xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 7f92bc56)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <linux/suspend.h>
59 #include <asm/trace.h>
60 
61 #include <asm/io.h>
62 #include <asm/processor.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <asm/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/prom.h>
69 #include <asm/irq.h>
70 #include <asm/div64.h>
71 #include <asm/smp.h>
72 #include <asm/vdso_datapage.h>
73 #include <asm/firmware.h>
74 #include <asm/cputime.h>
75 
76 /* powerpc clocksource/clockevent code */
77 
78 #include <linux/clockchips.h>
79 #include <linux/timekeeper_internal.h>
80 
81 static cycle_t rtc_read(struct clocksource *);
82 static struct clocksource clocksource_rtc = {
83 	.name         = "rtc",
84 	.rating       = 400,
85 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
86 	.mask         = CLOCKSOURCE_MASK(64),
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(struct clocksource *);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.read         = timebase_read,
97 };
98 
99 #define DECREMENTER_MAX	0x7fffffff
100 
101 static int decrementer_set_next_event(unsigned long evt,
102 				      struct clock_event_device *dev);
103 static int decrementer_shutdown(struct clock_event_device *evt);
104 
105 struct clock_event_device decrementer_clockevent = {
106 	.name			= "decrementer",
107 	.rating			= 200,
108 	.irq			= 0,
109 	.set_next_event		= decrementer_set_next_event,
110 	.set_state_shutdown	= decrementer_shutdown,
111 	.tick_resume		= decrementer_shutdown,
112 	.features		= CLOCK_EVT_FEAT_ONESHOT |
113 				  CLOCK_EVT_FEAT_C3STOP,
114 };
115 EXPORT_SYMBOL(decrementer_clockevent);
116 
117 DEFINE_PER_CPU(u64, decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119 
120 #define XSEC_PER_SEC (1024*1024)
121 
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
127 #endif
128 
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
134 
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137 
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141 
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144 
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149 
150 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
151 /*
152  * Factors for converting from cputime_t (timebase ticks) to
153  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
154  * These are all stored as 0.64 fixed-point binary fractions.
155  */
156 u64 __cputime_jiffies_factor;
157 EXPORT_SYMBOL(__cputime_jiffies_factor);
158 u64 __cputime_usec_factor;
159 EXPORT_SYMBOL(__cputime_usec_factor);
160 u64 __cputime_sec_factor;
161 EXPORT_SYMBOL(__cputime_sec_factor);
162 u64 __cputime_clockt_factor;
163 EXPORT_SYMBOL(__cputime_clockt_factor);
164 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
165 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
166 
167 cputime_t cputime_one_jiffy;
168 
169 void (*dtl_consumer)(struct dtl_entry *, u64);
170 
171 static void calc_cputime_factors(void)
172 {
173 	struct div_result res;
174 
175 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
176 	__cputime_jiffies_factor = res.result_low;
177 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
178 	__cputime_usec_factor = res.result_low;
179 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
180 	__cputime_sec_factor = res.result_low;
181 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
182 	__cputime_clockt_factor = res.result_low;
183 }
184 
185 /*
186  * Read the SPURR on systems that have it, otherwise the PURR,
187  * or if that doesn't exist return the timebase value passed in.
188  */
189 static u64 read_spurr(u64 tb)
190 {
191 	if (cpu_has_feature(CPU_FTR_SPURR))
192 		return mfspr(SPRN_SPURR);
193 	if (cpu_has_feature(CPU_FTR_PURR))
194 		return mfspr(SPRN_PURR);
195 	return tb;
196 }
197 
198 #ifdef CONFIG_PPC_SPLPAR
199 
200 /*
201  * Scan the dispatch trace log and count up the stolen time.
202  * Should be called with interrupts disabled.
