xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 734d6524)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 
54 #include <asm/io.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
60 #include <asm/time.h>
61 #include <asm/prom.h>
62 #include <asm/irq.h>
63 #include <asm/div64.h>
64 #ifdef CONFIG_PPC64
65 #include <asm/systemcfg.h>
66 #include <asm/firmware.h>
67 #endif
68 #ifdef CONFIG_PPC_ISERIES
69 #include <asm/iSeries/ItLpQueue.h>
70 #include <asm/iSeries/HvCallXm.h>
71 #endif
72 
73 /* keep track of when we need to update the rtc */
74 time_t last_rtc_update;
75 extern int piranha_simulator;
76 #ifdef CONFIG_PPC_ISERIES
77 unsigned long iSeries_recal_titan = 0;
78 unsigned long iSeries_recal_tb = 0;
79 static unsigned long first_settimeofday = 1;
80 #endif
81 
82 /* The decrementer counts down by 128 every 128ns on a 601. */
83 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
84 
85 #define XSEC_PER_SEC (1024*1024)
86 
87 #ifdef CONFIG_PPC64
88 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
89 #else
90 /* compute ((xsec << 12) * max) >> 32 */
91 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
92 #endif
93 
94 unsigned long tb_ticks_per_jiffy;
95 unsigned long tb_ticks_per_usec = 100; /* sane default */
96 EXPORT_SYMBOL(tb_ticks_per_usec);
97 unsigned long tb_ticks_per_sec;
98 u64 tb_to_xs;
99 unsigned tb_to_us;
100 unsigned long processor_freq;
101 DEFINE_SPINLOCK(rtc_lock);
102 EXPORT_SYMBOL_GPL(rtc_lock);
103 
104 u64 tb_to_ns_scale;
105 unsigned tb_to_ns_shift;
106 
107 struct gettimeofday_struct do_gtod;
108 
109 extern unsigned long wall_jiffies;
110 
111 extern struct timezone sys_tz;
112 static long timezone_offset;
113 
114 void ppc_adjtimex(void);
115 
116 static unsigned adjusting_time = 0;
117 
118 unsigned long ppc_proc_freq;
119 unsigned long ppc_tb_freq;
120 
121 #ifdef CONFIG_PPC32	/* XXX for now */
122 #define boot_cpuid	0
123 #endif
124 
125 u64 tb_last_jiffy __cacheline_aligned_in_smp;
126 unsigned long tb_last_stamp;
127 
128 /*
129  * Note that on ppc32 this only stores the bottom 32 bits of
130  * the timebase value, but that's enough to tell when a jiffy
131  * has passed.
132  */
133 DEFINE_PER_CPU(unsigned long, last_jiffy);
134 
135 static __inline__ void timer_check_rtc(void)
136 {
137         /*
138          * update the rtc when needed, this should be performed on the
139          * right fraction of a second. Half or full second ?
140          * Full second works on mk48t59 clocks, others need testing.
141          * Note that this update is basically only used through
142          * the adjtimex system calls. Setting the HW clock in
143          * any other way is a /dev/rtc and userland business.
144          * This is still wrong by -0.5/+1.5 jiffies because of the
145          * timer interrupt resolution and possible delay, but here we
146          * hit a quantization limit which can only be solved by higher
147          * resolution timers and decoupling time management from timer
148          * interrupts. This is also wrong on the clocks
149          * which require being written at the half second boundary.
150          * We should have an rtc call that only sets the minutes and
151          * seconds like on Intel to avoid problems with non UTC clocks.
152          */
153         if (ppc_md.set_rtc_time && ntp_synced() &&
154 	    xtime.tv_sec - last_rtc_update >= 659 &&
155 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
156 	    jiffies - wall_jiffies == 1) {
157 		struct rtc_time tm;
158 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
159 		tm.tm_year -= 1900;
160 		tm.tm_mon -= 1;
161 		if (ppc_md.set_rtc_time(&tm) == 0)
162 			last_rtc_update = xtime.tv_sec + 1;
163 		else
164 			/* Try again one minute later */
165 			last_rtc_update += 60;
166         }
167 }
168 
169 /*
170  * This version of gettimeofday has microsecond resolution.
