1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/processor.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <linux/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/asm-prototypes.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/timekeeper_internal.h> 77 78 static u64 timebase_read(struct clocksource *); 79 static struct clocksource clocksource_timebase = { 80 .name = "timebase", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = timebase_read, 85 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 86 }; 87 88 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 89 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 90 91 static int decrementer_set_next_event(unsigned long evt, 92 struct clock_event_device *dev); 93 static int decrementer_shutdown(struct clock_event_device *evt); 94 95 struct clock_event_device decrementer_clockevent = { 96 .name = "decrementer", 97 .rating = 200, 98 .irq = 0, 99 .set_next_event = decrementer_set_next_event, 100 .set_state_oneshot_stopped = decrementer_shutdown, 101 .set_state_shutdown = decrementer_shutdown, 102 .tick_resume = decrementer_shutdown, 103 .features = CLOCK_EVT_FEAT_ONESHOT | 104 CLOCK_EVT_FEAT_C3STOP, 105 }; 106 EXPORT_SYMBOL(decrementer_clockevent); 107 108 DEFINE_PER_CPU(u64, decrementers_next_tb); 109 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 110 111 #define XSEC_PER_SEC (1024*1024) 112 113 #ifdef CONFIG_PPC64 114 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 115 #else 116 /* compute ((xsec << 12) * max) >> 32 */ 117 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 118 #endif 119 120 unsigned long tb_ticks_per_jiffy; 121 unsigned long tb_ticks_per_usec = 100; /* sane default */ 122 EXPORT_SYMBOL(tb_ticks_per_usec); 123 unsigned long tb_ticks_per_sec; 124 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 125 126 DEFINE_SPINLOCK(rtc_lock); 127 EXPORT_SYMBOL_GPL(rtc_lock); 128 129 static u64 tb_to_ns_scale __read_mostly; 130 static unsigned tb_to_ns_shift __read_mostly; 131 static u64 boot_tb __read_mostly; 132 133 extern struct timezone sys_tz; 134 static long timezone_offset; 135 136 unsigned long ppc_proc_freq; 137 EXPORT_SYMBOL_GPL(ppc_proc_freq); 138 unsigned long ppc_tb_freq; 139 EXPORT_SYMBOL_GPL(ppc_tb_freq); 140 141 bool tb_invalid; 142 143 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 144 /* 145 * Factor for converting from cputime_t (timebase ticks) to 146 * microseconds. This is stored as 0.64 fixed-point binary fraction. 147 */ 148 u64 __cputime_usec_factor; 149 EXPORT_SYMBOL(__cputime_usec_factor); 150 151 #ifdef CONFIG_PPC_SPLPAR 152 void (*dtl_consumer)(struct dtl_entry *, u64); 153 #endif 154 155 static void calc_cputime_factors(void) 156 { 157 struct div_result res; 158 159 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 160 __cputime_usec_factor = res.result_low; 161 } 162 163 /* 164 * Read the SPURR on systems that have it, otherwise the PURR, 165 * or if that doesn't exist return the timebase value passed in. 166 */ 167 static inline unsigned long read_spurr(unsigned long tb) 168 { 169 if (cpu_has_feature(CPU_FTR_SPURR)) 170 return mfspr(SPRN_SPURR); 171 if (cpu_has_feature(CPU_FTR_PURR)) 172 return mfspr(SPRN_PURR); 173 return tb; 174 } 175 176 #ifdef CONFIG_PPC_SPLPAR 177 178 #include <asm/dtl.h> 179 180 /* 181 * Scan the dispatch trace log and count up the stolen time. 182 * Should be called with interrupts disabled. 183 */ 184 static u64 scan_dispatch_log(u64 stop_tb) 185 { 186 u64 i = local_paca->dtl_ridx; 187 struct dtl_entry *dtl = local_paca->dtl_curr; 188 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 189 struct lppaca *vpa = local_paca->lppaca_ptr; 190 u64 tb_delta; 191 u64 stolen = 0; 192 u64 dtb; 193 194 if (!dtl) 195 return 0; 196 197 if (i == be64_to_cpu(vpa->dtl_idx)) 198 return 0; 199 while (i < be64_to_cpu(vpa->dtl_idx)) { 200 dtb = be64_to_cpu(dtl->timebase); 201 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 202 be32_to_cpu(dtl->ready_to_enqueue_time); 203 barrier(); 204 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 205 /* buffer has overflowed */ 206 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 