203  */
204 static u64 scan_dispatch_log(u64 stop_tb)
205 {
206 	u64 i = local_paca->dtl_ridx;
207 	struct dtl_entry *dtl = local_paca->dtl_curr;
208 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
209 	struct lppaca *vpa = local_paca->lppaca_ptr;
210 	u64 tb_delta;
211 	u64 stolen = 0;
212 	u64 dtb;
213 
214 	if (!dtl)
215 		return 0;
216 
217 	if (i == be64_to_cpu(vpa->dtl_idx))
218 		return 0;
219 	while (i < be64_to_cpu(vpa->dtl_idx)) {
220 		dtb = be64_to_cpu(dtl->timebase);
221 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
222 			be32_to_cpu(dtl->ready_to_enqueue_time);
223 		barrier();
224 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
225 			/* buffer has overflowed */
226 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
227 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
228 			continue;
229 		}
230 		if (dtb > stop_tb)
231 			break;
232 		if (dtl_consumer)
233 			dtl_consumer(dtl, i);
234 		stolen += tb_delta;
235 		++i;
236 		++dtl;
237 		if (dtl == dtl_end)
238 			dtl = local_paca->dispatch_log;
239 	}
240 	local_paca->dtl_ridx = i;
241 	local_paca->dtl_curr = dtl;
242 	return stolen;
243 }
244 
245 /*
246  * Accumulate stolen time by scanning the dispatch trace log.
247  * Called on entry from user mode.
248  */
249 void accumulate_stolen_time(void)
250 {
251 	u64 sst, ust;
252 
253 	u8 save_soft_enabled = local_paca->soft_enabled;
254 
255 	/* We are called early in the exception entry, before
256 	 * soft/hard_enabled are sync'ed to the expected state
257 	 * for the exception. We are hard disabled but the PACA
258 	 * needs to reflect that so various debug stuff doesn't
259 	 * complain
260 	 */
261 	local_paca->soft_enabled = 0;
262 
263 	sst = scan_dispatch_log(local_paca->starttime_user);
264 	ust = scan_dispatch_log(local_paca->starttime);
265 	local_paca->system_time -= sst;
266 	local_paca->user_time -= ust;
267 	local_paca->stolen_time += ust + sst;
268 
269 	local_paca->soft_enabled = save_soft_enabled;
270 }
271 
272 static inline u64 calculate_stolen_time(u64 stop_tb)
273 {
274 	u64 stolen = 0;
275 
276 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
277 		stolen = scan_dispatch_log(stop_tb);
278 		get_paca()->system_time -= stolen;
279 	}
280 
281 	stolen += get_paca()->stolen_time;
282 	get_paca()->stolen_time = 0;
283 	return stolen;
284 }
285 
286 #else /* CONFIG_PPC_SPLPAR */
287 static inline u64 calculate_stolen_time(u64 stop_tb)
288 {
289 	return 0;
290 }
291 
292 #endif /* CONFIG_PPC_SPLPAR */
293 
294 /*
295  * Account time for a transition between system, hard irq
296  * or soft irq state.
297  */
298 static u64 vtime_delta(struct task_struct *tsk,
299 			u64 *sys_scaled, u64 *stolen)
300 {
301 	u64 now, nowscaled, deltascaled;
302 	u64 udelta, delta, user_scaled;
303 
304 	WARN_ON_ONCE(!irqs_disabled());
305 
306 	now = mftb();
307 	nowscaled = read_spurr(now);
308 	get_paca()->system_time += now - get_paca()->starttime;
309 	get_paca()->starttime = now;
310 	deltascaled = nowscaled - get_paca()->startspurr;
311 	get_paca()->startspurr = nowscaled;
312 
313 	*stolen = calculate_stolen_time(now);
314 
315 	delta = get_paca()->system_time;
316 	get_paca()->system_time = 0;
317 	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
318 	get_paca()->utime_sspurr = get_paca()->user_time;
319 
320 	/*
321 	 * Because we don't read the SPURR on every kernel entry/exit,
322 	 * deltascaled includes both user and system SPURR ticks.
323 	 * Apportion these ticks to system SPURR ticks and user
324 	 * SPURR ticks in the same ratio as the system time (delta)
325 	 * and user time (udelta) values obtained from the timebase
326 	 * over the same interval.  The system ticks get accounted here;
327 	 * the user ticks get saved up in paca->user_time_scaled to be
328 	 * used by account_process_tick.
329 	 */
330 	*sys_scaled = delta;
331 	user_scaled = udelta;
332 	if (deltascaled != delta + udelta) {
333 		if (udelta) {
334 			*sys_scaled = deltascaled * delta / (delta + udelta);
335 			user_scaled = deltascaled - *sys_scaled;
336 		} else {
337 			*sys_scaled = deltascaled;
338 		}
339 	}
340 	get_paca()->user_time_scaled += user_scaled;
341 
342 	return delta;
343 }
344 
345 void vtime_account_system(struct task_struct *tsk)
346 {
347 	u64 delta, sys_scaled, stolen;
348 
349 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
350 	account_system_time(tsk, 0, delta, sys_scaled);
351 	if (stolen)
352 		account_steal_time(stolen);
353 }
354 EXPORT_SYMBOL_GPL(vtime_account_system);
355 
356 void vtime_account_idle(struct task_struct *tsk)
357 {
358 	u64 delta, sys_scaled, stolen;
359 
360 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
361 	account_idle_time(delta + stolen);
362 }
363 
364 /*
365  * Transfer the user time accumulated in the paca
366  * by the exception entry and exit code to the generic
367  * process user time records.