171  */
172 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
173 {
174 	unsigned long sec, usec;
175 	u64 tb_ticks, xsec;
176 	struct gettimeofday_vars *temp_varp;
177 	u64 temp_tb_to_xs, temp_stamp_xsec;
178 
179 	/*
180 	 * These calculations are faster (gets rid of divides)
181 	 * if done in units of 1/2^20 rather than microseconds.
182 	 * The conversion to microseconds at the end is done
183 	 * without a divide (and in fact, without a multiply)
184 	 */
185 	temp_varp = do_gtod.varp;
186 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
187 	temp_tb_to_xs = temp_varp->tb_to_xs;
188 	temp_stamp_xsec = temp_varp->stamp_xsec;
189 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
190 	sec = xsec / XSEC_PER_SEC;
191 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
192 	usec = SCALE_XSEC(usec, 1000000);
193 
194 	tv->tv_sec = sec;
195 	tv->tv_usec = usec;
196 }
197 
198 void do_gettimeofday(struct timeval *tv)
199 {
200 	if (__USE_RTC()) {
201 		/* do this the old way */
202 		unsigned long flags, seq;
203 		unsigned int sec, nsec, usec, lost;
204 
205 		do {
206 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
207 			sec = xtime.tv_sec;
208 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
209 			lost = jiffies - wall_jiffies;
210 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
211 		usec = nsec / 1000 + lost * (1000000 / HZ);
212 		while (usec >= 1000000) {
213 			usec -= 1000000;
214 			++sec;
215 		}
216 		tv->tv_sec = sec;
217 		tv->tv_usec = usec;
218 		return;
219 	}
220 	__do_gettimeofday(tv, get_tb());
221 }
222 
223 EXPORT_SYMBOL(do_gettimeofday);
224 
225 /* Synchronize xtime with do_gettimeofday */
226 
227 static inline void timer_sync_xtime(unsigned long cur_tb)
228 {
229 #ifdef CONFIG_PPC64
230 	/* why do we do this? */
231 	struct timeval my_tv;
232 
233 	__do_gettimeofday(&my_tv, cur_tb);
234 
235 	if (xtime.tv_sec <= my_tv.tv_sec) {
236 		xtime.tv_sec = my_tv.tv_sec;
237 		xtime.tv_nsec = my_tv.tv_usec * 1000;
238 	}
239 #endif
240 }
241 
242 /*
243  * There are two copies of tb_to_xs and stamp_xsec so that no
244  * lock is needed to access and use these values in
245  * do_gettimeofday.  We alternate the copies and as long as a
246  * reasonable time elapses between changes, there will never
247  * be inconsistent values.  ntpd has a minimum of one minute
248  * between updates.
249  */
250 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
251 			       u64 new_tb_to_xs)
252 {
253 	unsigned temp_idx;
254 	struct gettimeofday_vars *temp_varp;
255 
256 	temp_idx = (do_gtod.var_idx == 0);
257 	temp_varp = &do_gtod.vars[temp_idx];
258 
259 	temp_varp->tb_to_xs = new_tb_to_xs;
260 	temp_varp->tb_orig_stamp = new_tb_stamp;
261 	temp_varp->stamp_xsec = new_stamp_xsec;
262 	smp_mb();
263 	do_gtod.varp = temp_varp;
264 	do_gtod.var_idx = temp_idx;
265 
266 #ifdef CONFIG_PPC64
267 	/*
268 	 * tb_update_count is used to allow the userspace gettimeofday code
269 	 * to assure itself that it sees a consistent view of the tb_to_xs and
270 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
271 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
272 	 * the two values of tb_update_count match and are even then the
273 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
274 	 * loops back and reads them again until this criteria is met.
