1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. 21 * - for astronomical applications: add a new function to get 22 * non ambiguous timestamps even around leap seconds. This needs 23 * a new timestamp format and a good name. 24 * 25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 26 * "A Kernel Model for Precision Timekeeping" by Dave Mills 27 * 28 * This program is free software; you can redistribute it and/or 29 * modify it under the terms of the GNU General Public License 30 * as published by the Free Software Foundation; either version 31 * 2 of the License, or (at your option) any later version. 32 */ 33 34 #include <linux/errno.h> 35 #include <linux/export.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/clockchips.h> 47 #include <linux/init.h> 48 #include <linux/profile.h> 49 #include <linux/cpu.h> 50 #include <linux/security.h> 51 #include <linux/percpu.h> 52 #include <linux/rtc.h> 53 #include <linux/jiffies.h> 54 #include <linux/posix-timers.h> 55 #include <linux/irq.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 #include <linux/clk-provider.h> 59 #include <linux/suspend.h> 60 #include <linux/rtc.h> 61 #include <linux/sched/cputime.h> 62 #include <linux/processor.h> 63 #include <asm/trace.h> 64 65 #include <asm/io.h> 66 #include <asm/nvram.h> 67 #include <asm/cache.h> 68 #include <asm/machdep.h> 69 #include <linux/uaccess.h> 70 #include <asm/time.h> 71 #include <asm/prom.h> 72 #include <asm/irq.h> 73 #include <asm/div64.h> 74 #include <asm/smp.h> 75 #include <asm/vdso_datapage.h> 76 #include <asm/firmware.h> 77 #include <asm/asm-prototypes.h> 78 79 /* powerpc clocksource/clockevent code */ 80 81 #include <linux/clockchips.h> 82 #include <linux/timekeeper_internal.h> 83 84 static u64 rtc_read(struct clocksource *); 85 static struct clocksource clocksource_rtc = { 86 .name = "rtc", 87 .rating = 400, 88 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 89 .mask = CLOCKSOURCE_MASK(64), 90 .read = rtc_read, 91 }; 92 93 static u64 timebase_read(struct clocksource *); 94 static struct clocksource clocksource_timebase = { 95 .name = "timebase", 96 .rating = 400, 97 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 98 .mask = CLOCKSOURCE_MASK(64), 99 .read = timebase_read, 100 }; 101 102 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 103 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 104 105 static int decrementer_set_next_event(unsigned long evt, 106 struct clock_event_device *dev); 107 static int decrementer_shutdown(struct clock_event_device *evt); 108 109 struct clock_event_device decrementer_clockevent = { 110 .name = "decrementer", 111 .rating = 200, 112 .irq = 0, 113 .set_next_event = decrementer_set_next_event, 114 .set_state_shutdown = decrementer_shutdown, 115 .tick_resume = decrementer_shutdown, 116 .features = CLOCK_EVT_FEAT_ONESHOT | 117 CLOCK_EVT_FEAT_C3STOP, 118 }; 119 EXPORT_SYMBOL(decrementer_clockevent); 120 121 DEFINE_PER_CPU(u64, decrementers_next_tb); 122 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 123 124 #define XSEC_PER_SEC (1024*1024) 125 126 #ifdef CONFIG_PPC64 127 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 128 #else 129 /* compute ((xsec << 12) * max) >> 32 */ 130 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 131 #endif 132 133 unsigned long tb_ticks_per_jiffy; 134 unsigned long tb_ticks_per_usec = 100; /* sane default */ 135 EXPORT_SYMBOL(tb_ticks_per_usec); 136 unsigned long tb_ticks_per_sec; 137 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 138 139 DEFINE_SPINLOCK(rtc_lock); 140 EXPORT_SYMBOL_GPL(rtc_lock); 141 142 static u64 tb_to_ns_scale __read_mostly; 143 static unsigned tb_to_ns_shift __read_mostly; 144 static u64 boot_tb __read_mostly; 145 146 extern struct timezone sys_tz; 147 static long timezone_offset; 148 149 unsigned long ppc_proc_freq; 150 EXPORT_SYMBOL_GPL(ppc_proc_freq); 151 unsigned long ppc_tb_freq; 152 EXPORT_SYMBOL_GPL(ppc_tb_freq); 153 154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 155 /* 156 * Factor for converting from cputime_t (timebase ticks) to 157 * microseconds. This is stored as 0.64 fixed-point binary fraction. 