368  * Must be called with interrupts disabled.
369  * Assumes that vtime_account_system/idle() has been called
370  * recently (i.e. since the last entry from usermode) so that
371  * get_paca()->user_time_scaled is up to date.
372  */
373 void vtime_account_user(struct task_struct *tsk)
374 {
375 	cputime_t utime, utimescaled;
376 
377 	utime = get_paca()->user_time;
378 	utimescaled = get_paca()->user_time_scaled;
379 	get_paca()->user_time = 0;
380 	get_paca()->user_time_scaled = 0;
381 	get_paca()->utime_sspurr = 0;
382 	account_user_time(tsk, utime, utimescaled);
383 }
384 
385 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
386 #define calc_cputime_factors()
387 #endif
388 
389 void __delay(unsigned long loops)
390 {
391 	unsigned long start;
392 	int diff;
393 
394 	if (__USE_RTC()) {
395 		start = get_rtcl();
396 		do {
397 			/* the RTCL register wraps at 1000000000 */
398 			diff = get_rtcl() - start;
399 			if (diff < 0)
400 				diff += 1000000000;
401 		} while (diff < loops);
402 	} else {
403 		start = get_tbl();
404 		while (get_tbl() - start < loops)
405 			HMT_low();
406 		HMT_medium();
407 	}
408 }
409 EXPORT_SYMBOL(__delay);
410 
411 void udelay(unsigned long usecs)
412 {
413 	__delay(tb_ticks_per_usec * usecs);
414 }
415 EXPORT_SYMBOL(udelay);
416 
417 #ifdef CONFIG_SMP
418 unsigned long profile_pc(struct pt_regs *regs)
419 {
420 	unsigned long pc = instruction_pointer(regs);
421 
422 	if (in_lock_functions(pc))
423 		return regs->link;
424 
425 	return pc;
426 }
427 EXPORT_SYMBOL(profile_pc);
428 #endif
429 
430 #ifdef CONFIG_IRQ_WORK
431 
432 /*
433  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
434  */
435 #ifdef CONFIG_PPC64
436 static inline unsigned long test_irq_work_pending(void)
437 {
438 	unsigned long x;
439 
440 	asm volatile("lbz %0,%1(13)"
441 		: "=r" (x)
442 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
443 	return x;
444 }
445 
446 static inline void set_irq_work_pending_flag(void)
447 {
448 	asm volatile("stb %0,%1(13)" : :
449 		"r" (1),
450 		"i" (offsetof(struct paca_struct, irq_work_pending)));
451 }
452 
453 static inline void clear_irq_work_pending(void)
454 {
455 	asm volatile("stb %0,%1(13)" : :
456 		"r" (0),
457 		"i" (offsetof(struct paca_struct, irq_work_pending)));
458 }
459 
460 #else /* 32-bit */
461 
462 DEFINE_PER_CPU(u8, irq_work_pending);
463 
464 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
465 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
466 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
467 
468 #endif /* 32 vs 64 bit */
469 
470 void arch_irq_work_raise(void)
471 {
472 	preempt_disable();
473 	set_irq_work_pending_flag();
474 	set_dec(1);
475 	preempt_enable();
476 }
477 
478 #else  /* CONFIG_IRQ_WORK */
479 
480 #define test_irq_work_pending()	0
481 #define clear_irq_work_pending()
482 
483 #endif /* CONFIG_IRQ_WORK */
484 
485 static void __timer_interrupt(void)
486 {
487 	struct pt_regs *regs = get_irq_regs();
488 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
489 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
490 	u64 now;
491 
492 	trace_timer_interrupt_entry(regs);
493 
494 	if (test_irq_work_pending()) {
495 		clear_irq_work_pending();
496 		irq_work_run();
497 	}
498 
499 	now = get_tb_or_rtc();
500 	if (now >= *next_tb) {
501 		*next_tb = ~(u64)0;
502 		if (evt->event_handler)
503 			evt->event_handler(evt);
504 		__this_cpu_inc(irq_stat.timer_irqs_event);
505 	} else {
506 		now = *next_tb - now;
507 		if (now <= DECREMENTER_MAX)
508 			set_dec((int)now);
509 		/* We may have raced with new irq work */
510 		if (test_irq_work_pending())
511 			set_dec(1);
512 		__this_cpu_inc(irq_stat.timer_irqs_others);
513 	}
514 
515 #ifdef CONFIG_PPC64
516 	/* collect purr register values often, for accurate calculations */
517 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
518 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
519 		cu->current_tb = mfspr(SPRN_PURR);
520 	}
521 #endif
522 
523 	trace_timer_interrupt_exit(regs);
524 }
525 
526 /*
527  * timer_interrupt - gets called when the decrementer overflows,
528  * with interrupts disabled.