275 	 */
276 	++(systemcfg->tb_update_count);
277 	smp_wmb();
278 	systemcfg->tb_orig_stamp = new_tb_stamp;
279 	systemcfg->stamp_xsec = new_stamp_xsec;
280 	systemcfg->tb_to_xs = new_tb_to_xs;
281 	smp_wmb();
282 	++(systemcfg->tb_update_count);
283 #endif
284 }
285 
286 /*
287  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
288  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
289  * difference tb - tb_orig_stamp small enough to always fit inside a
290  * 32 bits number. This is a requirement of our fast 32 bits userland
291  * implementation in the vdso. If we "miss" a call to this function
292  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
293  * with a too big difference, then the vdso will fallback to calling
294  * the syscall
295  */
296 static __inline__ void timer_recalc_offset(u64 cur_tb)
297 {
298 	unsigned long offset;
299 	u64 new_stamp_xsec;
300 
301 	if (__USE_RTC())
302 		return;
303 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
304 	if ((offset & 0x80000000u) == 0)
305 		return;
306 	new_stamp_xsec = do_gtod.varp->stamp_xsec
307 		+ mulhdu(offset, do_gtod.varp->tb_to_xs);
308 	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
309 }
310 
311 #ifdef CONFIG_SMP
312 unsigned long profile_pc(struct pt_regs *regs)
313 {
314 	unsigned long pc = instruction_pointer(regs);
315 
316 	if (in_lock_functions(pc))
317 		return regs->link;
318 
319 	return pc;
320 }
321 EXPORT_SYMBOL(profile_pc);
322 #endif
323 
324 #ifdef CONFIG_PPC_ISERIES
325 
326 /*
327  * This function recalibrates the timebase based on the 49-bit time-of-day
328  * value in the Titan chip.  The Titan is much more accurate than the value
329  * returned by the service processor for the timebase frequency.
330  */
331 
332 static void iSeries_tb_recal(void)
333 {
334 	struct div_result divres;
335 	unsigned long titan, tb;
336 	tb = get_tb();
337 	titan = HvCallXm_loadTod();
338 	if ( iSeries_recal_titan ) {
339 		unsigned long tb_ticks = tb - iSeries_recal_tb;
340 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
341 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
342 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
343 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
344 		char sign = '+';
345 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
346 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
347 
348 		if ( tick_diff < 0 ) {
349 			tick_diff = -tick_diff;
350 			sign = '-';
351 		}
352 		if ( tick_diff ) {
353 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
354 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
355 						new_tb_ticks_per_jiffy, sign, tick_diff );
356 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
357 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
358 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
359 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
360 				tb_to_xs = divres.result_low;
361 				do_gtod.varp->tb_to_xs = tb_to_xs;
362 				systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
363 				systemcfg->tb_to_xs = tb_to_xs;
364 			}
365 			else {
366 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
367 					"                   new tb_ticks_per_jiffy = %lu\n"
368 					"                   old tb_ticks_per_jiffy = %lu\n",
369 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
370 			}
371 		}
372 	}
373 	iSeries_recal_titan = titan;
374 	iSeries_recal_tb = tb;
375 }
376 #endif
377 
378 /*
379  * For iSeries shared processors, we have to let the hypervisor
380  * set the hardware decrementer.  We set a virtual decrementer
381  * in the lppaca and call the hypervisor if the virtual
382  * decrementer is less than the current value in the hardware
383  * decrementer. (almost always the new decrementer value will
384  * be greater than the current hardware decementer so the hypervisor
385  * call will not be needed)
386  */
387 
388 /*
389  * timer_interrupt - gets called when the decrementer overflows,
390  * with interrupts disabled.
