 do_div(rc, divisor); 1153 z = rc; 1154 1155 dr->result_high = ((u64)w << 32) + x; 1156 dr->result_low = ((u64)y << 32) + z; 1157 1158 } 1159 1160 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1161 void calibrate_delay(void) 1162 { 1163 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1164 * as the number of __delay(1) in a jiffy, so make it so 1165 */ 1166 loops_per_jiffy = tb_ticks_per_jiffy; 1167 } 1168 1169 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1170 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1171 { 1172 ppc_md.get_rtc_time(tm); 1173 return 0; 1174 } 1175 1176 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1177 { 1178 if (!ppc_md.set_rtc_time) 1179 return -EOPNOTSUPP; 1180 1181 if (ppc_md.set_rtc_time(tm) < 0) 1182 return -EOPNOTSUPP; 1183 1184 return 0; 1185 } 1186 1187 static const struct rtc_class_ops rtc_generic_ops = { 1188 .read_time = rtc_generic_get_time, 1189 .set_time = rtc_generic_set_time, 1190 }; 1191 1192 static int __init rtc_init(void) 1193 { 1194 struct platform_device *pdev; 1195 1196 if (!ppc_md.get_rtc_time) 1197 return -ENODEV; 1198 1199 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1200 &rtc_generic_ops, 1201 sizeof(rtc_generic_ops)); 1202 1203 return PTR_ERR_OR_ZERO(pdev); 1204 } 1205 1206 device_initcall(rtc_init); 1207 #endif 1208