529  */
530 void timer_interrupt(struct pt_regs * regs)
531 {
532 	struct pt_regs *old_regs;
533 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
534 
535 	/* Ensure a positive value is written to the decrementer, or else
536 	 * some CPUs will continue to take decrementer exceptions.
537 	 */
538 	set_dec(DECREMENTER_MAX);
539 
540 	/* Some implementations of hotplug will get timer interrupts while
541 	 * offline, just ignore these and we also need to set
542 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
543 	 * don't replay timer interrupt when return, otherwise we'll trap
544 	 * here infinitely :(
545 	 */
546 	if (!cpu_online(smp_processor_id())) {
547 		*next_tb = ~(u64)0;
548 		return;
549 	}
550 
551 	/* Conditionally hard-enable interrupts now that the DEC has been
552 	 * bumped to its maximum value
553 	 */
554 	may_hard_irq_enable();
555 
556 
557 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
558 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
559 		do_IRQ(regs);
560 #endif
561 
562 	old_regs = set_irq_regs(regs);
563 	irq_enter();
564 
565 	__timer_interrupt();
566 	irq_exit();
567 	set_irq_regs(old_regs);
568 }
569 
570 /*
571  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
572  * left pending on exit from a KVM guest.  We don't need to do anything
573  * to clear them, as they are edge-triggered.
574  */
575 void hdec_interrupt(struct pt_regs *regs)
576 {
577 }
578 
579 #ifdef CONFIG_SUSPEND
580 static void generic_suspend_disable_irqs(void)
581 {
582 	/* Disable the decrementer, so that it doesn't interfere
583 	 * with suspending.
584 	 */
585 
586 	set_dec(DECREMENTER_MAX);
587 	local_irq_disable();
588 	set_dec(DECREMENTER_MAX);
589 }
590 
591 static void generic_suspend_enable_irqs(void)
592 {
593 	local_irq_enable();
594 }
595 
596 /* Overrides the weak version in kernel/power/main.c */
597 void arch_suspend_disable_irqs(void)
598 {
599 	if (ppc_md.suspend_disable_irqs)
600 		ppc_md.suspend_disable_irqs();
601 	generic_suspend_disable_irqs();
602 }
603 
604 /* Overrides the weak version in kernel/power/main.c */
605 void arch_suspend_enable_irqs(void)
606 {
607 	generic_suspend_enable_irqs();
608 	if (ppc_md.suspend_enable_irqs)
609 		ppc_md.suspend_enable_irqs();
610 }
611 #endif
612 
613 unsigned long long tb_to_ns(unsigned long long ticks)
614 {
615 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
616 }
617 EXPORT_SYMBOL_GPL(tb_to_ns);
618 
619 /*
620  * Scheduler clock - returns current time in nanosec units.
621  *
622  * Note: mulhdu(a, b) (multiply high double unsigned) returns
623  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
624  * are 64-bit unsigned numbers.
625  */
626 unsigned long long sched_clock(void)
627 {
628 	if (__USE_RTC())
629 		return get_rtc();
630 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
631 }
632 
633 
634 #ifdef CONFIG_PPC_PSERIES
635 
636 /*
637  * Running clock - attempts to give a view of time passing for a virtualised
638  * kernels.
639  * Uses the VTB register if available otherwise a next best guess.
640  */
641 unsigned long long running_clock(void)
642 {
643 	/*
644 	 * Don't read the VTB as a host since KVM does not switch in host
645 	 * timebase into the VTB when it takes a guest off the CPU, reading the
646 	 * VTB would result in reading 'last switched out' guest VTB.