391  */
392 void timer_interrupt(struct pt_regs * regs)
393 {
394 	int next_dec;
395 	int cpu = smp_processor_id();
396 	unsigned long ticks;
397 
398 #ifdef CONFIG_PPC32
399 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
400 		do_IRQ(regs);
401 #endif
402 
403 	irq_enter();
404 
405 	profile_tick(CPU_PROFILING, regs);
406 
407 #ifdef CONFIG_PPC_ISERIES
408 	get_paca()->lppaca.int_dword.fields.decr_int = 0;
409 #endif
410 
411 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
412 	       >= tb_ticks_per_jiffy) {
413 		/* Update last_jiffy */
414 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
415 		/* Handle RTCL overflow on 601 */
416 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
417 			per_cpu(last_jiffy, cpu) -= 1000000000;
418 
419 		/*
420 		 * We cannot disable the decrementer, so in the period
421 		 * between this cpu's being marked offline in cpu_online_map
422 		 * and calling stop-self, it is taking timer interrupts.
423 		 * Avoid calling into the scheduler rebalancing code if this
424 		 * is the case.
425 		 */
426 		if (!cpu_is_offline(cpu))
427 			update_process_times(user_mode(regs));
428 
429 		/*
430 		 * No need to check whether cpu is offline here; boot_cpuid
431 		 * should have been fixed up by now.
432 		 */
433 		if (cpu != boot_cpuid)
434 			continue;
435 
436 		write_seqlock(&xtime_lock);
437 		tb_last_jiffy += tb_ticks_per_jiffy;
438 		tb_last_stamp = per_cpu(last_jiffy, cpu);
439 		timer_recalc_offset(tb_last_jiffy);
440 		do_timer(regs);
441 		timer_sync_xtime(tb_last_jiffy);
442 		timer_check_rtc();
443 		write_sequnlock(&xtime_lock);
444 		if (adjusting_time && (time_adjust == 0))
445 			ppc_adjtimex();
446 	}
447 
448 	next_dec = tb_ticks_per_jiffy - ticks;
449 	set_dec(next_dec);
450 
451 #ifdef CONFIG_PPC_ISERIES
452 	if (hvlpevent_is_pending())
453 		process_hvlpevents(regs);
454 #endif
455 
456 #ifdef CONFIG_PPC64
457 	/* collect purr register values often, for accurate calculations */
458 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
459 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
460 		cu->current_tb = mfspr(SPRN_PURR);
461 	}
462 #endif
463 
464 	irq_exit();
465 }
466 
467 void wakeup_decrementer(void)
468 {
469 	int i;
470 
471 	set_dec(tb_ticks_per_jiffy);
472 	/*
473 	 * We don't expect this to be called on a machine with a 601,
474 	 * so using get_tbl is fine.
475 	 */
476 	tb_last_stamp = tb_last_jiffy = get_tb();
477 	for_each_cpu(i)
478 		per_cpu(last_jiffy, i) = tb_last_stamp;
479 }
480 
481 #ifdef CONFIG_SMP
482 void __init smp_space_timers(unsigned int max_cpus)
483 {
484 	int i;
485 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
486 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
487 
488 	for_each_cpu(i) {
489 		if (i != boot_cpuid) {
490 			previous_tb += offset;
491 			per_cpu(last_jiffy, i) = previous_tb;
492 		}
493 	}
494 }
495 #endif
496 
497 /*
498  * Scheduler clock - returns current time in nanosec units.
499  *
500  * Note: mulhdu(a, b) (multiply high double unsigned) returns
501  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
502  * are 64-bit unsigned numbers.
503  */
504 unsigned long long sched_clock(void)
505 {
506 	if (__USE_RTC())
507 		return get_rtc();
508 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
509 }
510 
511 int do_settimeofday(struct timespec *tv)
512 {
513 	time_t wtm_sec, new_sec = tv->tv_sec;
514 	long wtm_nsec, new_nsec = tv->tv_nsec;
515 	unsigned long flags;
516 	long int tb_delta;
517 	u64 new_xsec, tb_delta_xs;
518 
519 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
520 		return -EINVAL;
521 
522 	write_seqlock_irqsave(&xtime_lock, flags);
523 
524 	/*
525 	 * Updating the RTC is not the job of this code. If the time is
526 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
527 	 * is cleared.  Tools like clock/hwclock either copy the RTC
528 	 * to the system time, in which case there is no point in writing
529 	 * to the RTC again, or write to the RTC but then they don't call
530 	 * settimeofday to perform this operation.