207 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 208 continue; 209 } 210 if (dtb > stop_tb) 211 break; 212 if (dtl_consumer) 213 dtl_consumer(dtl, i); 214 stolen += tb_delta; 215 ++i; 216 ++dtl; 217 if (dtl == dtl_end) 218 dtl = local_paca->dispatch_log; 219 } 220 local_paca->dtl_ridx = i; 221 local_paca->dtl_curr = dtl; 222 return stolen; 223 } 224 225 /* 226 * Accumulate stolen time by scanning the dispatch trace log. 227 * Called on entry from user mode. 228 */ 229 void notrace accumulate_stolen_time(void) 230 { 231 u64 sst, ust; 232 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 233 struct cpu_accounting_data *acct = &local_paca->accounting; 234 235 /* We are called early in the exception entry, before 236 * soft/hard_enabled are sync'ed to the expected state 237 * for the exception. We are hard disabled but the PACA 238 * needs to reflect that so various debug stuff doesn't 239 * complain 240 */ 241 irq_soft_mask_set(IRQS_DISABLED); 242 243 sst = scan_dispatch_log(acct->starttime_user); 244 ust = scan_dispatch_log(acct->starttime); 245 acct->stime -= sst; 246 acct->utime -= ust; 247 acct->steal_time += ust + sst; 248 249 irq_soft_mask_set(save_irq_soft_mask); 250 } 251 252 static inline u64 calculate_stolen_time(u64 stop_tb) 253 { 254 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 255 return 0; 256 257 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 258 return scan_dispatch_log(stop_tb); 259 260 return 0; 261 } 262 263 #else /* CONFIG_PPC_SPLPAR */ 264 static inline u64 calculate_stolen_time(u64 stop_tb) 265 { 266 return 0; 267 } 268 269 #endif /* CONFIG_PPC_SPLPAR */ 270 271 /* 272 * Account time for a transition between system, hard irq 273 * or soft irq state. 274 */ 275 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 276 unsigned long now, unsigned long stime) 277 { 278 unsigned long stime_scaled = 0; 279 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 280 unsigned long nowscaled, deltascaled; 281 unsigned long utime, utime_scaled; 282 283 nowscaled = read_spurr(now); 284 deltascaled = nowscaled - acct->startspurr; 285 acct->startspurr = nowscaled; 286 utime = acct->utime - acct->utime_sspurr; 287 acct->utime_sspurr = acct->utime; 288 289 /* 290 * Because we don't read the SPURR on every kernel entry/exit, 291 * deltascaled includes both user and system SPURR ticks. 292 * Apportion these ticks to system SPURR ticks and user 293 * SPURR ticks in the same ratio as the system time (delta) 294 * and user time (udelta) values obtained from the timebase 295 * over the same interval. The system ticks get accounted here; 296 * the user ticks get saved up in paca->user_time_scaled to be 297 * used by account_process_tick. 298 */ 299 stime_scaled = stime; 300 utime_scaled = utime; 301 if (deltascaled != stime + utime) { 302 if (utime) { 303 stime_scaled = deltascaled * stime / (stime + utime); 304 utime_scaled = deltascaled - stime_scaled; 305 } else { 306 stime_scaled = deltascaled; 307 } 308 } 309 acct->utime_scaled += utime_scaled; 310 #endif 311 312 return stime_scaled; 313 } 314 315 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 316 unsigned long *stime_scaled, 317 unsigned long *steal_time) 318 { 319 unsigned long now, stime; 320 321 WARN_ON_ONCE(!irqs_disabled()); 322 323 now = mftb(); 324 stime = now - acct->starttime; 325 acct->starttime = now; 326 327 *stime_scaled = vtime_delta_scaled(acct, now, stime); 328 329 *steal_time = calculate_stolen_time(now); 330 331 return stime; 332 } 333 334 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 335 unsigned long *stime, unsigned long *stime_scaled) 336 { 337 unsigned long steal_time; 338 339 *stime = vtime_delta(acct, stime_scaled, &steal_time); 340 *stime -= min(*stime, steal_time); 341 acct->steal_time += steal_time; 342 } 343 344 void vtime_account_kernel(struct task_struct *tsk) 345 { 346 struct cpu_accounting_data *acct = get_accounting(tsk); 347 unsigned long stime, stime_scaled; 348 349 vtime_delta_kernel(acct, &stime, &stime_scaled); 350 351 if (tsk->flags & PF_VCPU) { 352 acct->gtime += stime; 353 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 