647 	 *
648 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
649 	 * would be unsafe to rely only on the #ifdef above.
650 	 */
651 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
652 	    cpu_has_feature(CPU_FTR_ARCH_207S))
653 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
654 
655 	/*
656 	 * This is a next best approximation without a VTB.
657 	 * On a host which is running bare metal there should never be any stolen
658 	 * time and on a host which doesn't do any virtualisation TB *should* equal
659 	 * VTB so it makes no difference anyway.
660 	 */
661 	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
662 }
663 #endif
664 
665 static int __init get_freq(char *name, int cells, unsigned long *val)
666 {
667 	struct device_node *cpu;
668 	const __be32 *fp;
669 	int found = 0;
670 
671 	/* The cpu node should have timebase and clock frequency properties */
672 	cpu = of_find_node_by_type(NULL, "cpu");
673 
674 	if (cpu) {
675 		fp = of_get_property(cpu, name, NULL);
676 		if (fp) {
677 			found = 1;
678 			*val = of_read_ulong(fp, cells);
679 		}
680 
681 		of_node_put(cpu);
682 	}
683 
684 	return found;
685 }
686 
687 static void start_cpu_decrementer(void)
688 {
689 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
690 	/* Clear any pending timer interrupts */
691 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
692 
693 	/* Enable decrementer interrupt */
694 	mtspr(SPRN_TCR, TCR_DIE);
695 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
696 }
697 
698 void __init generic_calibrate_decr(void)
699 {
700 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
701 
702 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
703 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
704 
705 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
706 				"(not found)\n");
707 	}
708 
709 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
710 
711 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
712 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
713 
714 		printk(KERN_ERR "WARNING: Estimating processor frequency "
715 				"(not found)\n");
716 	}
717 }
718 
719 int update_persistent_clock(struct timespec now)
720 {
721 	struct rtc_time tm;
722 
723 	if (!ppc_md.set_rtc_time)
724 		return -ENODEV;
725 
726 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
727 	tm.tm_year -= 1900;
728 	tm.tm_mon -= 1;
729 
730 	return ppc_md.set_rtc_time(&tm);
731 }
732 
733 static void __read_persistent_clock(struct timespec *ts)
734 {
735 	struct rtc_time tm;
736 	static int first = 1;
737 
738 	ts->tv_nsec = 0;
739 	/* XXX this is a litle fragile but will work okay in the short term */
740 	if (first) {
741 		first = 0;
742 		if (ppc_md.time_init)
743 			timezone_offset = ppc_md.time_init();
744 
745 		/* get_boot_time() isn't guaranteed to be safe to call late */
746 		if (ppc_md.get_boot_time) {
747 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
748 			return;
749 		}
750 	}
751 	if (!ppc_md.get_rtc_time) {
752 		ts->tv_sec = 0;
753 		return;
754 	}
755 	ppc_md.get_rtc_time(&tm);
756 
757 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
758 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
759 }
760 
761 void read_persistent_clock(struct timespec *ts)
762 {
763 	__read_persistent_clock(ts);
764 
765 	/* Sanitize it in case real time clock is set below EPOCH */
766 	if (ts->tv_sec < 0) {
767 		ts->tv_sec = 0;
768 		ts->tv_nsec = 0;
769 	}
770 
771 }
772 
773 /* clocksource code */
774 static cycle_t rtc_read(struct clocksource *cs)
775 {
776 	return (cycle_t)get_rtc();
777 }
778 
779 static cycle_t timebase_read(struct clocksource *cs)
780 {
781 	return (cycle_t)get_tb();
782 }
783 
784 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
785 			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
786 {
787 	u64 new_tb_to_xs, new_stamp_xsec;
788 	u32 frac_sec;
789 
790 	if (clock != &clocksource_timebase)
791 		return;
792 
793 	/* Make userspace gettimeofday spin until we're done. */
794 	++vdso_data->tb_update_count;
795 	smp_mb();
796 
797 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
798 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
799 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
800 	do_div(new_stamp_xsec, 1000000000);
801 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
802 
803 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
804 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
805 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
806 
807 	/*
808 	 * tb_update_count is used to allow the userspace gettimeofday code
809 	 * to assure itself that it sees a consistent view of the tb_to_xs and
810 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
811 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
812 	 * the two values of tb_update_count match and are even then the
813 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
814 	 * loops back and reads them again until this criteria is met.