531 	 */
532 #ifdef CONFIG_PPC_ISERIES
533 	if (first_settimeofday) {
534 		iSeries_tb_recal();
535 		first_settimeofday = 0;
536 	}
537 #endif
538 	tb_delta = tb_ticks_since(tb_last_stamp);
539 	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
540 	tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
541 
542 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
543 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
544 
545  	set_normalized_timespec(&xtime, new_sec, new_nsec);
546 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
547 
548 	/* In case of a large backwards jump in time with NTP, we want the
549 	 * clock to be updated as soon as the PLL is again in lock.
550 	 */
551 	last_rtc_update = new_sec - 658;
552 
553 	ntp_clear();
554 
555 	new_xsec = 0;
556 	if (new_nsec != 0) {
557 		new_xsec = (u64)new_nsec * XSEC_PER_SEC;
558 		do_div(new_xsec, NSEC_PER_SEC);
559 	}
560 	new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
561 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
562 
563 #ifdef CONFIG_PPC64
564 	systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
565 	systemcfg->tz_dsttime = sys_tz.tz_dsttime;
566 #endif
567 
568 	write_sequnlock_irqrestore(&xtime_lock, flags);
569 	clock_was_set();
570 	return 0;
571 }
572 
573 EXPORT_SYMBOL(do_settimeofday);
574 
575 void __init generic_calibrate_decr(void)
576 {
577 	struct device_node *cpu;
578 	unsigned int *fp;
579 	int node_found;
580 
581 	/*
582 	 * The cpu node should have a timebase-frequency property
583 	 * to tell us the rate at which the decrementer counts.
584 	 */
585 	cpu = of_find_node_by_type(NULL, "cpu");
586 
587 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
588 	node_found = 0;
589 	if (cpu != 0) {
590 		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
591 						  NULL);
592 		if (fp != 0) {
593 			node_found = 1;
594 			ppc_tb_freq = *fp;
595 		}
596 	}
597 	if (!node_found)
598 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
599 				"(not found)\n");
600 
601 	ppc_proc_freq = DEFAULT_PROC_FREQ;
602 	node_found = 0;
603 	if (cpu != 0) {
604 		fp = (unsigned int *)get_property(cpu, "clock-frequency",
605 						  NULL);
606 		if (fp != 0) {
607 			node_found = 1;
608 			ppc_proc_freq = *fp;
609 		}
610 	}
611 #ifdef CONFIG_BOOKE
612 	/* Set the time base to zero */
613 	mtspr(SPRN_TBWL, 0);
614 	mtspr(SPRN_TBWU, 0);
615 
616 	/* Clear any pending timer interrupts */
617 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
618 
619 	/* Enable decrementer interrupt */
620 	mtspr(SPRN_TCR, TCR_DIE);
621 #endif
622 	if (!node_found)
623 		printk(KERN_ERR "WARNING: Estimating processor frequency "
624 				"(not found)\n");
625 
626 	of_node_put(cpu);
627 }
628 
629 unsigned long get_boot_time(void)
630 {
631 	struct rtc_time tm;
632 
633 	if (ppc_md.get_boot_time)
634 		return ppc_md.get_boot_time();
635 	if (!ppc_md.get_rtc_time)
636 		return 0;
637 	ppc_md.get_rtc_time(&tm);
638 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
639 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
640 }
641 
642 /* This function is only called on the boot processor */
643 void __init time_init(void)
644 {
645 	unsigned long flags;
646 	unsigned long tm = 0;
647 	struct div_result res;
648 	u64 scale;
649 	unsigned shift;
650 
651         if (ppc_md.time_init != NULL)
652                 timezone_offset = ppc_md.time_init();
653 
654 	if (__USE_RTC()) {
655 		/* 601 processor: dec counts down by 128 every 128ns */
656 		ppc_tb_freq = 1000000000;
657 		tb_last_stamp = get_rtcl();
658 		tb_last_jiffy = tb_last_stamp;
659 	} else {
660 		/* Normal PowerPC with timebase register */
661 		ppc_md.calibrate_decr();
662 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
663 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
664 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
665 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
666 		tb_last_stamp = tb_last_jiffy = get_tb();
667 	}
668 
669 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
670 	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
671 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
672 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
673 	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
674 	tb_to_xs = res.result_low;
675 
676 #ifdef CONFIG_PPC64
677 	get_paca()->default_decr = tb_ticks_per_jiffy;
678 #endif
679 
680 	/*
681 	 * Compute scale factor for sched_clock.