158 */ 159 u64 __cputime_usec_factor; 160 EXPORT_SYMBOL(__cputime_usec_factor); 161 162 #ifdef CONFIG_PPC_SPLPAR 163 void (*dtl_consumer)(struct dtl_entry *, u64); 164 #endif 165 166 #ifdef CONFIG_PPC64 167 #define get_accounting(tsk) (&get_paca()->accounting) 168 #else 169 #define get_accounting(tsk) (&task_thread_info(tsk)->accounting) 170 #endif 171 172 static void calc_cputime_factors(void) 173 { 174 struct div_result res; 175 176 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 177 __cputime_usec_factor = res.result_low; 178 } 179 180 /* 181 * Read the SPURR on systems that have it, otherwise the PURR, 182 * or if that doesn't exist return the timebase value passed in. 183 */ 184 static unsigned long read_spurr(unsigned long tb) 185 { 186 if (cpu_has_feature(CPU_FTR_SPURR)) 187 return mfspr(SPRN_SPURR); 188 if (cpu_has_feature(CPU_FTR_PURR)) 189 return mfspr(SPRN_PURR); 190 return tb; 191 } 192 193 #ifdef CONFIG_PPC_SPLPAR 194 195 /* 196 * Scan the dispatch trace log and count up the stolen time. 197 * Should be called with interrupts disabled. 198 */ 199 static u64 scan_dispatch_log(u64 stop_tb) 200 { 201 u64 i = local_paca->dtl_ridx; 202 struct dtl_entry *dtl = local_paca->dtl_curr; 203 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 204 struct lppaca *vpa = local_paca->lppaca_ptr; 205 u64 tb_delta; 206 u64 stolen = 0; 207 u64 dtb; 208 209 if (!dtl) 210 return 0; 211 212 if (i == be64_to_cpu(vpa->dtl_idx)) 213 return 0; 214 while (i < be64_to_cpu(vpa->dtl_idx)) { 215 dtb = be64_to_cpu(dtl->timebase); 216 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 217 be32_to_cpu(dtl->ready_to_enqueue_time); 218 barrier(); 219 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 220 /* buffer has overflowed */ 221 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 222 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 223 continue; 224 } 225 if (dtb > stop_tb) 226 break; 227 if (dtl_consumer) 228 dtl_consumer(dtl, i); 229 stolen += tb_delta; 230 ++i; 231 ++dtl; 232 if (dtl == dtl_end) 233 dtl = local_paca->dispatch_log; 234 } 235 local_paca->dtl_ridx = i; 236 local_paca->dtl_curr = dtl; 237 return stolen; 238 } 239 240 /* 241 * Accumulate stolen time by scanning the dispatch trace log. 242 * Called on entry from user mode. 243 */ 244 void accumulate_stolen_time(void) 245 { 246 u64 sst, ust; 247 u8 save_soft_enabled = local_paca->soft_enabled; 248 struct cpu_accounting_data *acct = &local_paca->accounting; 249 250 /* We are called early in the exception entry, before 251 * soft/hard_enabled are sync'ed to the expected state 252 * for the exception. We are hard disabled but the PACA 253 * needs to reflect that so various debug stuff doesn't 254 * complain 255 */ 256 local_paca->soft_enabled = 0; 257 258 sst = scan_dispatch_log(acct->starttime_user); 259 ust = scan_dispatch_log(acct->starttime); 260 acct->stime -= sst; 261 acct->utime -= ust; 262 acct->steal_time += ust + sst; 263 264 local_paca->soft_enabled = save_soft_enabled; 265 } 266 267 static inline u64 calculate_stolen_time(u64 stop_tb) 268 { 269 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 270 return scan_dispatch_log(stop_tb); 271 272 return 0; 273 } 274 275 #else /* CONFIG_PPC_SPLPAR */ 276 static inline u64 calculate_stolen_time(u64 stop_tb) 277 { 278 return 0; 279 } 280 281 #endif /* CONFIG_PPC_SPLPAR */ 282 283 /* 284 * Account time for a transition between system, hard irq 285 * or soft irq state. 