354 acct->utime_scaled += stime_scaled; 355 #endif 356 } else { 357 acct->stime += stime; 358 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 359 acct->stime_scaled += stime_scaled; 360 #endif 361 } 362 } 363 EXPORT_SYMBOL_GPL(vtime_account_kernel); 364 365 void vtime_account_idle(struct task_struct *tsk) 366 { 367 unsigned long stime, stime_scaled, steal_time; 368 struct cpu_accounting_data *acct = get_accounting(tsk); 369 370 stime = vtime_delta(acct, &stime_scaled, &steal_time); 371 acct->idle_time += stime + steal_time; 372 } 373 374 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 375 unsigned long *field) 376 { 377 unsigned long stime, stime_scaled; 378 379 vtime_delta_kernel(acct, &stime, &stime_scaled); 380 *field += stime; 381 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 382 acct->stime_scaled += stime_scaled; 383 #endif 384 } 385 386 void vtime_account_softirq(struct task_struct *tsk) 387 { 388 struct cpu_accounting_data *acct = get_accounting(tsk); 389 vtime_account_irq_field(acct, &acct->softirq_time); 390 } 391 392 void vtime_account_hardirq(struct task_struct *tsk) 393 { 394 struct cpu_accounting_data *acct = get_accounting(tsk); 395 vtime_account_irq_field(acct, &acct->hardirq_time); 396 } 397 398 static void vtime_flush_scaled(struct task_struct *tsk, 399 struct cpu_accounting_data *acct) 400 { 401 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 402 if (acct->utime_scaled) 403 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 404 if (acct->stime_scaled) 405 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 406 407 acct->utime_scaled = 0; 408 acct->utime_sspurr = 0; 409 acct->stime_scaled = 0; 410 #endif 411 } 412 413 /* 414 * Account the whole cputime accumulated in the paca 415 * Must be called with interrupts disabled. 416 * Assumes that vtime_account_kernel/idle() has been called 417 * recently (i.e. since the last entry from usermode) so that 418 * get_paca()->user_time_scaled is up to date. 419 */ 420 void vtime_flush(struct task_struct *tsk) 421 { 422 struct cpu_accounting_data *acct = get_accounting(tsk); 423 424 if (acct->utime) 425 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 426 427 if (acct->gtime) 428 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 429 430 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 431 account_steal_time(cputime_to_nsecs(acct->steal_time)); 432 acct->steal_time = 0; 433 } 434 435 if (acct->idle_time) 436 account_idle_time(cputime_to_nsecs(acct->idle_time)); 437 438 if (acct->stime) 439 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 440 CPUTIME_SYSTEM); 441 442 if (acct->hardirq_time) 443 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 444 CPUTIME_IRQ); 445 if (acct->softirq_time) 446 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 447 CPUTIME_SOFTIRQ); 448 449 vtime_flush_scaled(tsk, acct); 450 451 acct->utime = 0; 452 acct->gtime = 0; 453 acct->idle_time = 0; 454 acct->stime = 0; 455 acct->hardirq_time = 0; 456 acct->softirq_time = 0; 457 } 458 459 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 460 #define calc_cputime_factors() 461 #endif 462 463 void __delay(unsigned long loops) 464 { 465 unsigned long start; 466 467 spin_begin(); 468 if (tb_invalid) { 469 /* 470 * TB is in error state and isn't ticking anymore. 471 * HMI handler was unable to recover from TB error. 472 * Return immediately, so that kernel won't get stuck here. 473 */ 474 spin_cpu_relax(); 475 } else { 476 start = mftb(); 477 while (mftb() - start < loops) 478 spin_cpu_relax(); 479 } 480 spin_end(); 481 } 482 EXPORT_SYMBOL(__delay); 483 484 void udelay(unsigned long usecs) 485 { 486 __delay(tb_ticks_per_usec * usecs); 487 } 488 EXPORT_SYMBOL(udelay); 489 490 #ifdef CONFIG_SMP 491 unsigned long profile_pc(struct pt_regs *regs) 492 { 493 unsigned long pc = instruction_pointer(regs); 494 495 if (in_lock_functions(pc)) 496 return regs->link; 497 498 return pc; 499 } 500 EXPORT_SYMBOL(profile_pc); 501 #endif 502 503 #ifdef CONFIG_IRQ_WORK 504 505 /* 506 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 507 */ 508 #ifdef CONFIG_PPC64 509 static inline unsigned long