682 	 * The calibrate_decr() function has set tb_ticks_per_sec,
683 	 * which is the timebase frequency.
684 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
685 	 * the 128-bit result as a 64.64 fixed-point number.
686 	 * We then shift that number right until it is less than 1.0,
687 	 * giving us the scale factor and shift count to use in
688 	 * sched_clock().
689 	 */
690 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
691 	scale = res.result_low;
692 	for (shift = 0; res.result_high != 0; ++shift) {
693 		scale = (scale >> 1) | (res.result_high << 63);
694 		res.result_high >>= 1;
695 	}
696 	tb_to_ns_scale = scale;
697 	tb_to_ns_shift = shift;
698 
699 #ifdef CONFIG_PPC_ISERIES
700 	if (!piranha_simulator)
701 #endif
702 		tm = get_boot_time();
703 
704 	write_seqlock_irqsave(&xtime_lock, flags);
705 	xtime.tv_sec = tm;
706 	xtime.tv_nsec = 0;
707 	do_gtod.varp = &do_gtod.vars[0];
708 	do_gtod.var_idx = 0;
709 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
710 	__get_cpu_var(last_jiffy) = tb_last_stamp;
711 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
712 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
713 	do_gtod.varp->tb_to_xs = tb_to_xs;
714 	do_gtod.tb_to_us = tb_to_us;
715 #ifdef CONFIG_PPC64
716 	systemcfg->tb_orig_stamp = tb_last_jiffy;
717 	systemcfg->tb_update_count = 0;
718 	systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
719 	systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
720 	systemcfg->tb_to_xs = tb_to_xs;
721 #endif
722 
723 	time_freq = 0;
724 
725 	/* If platform provided a timezone (pmac), we correct the time */
726         if (timezone_offset) {
727 		sys_tz.tz_minuteswest = -timezone_offset / 60;
728 		sys_tz.tz_dsttime = 0;
729 		xtime.tv_sec -= timezone_offset;
730         }
731 
732 	last_rtc_update = xtime.tv_sec;
733 	set_normalized_timespec(&wall_to_monotonic,
734 	                        -xtime.tv_sec, -xtime.tv_nsec);
735 	write_sequnlock_irqrestore(&xtime_lock, flags);
736 
737 	/* Not exact, but the timer interrupt takes care of this */
738 	set_dec(tb_ticks_per_jiffy);
739 }
740 
741 /*
742  * After adjtimex is called, adjust the conversion of tb ticks
743  * to microseconds to keep do_gettimeofday synchronized
744  * with ntpd.
745  *
746  * Use the time_adjust, time_freq and time_offset computed by adjtimex to
747  * adjust the frequency.
748  */
749 
750 /* #define DEBUG_PPC_ADJTIMEX 1 */
751 
752 void ppc_adjtimex(void)
753 {
754 #ifdef CONFIG_PPC64
755 	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
756 		new_tb_to_xs, new_xsec, new_stamp_xsec;
757 	unsigned long tb_ticks_per_sec_delta;
758 	long delta_freq, ltemp;
759 	struct div_result divres;
760 	unsigned long flags;
761 	long singleshot_ppm = 0;
762 
763 	/*
764 	 * Compute parts per million frequency adjustment to
765 	 * accomplish the time adjustment implied by time_offset to be
766 	 * applied over the elapsed time indicated by time_constant.