286 */ 287 static unsigned long vtime_delta(struct task_struct *tsk, 288 unsigned long *stime_scaled, 289 unsigned long *steal_time) 290 { 291 unsigned long now, nowscaled, deltascaled; 292 unsigned long stime; 293 unsigned long utime, utime_scaled; 294 struct cpu_accounting_data *acct = get_accounting(tsk); 295 296 WARN_ON_ONCE(!irqs_disabled()); 297 298 now = mftb(); 299 nowscaled = read_spurr(now); 300 stime = now - acct->starttime; 301 acct->starttime = now; 302 deltascaled = nowscaled - acct->startspurr; 303 acct->startspurr = nowscaled; 304 305 *steal_time = calculate_stolen_time(now); 306 307 utime = acct->utime - acct->utime_sspurr; 308 acct->utime_sspurr = acct->utime; 309 310 /* 311 * Because we don't read the SPURR on every kernel entry/exit, 312 * deltascaled includes both user and system SPURR ticks. 313 * Apportion these ticks to system SPURR ticks and user 314 * SPURR ticks in the same ratio as the system time (delta) 315 * and user time (udelta) values obtained from the timebase 316 * over the same interval. The system ticks get accounted here; 317 * the user ticks get saved up in paca->user_time_scaled to be 318 * used by account_process_tick. 319 */ 320 *stime_scaled = stime; 321 utime_scaled = utime; 322 if (deltascaled != stime + utime) { 323 if (utime) { 324 *stime_scaled = deltascaled * stime / (stime + utime); 325 utime_scaled = deltascaled - *stime_scaled; 326 } else { 327 *stime_scaled = deltascaled; 328 } 329 } 330 acct->utime_scaled += utime_scaled; 331 332 return stime; 333 } 334 335 void vtime_account_system(struct task_struct *tsk) 336 { 337 unsigned long stime, stime_scaled, steal_time; 338 struct cpu_accounting_data *acct = get_accounting(tsk); 339 340 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 341 342 stime -= min(stime, steal_time); 343 acct->steal_time += steal_time; 344 345 if ((tsk->flags & PF_VCPU) && !irq_count()) { 346 acct->gtime += stime; 347 acct->utime_scaled += stime_scaled; 348 } else { 349 if (hardirq_count()) 350 acct->hardirq_time += stime; 351 else if (in_serving_softirq()) 352 acct->softirq_time += stime; 353 else 354 acct->stime += stime; 355 356 acct->stime_scaled += stime_scaled; 357 } 358 } 359 EXPORT_SYMBOL_GPL(vtime_account_system); 360 361 void vtime_account_idle(struct task_struct *tsk) 362 { 363 unsigned long stime, stime_scaled, steal_time; 364 struct cpu_accounting_data *acct = get_accounting(tsk); 365 366 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 367 acct->idle_time += stime + steal_time; 368 } 369 370 /* 371 * Account the whole cputime accumulated in the paca 372 * Must be called with interrupts disabled. 373 * Assumes that vtime_account_system/idle() has been called 374 * recently (i.e. since the last entry from usermode) so that 375 * get_paca()->user_time_scaled is up to date. 376 */ 377 void vtime_flush(struct task_struct *tsk) 378 { 379 struct cpu_accounting_data *acct = get_accounting(tsk); 380 381 if (acct->utime) 382 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 383 384 if (acct->utime_scaled) 385 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 386 387 if (acct->gtime) 388 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 389 390 if (acct->steal_time) 391 account_steal_time(cputime_to_nsecs(acct->steal_time)); 392 393 if (acct->idle_time) 394 account_idle_time(cputime_to_nsecs(acct->idle_time)); 395 396 if (acct->stime) 397 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 398 CPUTIME_SYSTEM); 399 if (acct->stime_scaled) 400 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 401 402 if (acct->hardirq_time) 