test_irq_work_pending(void) 510 { 511 unsigned long x; 512 513 asm volatile("lbz %0,%1(13)" 514 : "=r" (x) 515 : "i" (offsetof(struct paca_struct, irq_work_pending))); 516 return x; 517 } 518 519 static inline void set_irq_work_pending_flag(void) 520 { 521 asm volatile("stb %0,%1(13)" : : 522 "r" (1), 523 "i" (offsetof(struct paca_struct, irq_work_pending))); 524 } 525 526 static inline void clear_irq_work_pending(void) 527 { 528 asm volatile("stb %0,%1(13)" : : 529 "r" (0), 530 "i" (offsetof(struct paca_struct, irq_work_pending))); 531 } 532 533 #else /* 32-bit */ 534 535 DEFINE_PER_CPU(u8, irq_work_pending); 536 537 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 538 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 539 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 540 541 #endif /* 32 vs 64 bit */ 542 543 void arch_irq_work_raise(void) 544 { 545 /* 546 * 64-bit code that uses irq soft-mask can just cause an immediate 547 * interrupt here that gets soft masked, if this is called under 548 * local_irq_disable(). It might be possible to prevent that happening 549 * by noticing interrupts are disabled and setting decrementer pending 550 * to be replayed when irqs are enabled. The problem there is that 551 * tracing can call irq_work_raise, including in code that does low 552 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 553 * which could get tangled up if we're messing with the same state 554 * here. 555 */ 556 preempt_disable(); 557 set_irq_work_pending_flag(); 558 set_dec(1); 559 preempt_enable(); 560 } 561 562 #else /* CONFIG_IRQ_WORK */ 563 564 #define test_irq_work_pending() 0 565 #define clear_irq_work_pending() 566 567 #endif /* CONFIG_IRQ_WORK */ 568 569 /* 570 * timer_interrupt - gets called when the decrementer overflows, 571 * with interrupts disabled. 572 */ 573 void timer_interrupt(struct pt_regs *regs) 574 { 575 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 576 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 577 struct pt_regs *old_regs; 578 u64 now; 579 580 /* 581 * Some implementations of hotplug will get timer interrupts while 582 * offline, just ignore these. 583 */ 584 if (unlikely(!cpu_online(smp_processor_id()))) { 585 set_dec(decrementer_max); 586 return; 587 } 588 589 /* Ensure a positive value is written to the decrementer, or else 590 * some CPUs will continue to take decrementer exceptions. When the 591 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 592 * 31 bits, which is about 4 seconds on most systems, which gives 593 * the watchdog a chance of catching timer interrupt hard lockups. 594 */ 595 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 596 set_dec(0x7fffffff); 597 else 598 set_dec(decrementer_max); 599 600 /* Conditionally hard-enable interrupts now that the DEC has been 601 * bumped to its maximum value 602 */ 603 may_hard_irq_enable(); 604 605 606 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 607 if (atomic_read(&ppc_n_lost_interrupts) != 0) 608 do_IRQ(regs); 609 #endif 610 611 old_regs = set_irq_regs(regs); 612 irq_enter(); 613 trace_timer_interrupt_entry(regs); 614 615 if (test_irq_work_pending()) { 616 clear_irq_work_pending(); 617 irq_work_run(); 618 } 619 620 now = get_tb(); 621 if (now >= *next_tb) { 622 *next_tb = ~(u64)0; 623 if (evt->event_handler) 624 evt->event_handler(evt); 625 __this_cpu_inc(irq_stat.timer_irqs_event); 626 } else { 627 now = *next_tb - now; 628 if (now <= decrementer_max) 629 set_dec(now); 630 /* We may have raced with new irq work */ 631 if (test_irq_work_pending()) 632 set_dec(1); 633 __this_cpu_inc(irq_stat.timer_irqs_others); 634 } 635 636 trace_timer_interrupt_exit(regs); 637 irq_exit(); 638 set_irq_regs(old_regs); 639 } 640 EXPORT_SYMBOL(timer_interrupt); 641 642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 643 void timer_broadcast_interrupt(void) 644 { 645 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 646 647 *next_tb = ~(u64)0; 648 tick_receive_broadcast(); 649 __this_cpu_inc(irq_stat.broadcast_irqs_event); 650 } 651 #endif 652 653 #ifdef CONFIG_SUSPEND 654 static void generic_suspend_disable_irqs(void) 655 { 656 /* Disable the decrementer, so that it doesn't interfere 657 * with suspending. 