815 	 * We expect the caller to have done the first increment of
816 	 * vdso_data->tb_update_count already.
817 	 */
818 	vdso_data->tb_orig_stamp = cycle_last;
819 	vdso_data->stamp_xsec = new_stamp_xsec;
820 	vdso_data->tb_to_xs = new_tb_to_xs;
821 	vdso_data->wtom_clock_sec = wtm->tv_sec;
822 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
823 	vdso_data->stamp_xtime = *wall_time;
824 	vdso_data->stamp_sec_fraction = frac_sec;
825 	smp_wmb();
826 	++(vdso_data->tb_update_count);
827 }
828 
829 void update_vsyscall_tz(void)
830 {
831 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
832 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
833 }
834 
835 static void __init clocksource_init(void)
836 {
837 	struct clocksource *clock;
838 
839 	if (__USE_RTC())
840 		clock = &clocksource_rtc;
841 	else
842 		clock = &clocksource_timebase;
843 
844 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
845 		printk(KERN_ERR "clocksource: %s is already registered\n",
846 		       clock->name);
847 		return;
848 	}
849 
850 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
851 	       clock->name, clock->mult, clock->shift);
852 }
853 
854 static int decrementer_set_next_event(unsigned long evt,
855 				      struct clock_event_device *dev)
856 {
857 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
858 	set_dec(evt);
859 
860 	/* We may have raced with new irq work */
861 	if (test_irq_work_pending())
862 		set_dec(1);
863 
864 	return 0;
865 }
866 
867 static int decrementer_shutdown(struct clock_event_device *dev)
868 {
869 	decrementer_set_next_event(DECREMENTER_MAX, dev);
870 	return 0;
871 }
872 
873 /* Interrupt handler for the timer broadcast IPI */
874 void tick_broadcast_ipi_handler(void)
875 {
876 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
877 
878 	*next_tb = get_tb_or_rtc();
879 	__timer_interrupt();
880 }
881 
882 static void register_decrementer_clockevent(int cpu)
883 {
884 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
885 
886 	*dec = decrementer_clockevent;
887 	dec->cpumask = cpumask_of(cpu);
888 
889 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
890 		    dec->name, dec->mult, dec->shift, cpu);
891 
892 	clockevents_register_device(dec);
893 }
894 
895 static void __init init_decrementer_clockevent(void)
896 {
897 	int cpu = smp_processor_id();
898 
899 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
900 
901 	decrementer_clockevent.max_delta_ns =
902 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
903 	decrementer_clockevent.min_delta_ns =
904 		clockevent_delta2ns(2, &decrementer_clockevent);
905 
906 	register_decrementer_clockevent(cpu);
907 }
908 
909 void secondary_cpu_time_init(void)
910 {
911 	/* Start the decrementer on CPUs that have manual control
912 	 * such as BookE
913 	 */
914 	start_cpu_decrementer();
915 
916 	/* FIME: Should make unrelatred change to move snapshot_timebase
917 	 * call here ! */
918 	register_decrementer_clockevent(smp_processor_id());
919 }
920 
921 /* This function is only called on the boot processor */
922 void __init time_init(void)
923 {
924 	struct div_result res;
925 	u64 scale;
926 	unsigned shift;
927 
928 	if (__USE_RTC()) {
929 		/* 601 processor: dec counts down by 128 every 128ns */
930 		ppc_tb_freq = 1000000000;
931 	} else {
932 		/* Normal PowerPC with timebase register */
933 		ppc_md.calibrate_decr();
934 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
935 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
936 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
937 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
938 	}
939 
940 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
941 	tb_ticks_per_sec = ppc_tb_freq;
942 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
943 	calc_cputime_factors();
944 	setup_cputime_one_jiffy();
945 
946 	/*
947 	 * Compute scale factor for sched_clock.
948 	 * The calibrate_decr() function has set tb_ticks_per_sec,
949 	 * which is the timebase frequency.
950 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
951 	 * the 128-bit result as a 64.64 fixed-point number.
952 	 * We then shift that number right until it is less than 1.0,
953 	 * giving us the scale factor and shift count to use in
954 	 * sched_clock().