403 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 404 CPUTIME_IRQ); 405 if (acct->softirq_time) 406 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 407 CPUTIME_SOFTIRQ); 408 409 acct->utime = 0; 410 acct->utime_scaled = 0; 411 acct->utime_sspurr = 0; 412 acct->gtime = 0; 413 acct->steal_time = 0; 414 acct->idle_time = 0; 415 acct->stime = 0; 416 acct->stime_scaled = 0; 417 acct->hardirq_time = 0; 418 acct->softirq_time = 0; 419 } 420 421 #ifdef CONFIG_PPC32 422 /* 423 * Called from the context switch with interrupts disabled, to charge all 424 * accumulated times to the current process, and to prepare accounting on 425 * the next process. 426 */ 427 void arch_vtime_task_switch(struct task_struct *prev) 428 { 429 struct cpu_accounting_data *acct = get_accounting(current); 430 431 acct->starttime = get_accounting(prev)->starttime; 432 acct->startspurr = get_accounting(prev)->startspurr; 433 } 434 #endif /* CONFIG_PPC32 */ 435 436 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 437 #define calc_cputime_factors() 438 #endif 439 440 void __delay(unsigned long loops) 441 { 442 unsigned long start; 443 int diff; 444 445 spin_begin(); 446 if (__USE_RTC()) { 447 start = get_rtcl(); 448 do { 449 /* the RTCL register wraps at 1000000000 */ 450 diff = get_rtcl() - start; 451 if (diff < 0) 452 diff += 1000000000; 453 spin_cpu_relax(); 454 } while (diff < loops); 455 } else { 456 start = get_tbl(); 457 while (get_tbl() - start < loops) 458 spin_cpu_relax(); 459 } 460 spin_end(); 461 } 462 EXPORT_SYMBOL(__delay); 463 464 void udelay(unsigned long usecs) 465 { 466 __delay(tb_ticks_per_usec * usecs); 467 } 468 EXPORT_SYMBOL(udelay); 469 470 #ifdef CONFIG_SMP 471 unsigned long profile_pc(struct pt_regs *regs) 472 { 473 unsigned long pc = instruction_pointer(regs); 474 475 if (in_lock_functions(pc)) 476 return regs->link; 477 478 return pc; 479 } 480 EXPORT_SYMBOL(profile_pc); 481 #endif 482 483 #ifdef CONFIG_IRQ_WORK 484 485 /* 486 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 487 */ 488 #ifdef CONFIG_PPC64 489 static inline unsigned long test_irq_work_pending(void) 490 { 491 unsigned long x; 492 493 asm volatile("lbz %0,%1(13)" 494 : "=r" (x) 495 : "i" (offsetof(struct paca_struct, irq_work_pending))); 496 return x; 497 } 498 499 static inline void set_irq_work_pending_flag(void) 500 { 501 asm volatile("stb %0,%1(13)" : : 502 "r" (1), 503 "i" (offsetof(struct paca_struct, irq_work_pending))); 504 } 505 506 static inline void clear_irq_work_pending(void) 507 { 508 asm volatile("stb %0,%1(13)" : : 509 "r" (0), 510 "i" (offsetof(struct paca_struct, irq_work_pending))); 511 } 512 513 #else /* 32-bit */ 514 515 DEFINE_PER_CPU(u8, irq_work_pending); 516 517 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 518 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 519 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 520 521 #endif /* 32 vs 64 bit */ 522 523 void arch_irq_work_raise(void) 524 { 525 preempt_disable(); 526 set_irq_work_pending_flag(); 527 set_dec(1); 528 preempt_enable(); 529 } 530 531 #else /* CONFIG_IRQ_WORK */ 532 533 #define test_irq_work_pending() 0 534 #define clear_irq_work_pending() 535 536 #endif /* CONFIG_IRQ_WORK */ 537 538 static void __timer_interrupt(void) 539 { 540 struct pt_regs *regs = get_irq_regs(); 541 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 542 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 543 u64 now; 544 545 trace_timer_interrupt_entry(regs); 546 547 if (test_irq_work_pending()) { 548 clear_irq_work_pending(); 549 irq_work_run(); 550 } 551 552 now = get_tb_or_rtc(); 553 if (now >= *next_tb) { 554 *next_tb = ~(u64)0; 555 if (evt->event_handler) 556 evt->event_handler(evt); 557 __this_cpu_inc(irq_stat.timer_irqs_event); 558 } else { 559 now = *next_tb - now; 560 if (now <= decrementer_max) 561 set_dec(now); 562 /* We may have raced with new irq work */ 563 if (test_irq_work_pending()) 564 set_dec(1); 565 __this_cpu_inc(irq_stat.timer_irqs_others); 566 } 567 568 #ifdef CONFIG_PPC64 569 /* collect purr register values often, for accurate calculations */ 570 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 571 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 572 cu->current_tb = mfspr(SPRN_PURR); 573 } 574 #endif 575 576 trace_timer_interrupt_exit(regs); 577 } 578 579 /* 580 * timer_interrupt - gets called when the decrementer overflows, 581 * with interrupts disabled. 582 */ 583 void timer_interrupt(struct pt_regs * regs) 584 { 585 struct pt_regs *old_regs; 586 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 587 588 /* Ensure a positive value is written to the decrementer, or else 589 * some CPUs will continue to take decrementer exceptions. 590 */ 591 set_dec(decrementer_max); 592 593 /* Some implementations of hotplug will get timer interrupts while 594 * offline, just ignore these and we also need to set 595 * decrementers_next_tb as MAX to make sure __check_irq_replay 596 * don't replay timer interrupt when return, otherwise we'll trap 597 * here infinitely :( 598 */ 599 if (!cpu_online(smp_processor_id())) { 600 *next_tb = ~(u64)0; 601 return; 602 } 603 604 /* Conditionally hard-enable interrupts now that the DEC has been 605 * bumped to its maximum value 606 */ 607 may_hard_irq_enable(); 608 609 610 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 611 if (atomic_read(&ppc_n_lost_interrupts) != 0) 612 do_IRQ(regs); 613 #endif 614 615 old_regs = set_irq_regs(regs); 616 irq_enter(); 617 618 __timer_interrupt(); 619 irq_exit(); 620 set_irq_regs(old_regs); 621 } 622 EXPORT_SYMBOL(timer_interrupt); 623 624 /* 625 * Hypervisor decrementer interrupts shouldn't occur but are sometimes 626 * left pending on exit from a KVM guest. We don't need to do anything 627 * to clear them, as they are edge-triggered. 628 */ 629 void hdec_interrupt(struct pt_regs *regs) 630 { 631 } 632 633 #ifdef CONFIG_SUSPEND 634 static void generic_suspend_disable_irqs(void) 635 { 636 /* Disable the decrementer, so that it doesn't interfere 637 * with suspending. 638 */ 639 640 set_dec(decrementer_max); 641 local_irq_disable(); 642 set_dec(decrementer_max); 643 } 644 645 static void generic_suspend_enable_irqs(void) 646 { 647 local_irq_enable(); 648 } 649 650 /* Overrides the weak version in kernel/power/main.c */ 651 void arch_suspend_disable_irqs(void) 652 { 653 if (ppc_md.suspend_disable_irqs) 654 ppc_md.suspend_disable_irqs(); 655 generic_suspend_disable_irqs(); 656 } 657 658 /* Overrides the weak version in kernel/power/main.c */ 659 void arch_suspend_enable_irqs(void) 660 { 661 generic_suspend_enable_irqs(); 662 if (ppc_md.suspend_enable_irqs) 663 ppc_md.suspend_enable_irqs(); 664 } 665 #endif 666 667 unsigned long long tb_to_ns(unsigned long long ticks) 668 { 669 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 670 } 671 EXPORT_SYMBOL_GPL(tb_to_ns); 672 673 /* 674 * Scheduler clock - returns current time in nanosec units. 675 * 676 * Note: mulhdu(a, b) (multiply high double unsigned) returns 677 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 678 * are 64-bit unsigned numbers. 679 */ 680 notrace unsigned long long sched_clock(void) 681 { 682 if (__USE_RTC()) 683 return get_rtc(); 684 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 685 } 686 687 688 #ifdef CONFIG_PPC_PSERIES 689 690 /* 691 * Running clock - attempts to give a view of time passing for a virtualised 692 * kernels. 693 * Uses the VTB register if available otherwise a next best guess. 