658 */ 659 660 set_dec(decrementer_max); 661 local_irq_disable(); 662 set_dec(decrementer_max); 663 } 664 665 static void generic_suspend_enable_irqs(void) 666 { 667 local_irq_enable(); 668 } 669 670 /* Overrides the weak version in kernel/power/main.c */ 671 void arch_suspend_disable_irqs(void) 672 { 673 if (ppc_md.suspend_disable_irqs) 674 ppc_md.suspend_disable_irqs(); 675 generic_suspend_disable_irqs(); 676 } 677 678 /* Overrides the weak version in kernel/power/main.c */ 679 void arch_suspend_enable_irqs(void) 680 { 681 generic_suspend_enable_irqs(); 682 if (ppc_md.suspend_enable_irqs) 683 ppc_md.suspend_enable_irqs(); 684 } 685 #endif 686 687 unsigned long long tb_to_ns(unsigned long long ticks) 688 { 689 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 690 } 691 EXPORT_SYMBOL_GPL(tb_to_ns); 692 693 /* 694 * Scheduler clock - returns current time in nanosec units. 695 * 696 * Note: mulhdu(a, b) (multiply high double unsigned) returns 697 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 698 * are 64-bit unsigned numbers. 699 */ 700 notrace unsigned long long sched_clock(void) 701 { 702 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 703 } 704 705 706 #ifdef CONFIG_PPC_PSERIES 707 708 /* 709 * Running clock - attempts to give a view of time passing for a virtualised 710 * kernels. 711 * Uses the VTB register if available otherwise a next best guess. 712 */ 713 unsigned long long running_clock(void) 714 { 715 /* 716 * Don't read the VTB as a host since KVM does not switch in host 717 * timebase into the VTB when it takes a guest off the CPU, reading the 718 * VTB would result in reading 'last switched out' guest VTB. 719 * 720 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 721 * would be unsafe to rely only on the #ifdef above. 722 */ 723 if (firmware_has_feature(FW_FEATURE_LPAR) && 724 cpu_has_feature(CPU_FTR_ARCH_207S)) 725 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 726 727 /* 728 * This is a next best approximation without a VTB. 729 * On a host which is running bare metal there should never be any stolen 730 * time and on a host which doesn't do any virtualisation TB *should* equal 731 * VTB so it makes no difference anyway. 732 */ 733 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 734 } 735 #endif 736 737 static int __init get_freq(char *name, int cells, unsigned long *val) 738 { 739 struct device_node *cpu; 740 const __be32 *fp; 741 int found = 0; 742 743 /* The cpu node should have timebase and clock frequency properties */ 744 cpu = of_find_node_by_type(NULL, "cpu"); 745 746 if (cpu) { 747 fp = of_get_property(cpu, name, NULL); 748 if (fp) { 749 found = 1; 750 *val = of_read_ulong(fp, cells); 751 } 752 753 of_node_put(cpu); 754 } 755 756 return found; 757 } 758 759 static void start_cpu_decrementer(void) 760 { 761 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 762 unsigned int tcr; 763 764 /* Clear any pending timer interrupts */ 765 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 766 767 tcr = mfspr(SPRN_TCR); 768 /* 769 * The watchdog may have already been enabled by u-boot. So leave 770 * TRC[WP] (Watchdog Period) alone. 771 */ 772 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 773 tcr |= TCR_DIE; /* Enable decrementer */ 774 mtspr(SPRN_TCR, tcr); 775 #endif 776 } 777 778 void __init generic_calibrate_decr(void) 779 { 780 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 781 782 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 783 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 784 785 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 786 "(not found)\n"); 787 } 788 789 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 790 791 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 792 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 793 794 printk(KERN_ERR "WARNING: Estimating processor frequency " 795 "(not found)\n"); 796 } 797 } 798 799 int update_persistent_clock64(struct timespec64 now) 800 { 801 struct rtc_time tm; 802 803 if (!ppc_md.set_rtc_time) 804 return -ENODEV; 805 806 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 