955 	 */
956 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
957 	scale = res.result_low;
958 	for (shift = 0; res.result_high != 0; ++shift) {
959 		scale = (scale >> 1) | (res.result_high << 63);
960 		res.result_high >>= 1;
961 	}
962 	tb_to_ns_scale = scale;
963 	tb_to_ns_shift = shift;
964 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
965 	boot_tb = get_tb_or_rtc();
966 
967 	/* If platform provided a timezone (pmac), we correct the time */
968 	if (timezone_offset) {
969 		sys_tz.tz_minuteswest = -timezone_offset / 60;
970 		sys_tz.tz_dsttime = 0;
971 	}
972 
973 	vdso_data->tb_update_count = 0;
974 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
975 
976 	/* Start the decrementer on CPUs that have manual control
977 	 * such as BookE
978 	 */
979 	start_cpu_decrementer();
980 
981 	/* Register the clocksource */
982 	clocksource_init();
983 
984 	init_decrementer_clockevent();
985 	tick_setup_hrtimer_broadcast();
986 
987 #ifdef CONFIG_COMMON_CLK
988 	of_clk_init(NULL);
989 #endif
990 }
991 
992 
993 #define FEBRUARY	2
994 #define	STARTOFTIME	1970
995 #define SECDAY		86400L
996 #define SECYR		(SECDAY * 365)
997 #define	leapyear(year)		((year) % 4 == 0 && \
998 				 ((year) % 100 != 0 || (year) % 400 == 0))
999 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1000 #define	days_in_month(a) 	(month_days[(a) - 1])
1001 
1002 static int month_days[12] = {
1003 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1004 };
1005 
1006 void to_tm(int tim, struct rtc_time * tm)
1007 {
1008 	register int    i;
1009 	register long   hms, day;
1010 
1011 	day = tim / SECDAY;
1012 	hms = tim % SECDAY;
1013 
1014 	/* Hours, minutes, seconds are easy */
1015 	tm->tm_hour = hms / 3600;
1016 	tm->tm_min = (hms % 3600) / 60;
1017 	tm->tm_sec = (hms % 3600) % 60;
1018 
1019 	/* Number of years in days */
1020 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1021 		day -= days_in_year(i);
1022 	tm->tm_year = i;
1023 
1024 	/* Number of months in days left */
1025 	if (leapyear(tm->tm_year))
1026 		days_in_month(FEBRUARY) = 29;
1027 	for (i = 1; day >= days_in_month(i); i++)
1028 		day -= days_in_month(i);
1029 	days_in_month(FEBRUARY) = 28;
1030 	tm->tm_mon = i;
1031 
1032 	/* Days are what is left over (+1) from all that. */
1033 	tm->tm_mday = day + 1;
1034 
1035 	/*
1036 	 * No-one uses the day of the week.
1037 	 */
1038 	tm->tm_wday = -1;
1039 }
1040 EXPORT_SYMBOL(to_tm);
1041 
1042 /*
1043  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1044  * result.
1045  */
1046 void div128_by_32(u64 dividend_high, u64 dividend_low,
1047 		  unsigned divisor, struct div_result *dr)
1048 {
1049 	unsigned long a, b, c, d;
1050 	unsigned long w, x, y, z;
1051 	u64 ra, rb, rc;
1052 
1053 	a = dividend_high >> 32;
1054 	b = dividend_high & 0xffffffff;
1055 	c = dividend_low >> 32;
1056 	d = dividend_low & 0xffffffff;
1057 
1058 	w = a / divisor;
1059 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1060 
1061 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1062 	x = ra;
1063 
1064 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1065 	y = rb;
1066 
1067 	do_div(rc, divisor);
1068 	z = rc;
1069 
1070 	dr->result_high = ((u64)w << 32) + x;
1071 	dr->result_low  = ((u64)y << 32) + z;
1072 
1073 }
1074 
1075 /* We don't need to calibrate delay, we use the CPU timebase for that */
1076 void calibrate_delay(void)
1077 {
1078 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1079 	 * as the number of __delay(1) in a jiffy, so make it so
1080 	 */
1081 	loops_per_jiffy = tb_ticks_per_jiffy;
1082 }
1083 
1084 static int __init rtc_init(void)
1085 {
1086 	struct platform_device *pdev;
1087 
1088 	if (!ppc_md.get_rtc_time)
1089 		return -ENODEV;
1090 
1091 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1092 
1093 	return PTR_ERR_OR_ZERO(pdev);
1094 }
1095 
1096 device_initcall(rtc_init);
1097