767 	 * Use SHIFT_USEC to get it into the same units as
768 	 * time_freq.
769 	 */
770 	if ( time_offset < 0 ) {
771 		ltemp = -time_offset;
772 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
773 		ltemp >>= SHIFT_KG + time_constant;
774 		ltemp = -ltemp;
775 	} else {
776 		ltemp = time_offset;
777 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
778 		ltemp >>= SHIFT_KG + time_constant;
779 	}
780 
781 	/* If there is a single shot time adjustment in progress */
782 	if ( time_adjust ) {
783 #ifdef DEBUG_PPC_ADJTIMEX
784 		printk("ppc_adjtimex: ");
785 		if ( adjusting_time == 0 )
786 			printk("starting ");
787 		printk("single shot time_adjust = %ld\n", time_adjust);
788 #endif
789 
790 		adjusting_time = 1;
791 
792 		/*
793 		 * Compute parts per million frequency adjustment
794 		 * to match time_adjust
795 		 */
796 		singleshot_ppm = tickadj * HZ;
797 		/*
798 		 * The adjustment should be tickadj*HZ to match the code in
799 		 * linux/kernel/timer.c, but experiments show that this is too
800 		 * large. 3/4 of tickadj*HZ seems about right
801 		 */
802 		singleshot_ppm -= singleshot_ppm / 4;
803 		/* Use SHIFT_USEC to get it into the same units as time_freq */
804 		singleshot_ppm <<= SHIFT_USEC;
805 		if ( time_adjust < 0 )
806 			singleshot_ppm = -singleshot_ppm;
807 	}
808 	else {
809 #ifdef DEBUG_PPC_ADJTIMEX
810 		if ( adjusting_time )
811 			printk("ppc_adjtimex: ending single shot time_adjust\n");
812 #endif
813 		adjusting_time = 0;
814 	}
815 
816 	/* Add up all of the frequency adjustments */
817 	delta_freq = time_freq + ltemp + singleshot_ppm;
818 
819 	/*
820 	 * Compute a new value for tb_ticks_per_sec based on
821 	 * the frequency adjustment
822 	 */
823 	den = 1000000 * (1 << (SHIFT_USEC - 8));
824 	if ( delta_freq < 0 ) {
825 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
826 		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
827 	}
828 	else {
829 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
830 		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
831 	}
832 
833 #ifdef DEBUG_PPC_ADJTIMEX
834 	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
835 	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
836 #endif
837 
838 	/*
839 	 * Compute a new value of tb_to_xs (used to convert tb to
840 	 * microseconds) and a new value of stamp_xsec which is the
841 	 * time (in 1/2^20 second units) corresponding to
842 	 * tb_orig_stamp.  This new value of stamp_xsec compensates
843 	 * for the change in frequency (implied by the new tb_to_xs)
844 	 * which guarantees that the current time remains the same.