807 808 return ppc_md.set_rtc_time(&tm); 809 } 810 811 static void __read_persistent_clock(struct timespec64 *ts) 812 { 813 struct rtc_time tm; 814 static int first = 1; 815 816 ts->tv_nsec = 0; 817 /* XXX this is a litle fragile but will work okay in the short term */ 818 if (first) { 819 first = 0; 820 if (ppc_md.time_init) 821 timezone_offset = ppc_md.time_init(); 822 823 /* get_boot_time() isn't guaranteed to be safe to call late */ 824 if (ppc_md.get_boot_time) { 825 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 826 return; 827 } 828 } 829 if (!ppc_md.get_rtc_time) { 830 ts->tv_sec = 0; 831 return; 832 } 833 ppc_md.get_rtc_time(&tm); 834 835 ts->tv_sec = rtc_tm_to_time64(&tm); 836 } 837 838 void read_persistent_clock64(struct timespec64 *ts) 839 { 840 __read_persistent_clock(ts); 841 842 /* Sanitize it in case real time clock is set below EPOCH */ 843 if (ts->tv_sec < 0) { 844 ts->tv_sec = 0; 845 ts->tv_nsec = 0; 846 } 847 848 } 849 850 /* clocksource code */ 851 static notrace u64 timebase_read(struct clocksource *cs) 852 { 853 return (u64)get_tb(); 854 } 855 856 static void __init clocksource_init(void) 857 { 858 struct clocksource *clock = &clocksource_timebase; 859 860 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 861 printk(KERN_ERR "clocksource: %s is already registered\n", 862 clock->name); 863 return; 864 } 865 866 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 867 clock->name, clock->mult, clock->shift); 868 } 869 870 static int decrementer_set_next_event(unsigned long evt, 871 struct clock_event_device *dev) 872 { 873 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 874 set_dec(evt); 875 876 /* We may have raced with new irq work */ 877 if (test_irq_work_pending()) 878 set_dec(1); 879 880 return 0; 881 } 882 883 static int decrementer_shutdown(struct clock_event_device *dev) 884 { 885 decrementer_set_next_event(decrementer_max, dev); 886 return 0; 887 } 888 889 static void register_decrementer_clockevent(int cpu) 890 { 891 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 892 893 *dec = decrementer_clockevent; 894 dec->cpumask = cpumask_of(cpu); 895 896 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 897 898 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 899 dec->name, dec->mult, dec->shift, cpu); 900 901 /* Set values for KVM, see kvm_emulate_dec() */ 902 decrementer_clockevent.mult = dec->mult; 903 decrementer_clockevent.shift = dec->shift; 904 } 905 906 static void enable_large_decrementer(void) 907 { 908 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 909 return; 910 911 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 912 return; 913 914 /* 915 * If we're running as the hypervisor we need to enable the LD manually 916 * otherwise firmware should have done it for us. 917 */ 918 if (cpu_has_feature(CPU_FTR_HVMODE)) 919 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 920 } 921 922 static void __init set_decrementer_max(void) 923 { 924 struct device_node *cpu; 925 u32 bits = 32; 926 927 /* Prior to ISAv3 the decrementer is always 32 bit */ 928 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 929 return; 930 931 cpu = of_find_node_by_type(NULL, "cpu"); 932 933 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 934 if (bits > 64 || bits < 32) { 935 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 936 bits = 32; 937 } 938 939 /* calculate the signed maximum given this many bits */ 940 decrementer_max = (1ul << (bits - 1)) - 1; 941 } 942 943 of_node_put(cpu); 944 945 pr_info("time_init: %u bit decrementer (max: %llx)\n", 946 bits, decrementer_max); 947 } 948 949 static void __init init_decrementer_clockevent(void) 950 { 951 register_decrementer_clockevent(smp_processor_id()); 952 } 953 954 void secondary_cpu_time_init(void) 955 { 956 /* Enable and test the large decrementer for this cpu */ 957 enable_large_decrementer(); 958 959 /* Start the decrementer on CPUs that have manual control 960 * such as BookE 961 */ 962 start_cpu_decrementer(); 963 964 /* FIME: Should make unrelatred change to move snapshot_timebase 965 * call here ! */ 966 