845 	 */
846 	write_seqlock_irqsave( &xtime_lock, flags );
847 	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
848 	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
849 	new_tb_to_xs = divres.result_low;
850 	new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
851 
852 	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
853 	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
854 
855 	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
856 
857 	write_sequnlock_irqrestore( &xtime_lock, flags );
858 #endif /* CONFIG_PPC64 */
859 }
860 
861 
862 #define FEBRUARY	2
863 #define	STARTOFTIME	1970
864 #define SECDAY		86400L
865 #define SECYR		(SECDAY * 365)
866 #define	leapyear(year)		((year) % 4 == 0 && \
867 				 ((year) % 100 != 0 || (year) % 400 == 0))
868 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
869 #define	days_in_month(a) 	(month_days[(a) - 1])
870 
871 static int month_days[12] = {
872 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
873 };
874 
875 /*
876  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
877  */
878 void GregorianDay(struct rtc_time * tm)
879 {
880 	int leapsToDate;
881 	int lastYear;
882 	int day;
883 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
884 
885 	lastYear = tm->tm_year - 1;
886 
887 	/*
888 	 * Number of leap corrections to apply up to end of last year
889 	 */
890 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
891 
892 	/*
893 	 * This year is a leap year if it is divisible by 4 except when it is
894 	 * divisible by 100 unless it is divisible by 400
895 	 *
896 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
897 	 */
898 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
899 
900 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
901 		   tm->tm_mday;
902 
903 	tm->tm_wday = day % 7;
904 }
905 
906 void to_tm(int tim, struct rtc_time * tm)
907 {
908 	register int    i;
909 	register long   hms, day;
910 
911 	day = tim / SECDAY;
912 	hms = tim % SECDAY;
913 
914 	/* Hours, minutes, seconds are easy */
915 	tm->tm_hour = hms / 3600;
916 	tm->tm_min = (hms % 3600) / 60;
917 	tm->tm_sec = (hms % 3600) % 60;
918 
919 	/* Number of years in days */
920 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
921 		day -= days_in_year(i);
922 	tm->tm_year = i;
923 
924 	/* Number of months in days left */
925 	if (leapyear(tm->tm_year))
926 		days_in_month(FEBRUARY) = 29;
927 	for (i = 1; day >= days_in_month(i); i++)
928 		day -= days_in_month(i);
929 	days_in_month(FEBRUARY) = 28;
930 	tm->tm_mon = i;
931 
932 	/* Days are what is left over (+1) from all that. */
933 	tm->tm_mday = day + 1;
934 
935 	/*
936 	 * Determine the day of week
937 	 */
938 	GregorianDay(tm);
939 }
940 
941 /* Auxiliary function to compute scaling factors */
942 /* Actually the choice of a timebase running at 1/4 the of the bus
943  * frequency giving resolution of a few tens of nanoseconds is quite nice.
944  * It makes this computation very precise (27-28 bits typically) which
945  * is optimistic considering the stability of most processor clock
946  * oscillators and the precision with which the timebase frequency
947  * is measured but does not harm.
948  */
949 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
950 {
951         unsigned mlt=0, tmp, err;
952         /* No concern for performance, it's done once: use a stupid
953          * but safe and compact method to find the multiplier.
954          */
955 
956         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
957                 if (mulhwu(inscale, mlt|tmp) < outscale)
958 			mlt |= tmp;
959         }
960 
961         /* We might still be off by 1 for the best approximation.
962          * A side effect of this is that if outscale is too large
963          * the returned value will be zero.
964          * Many corner cases have been checked and seem to work,
965          * some might have been forgotten in the test however.
966          */
967 
968         err = inscale * (mlt+1);
969         if (err <= inscale/2)
970 		mlt++;
971         return mlt;
972 }
973 
974 /*
975  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
976  * result.
977  */
978 void div128_by_32(u64 dividend_high, u64 dividend_low,
979 		  unsigned divisor, struct div_result *dr)
980 {
981 	unsigned long a, b, c, d;
982 	unsigned long w, x, y, z;
983 	u64 ra, rb, rc;
984 
985 	a = dividend_high >> 32;
986 	b = dividend_high & 0xffffffff;
987 	c = dividend_low >> 32;
988 	d = dividend_low & 0xffffffff;
989 
990 	w = a / divisor;
991 	ra = ((u64)(a - (w * divisor)) << 32) + b;
992 
993 	rb = ((u64) do_div(ra, divisor) << 32) + c;
994 	x = ra;
995 
996 	rc = ((u64) do_div(rb, divisor) << 32) + d;
997 	y = rb;
998 
999 	do_div(rc, divisor);
1000 	z = rc;
1001 
1002 	dr->result_high = ((u64)w << 32) + x;
1003 	dr->result_low  = ((u64)y << 32) + z;
1004 
1005 }
1006