register_decrementer_clockevent(smp_processor_id()); 967 } 968 969 /* This function is only called on the boot processor */ 970 void __init time_init(void) 971 { 972 struct div_result res; 973 u64 scale; 974 unsigned shift; 975 976 /* Normal PowerPC with timebase register */ 977 ppc_md.calibrate_decr(); 978 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 979 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 980 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 981 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 982 983 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 984 tb_ticks_per_sec = ppc_tb_freq; 985 tb_ticks_per_usec = ppc_tb_freq / 1000000; 986 calc_cputime_factors(); 987 988 /* 989 * Compute scale factor for sched_clock. 990 * The calibrate_decr() function has set tb_ticks_per_sec, 991 * which is the timebase frequency. 992 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 993 * the 128-bit result as a 64.64 fixed-point number. 994 * We then shift that number right until it is less than 1.0, 995 * giving us the scale factor and shift count to use in 996 * sched_clock(). 997 */ 998 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 999 scale = res.result_low; 1000 for (shift = 0; res.result_high != 0; ++shift) { 1001 scale = (scale >> 1) | (res.result_high << 63); 1002 res.result_high >>= 1; 1003 } 1004 tb_to_ns_scale = scale; 1005 tb_to_ns_shift = shift; 1006 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1007 boot_tb = get_tb(); 1008 1009 /* If platform provided a timezone (pmac), we correct the time */ 1010 if (timezone_offset) { 1011 sys_tz.tz_minuteswest = -timezone_offset / 60; 1012 sys_tz.tz_dsttime = 0; 1013 } 1014 1015 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1016 1017 /* initialise and enable the large decrementer (if we have one) */ 1018 set_decrementer_max(); 1019 enable_large_decrementer(); 1020 1021 /* Start the decrementer on CPUs that have manual control 1022 * such as BookE 1023 */ 1024 start_cpu_decrementer(); 1025 1026 /* Register the clocksource */ 1027 clocksource_init(); 1028 1029 init_decrementer_clockevent(); 1030 tick_setup_hrtimer_broadcast(); 1031 1032 of_clk_init(NULL); 1033 } 1034 1035 /* 1036 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1037 * result. 1038 */ 1039 void div128_by_32(u64 dividend_high, u64 dividend_low, 1040 unsigned divisor, struct div_result *dr) 1041 { 1042 unsigned long a, b, c, d; 1043 unsigned long w, x, y, z; 1044 u64 ra, rb, rc; 1045 1046 a = dividend_high >> 32; 1047 b = dividend_high & 0xffffffff; 1048 c = dividend_low >> 32; 1049 d = dividend_low & 0xffffffff; 1050 1051 w = a / divisor; 1052 ra = ((u64)(a - (w * divisor)) << 32) + b; 1053 1054 rb = ((u64) do_div(ra, divisor) << 32) + c; 1055 x = ra; 1056 1057 rc = ((u64) do_div(rb, divisor) << 32) + d; 1058 y = rb; 1059 1060 do_div(rc, divisor); 1061 z = rc; 1062 1063 dr->result_high = ((u64)w << 32) + x; 1064 dr->result_low = ((u64)y << 32) + z; 1065 1066 } 1067 1068 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1069 void calibrate_delay(void) 1070 { 1071 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1072 * as the number of __delay(1) in a jiffy, so make it so 1073 */ 1074 loops_per_jiffy = tb_ticks_per_jiffy; 1075 } 1076 1077 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1078 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1079 { 1080 ppc_md.get_rtc_time(tm); 1081 return 0; 1082 } 1083 1084 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1085 { 1086 if (!ppc_md.set_rtc_time) 1087 return -EOPNOTSUPP; 1088 1089 if (ppc_md.set_rtc_time(tm) < 0) 1090 return -EOPNOTSUPP; 1091 1092 return 0; 1093 } 1094 1095 static const struct rtc_class_ops rtc_generic_ops = { 1096 .read_time = rtc_generic_get_time, 1097 .set_time = rtc_generic_set_time, 1098 }; 1099 1100 static int __init rtc_init(void) 1101 { 1102 struct platform_device *pdev; 1103 1104 if (!ppc_md.get_rtc_time) 1105 return -ENODEV; 1106 1107 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1108 &rtc_generic_ops, 1109 sizeof(rtc_generic_ops)); 1110 1111 return PTR_ERR_OR_ZERO(pdev); 1112 } 1113 1114 device_initcall(rtc_init); 1115 #endif 1116