694 */ 695 unsigned long long running_clock(void) 696 { 697 /* 698 * Don't read the VTB as a host since KVM does not switch in host 699 * timebase into the VTB when it takes a guest off the CPU, reading the 700 * VTB would result in reading 'last switched out' guest VTB. 701 * 702 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 703 * would be unsafe to rely only on the #ifdef above. 704 */ 705 if (firmware_has_feature(FW_FEATURE_LPAR) && 706 cpu_has_feature(CPU_FTR_ARCH_207S)) 707 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 708 709 /* 710 * This is a next best approximation without a VTB. 711 * On a host which is running bare metal there should never be any stolen 712 * time and on a host which doesn't do any virtualisation TB *should* equal 713 * VTB so it makes no difference anyway. 714 */ 715 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 716 } 717 #endif 718 719 static int __init get_freq(char *name, int cells, unsigned long *val) 720 { 721 struct device_node *cpu; 722 const __be32 *fp; 723 int found = 0; 724 725 /* The cpu node should have timebase and clock frequency properties */ 726 cpu = of_find_node_by_type(NULL, "cpu"); 727 728 if (cpu) { 729 fp = of_get_property(cpu, name, NULL); 730 if (fp) { 731 found = 1; 732 *val = of_read_ulong(fp, cells); 733 } 734 735 of_node_put(cpu); 736 } 737 738 return found; 739 } 740 741 static void start_cpu_decrementer(void) 742 { 743 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 744 unsigned int tcr; 745 746 /* Clear any pending timer interrupts */ 747 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 748 749 tcr = mfspr(SPRN_TCR); 750 /* 751 * The watchdog may have already been enabled by u-boot. So leave 752 * TRC[WP] (Watchdog Period) alone. 753 */ 754 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 755 tcr |= TCR_DIE; /* Enable decrementer */ 756 mtspr(SPRN_TCR, tcr); 757 #endif 758 } 759 760 void __init generic_calibrate_decr(void) 761 { 762 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 763 764 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 765 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 766 767 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 768 "(not found)\n"); 769 } 770 771 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 772 773 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 774 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 775 776 printk(KERN_ERR "WARNING: Estimating processor frequency " 777 "(not found)\n"); 778 } 779 } 780 781 int update_persistent_clock(struct timespec now) 782 { 783 struct rtc_time tm; 784 785 if (!ppc_md.set_rtc_time) 786 return -ENODEV; 787 788 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 789 tm.tm_year -= 1900; 790 tm.tm_mon -= 1; 791 792 return ppc_md.set_rtc_time(&tm); 793 } 794 795 static void __read_persistent_clock(struct timespec *ts) 796 { 797 struct rtc_time tm; 798 static int first = 1; 799 800 ts->tv_nsec = 0; 801 /* XXX this is a litle fragile but will work okay in the short term */ 802 if (first) { 803 first = 0; 804 if (ppc_md.time_init) 805 timezone_offset = ppc_md.time_init(); 806 807 /* get_boot_time() isn't guaranteed to be safe to call late */ 808 if (ppc_md.get_boot_time) { 809 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 810 return; 811 } 812 } 813 if (!ppc_md.get_rtc_time) { 814 ts->tv_sec = 0; 815 return; 816 } 817 ppc_md.get_rtc_time(&tm); 818 819 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 820 tm.tm_hour, tm.tm_min, tm.tm_sec); 821 } 822 823 void read_persistent_clock(struct timespec *ts) 824 { 825 __read_persistent_clock(ts); 826 827 /* Sanitize it in case real time clock is set below EPOCH */ 828 if (ts->tv_sec < 0) { 829 ts->tv_sec = 0; 830 ts->tv_nsec = 0; 831 } 832 833 } 834 835 /* clocksource code */ 836 static notrace u64 rtc_read(struct clocksource *cs) 837 { 838 return (u64)get_rtc(); 839 } 840 841 static notrace u64 timebase_read(struct clocksource *cs) 842 { 843 return (u64)get_tb(); 844 } 845 846 847 void update_vsyscall(struct timekeeper *tk) 848 { 849 struct timespec xt; 850 struct clocksource *clock = tk->tkr_mono.clock; 851 u32 mult = tk->tkr_mono.mult; 852 u32 shift = tk->tkr_mono.shift; 853 u64 cycle_last = tk->tkr_mono.cycle_last; 854 u64 new_tb_to_xs, new_stamp_xsec; 855 u64 frac_sec; 856 857 if (clock != &clocksource_timebase) 858 return; 859 860 xt.tv_sec = tk->xtime_sec; 861 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 862 863 /* Make userspace gettimeofday spin until we're done. */ 864 ++vdso_data->tb_update_count; 865 smp_mb(); 866 867 /* 868 * This computes ((2^20 / 1e9) * mult) >> shift as a 869 * 0.64 fixed-point fraction. 870 * The computation in the else clause below won't overflow 871 * (as long as the timebase frequency is >= 1.049 MHz) 872 * but loses precision because we lose the low bits of the constant 873 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. 874 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns 875 * over a second. (Shift values are usually 22, 23 or 24.) 876 * For high frequency clocks such as the 512MHz timebase clock 877 * on POWER[6789], the mult value is small (e.g. 32768000) 878 * and so we can shift the constant by 16 initially 879 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the 880 * remaining shifts after the multiplication, which gives a 881 * more accurate result (e.g. with mult = 32768000, shift = 24, 882 * the error is only about 1.2e-12, or 0.7ns over 10 minutes). 883 */ 884 if (mult <= 62500000 && clock->shift >= 16) 885 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); 886 else 887 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 888 889 /* 890 * Compute the fractional second in units of 2^-32 seconds. 891 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift 892 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives 893 * it in units of 2^-32 seconds. 894 * We assume shift <= 32 because clocks_calc_mult_shift() 895 * generates shift values in the range 0 - 32. 896 */ 897 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); 898 do_div(frac_sec, NSEC_PER_SEC); 899 900 /* 901 * Work out new stamp_xsec value for any legacy users of systemcfg. 902 * stamp_xsec is in units of 2^-20 seconds. 903 */ 904 new_stamp_xsec = frac_sec >> 12; 905 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; 906 907 /* 908 * tb_update_count is used to allow the userspace gettimeofday code 909 * to assure itself that it sees a consistent view of the tb_to_xs and 910 * stamp_xsec variables. It reads the tb_update_count, then reads 911 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 912 * the two values of tb_update_count match and are even then the 913 * tb_to_xs and stamp_xsec values are consistent. If not, then it 914 * loops back and reads them again until this criteria is met. 915 */ 916 vdso_data->tb_orig_stamp = cycle_last; 917 vdso_data->stamp_xsec = new_stamp_xsec; 918 vdso_data->tb_to_xs = new_tb_to_xs; 919 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; 920 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; 921 vdso_data->stamp_xtime = xt; 922 vdso_data->stamp_sec_fraction = frac_sec; 923 smp_wmb(); 924 ++(vdso_data->tb_update_count); 925 } 926 927 void update_vsyscall_tz(void) 928 { 929 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 930 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 931 } 932 933 static void __init clocksource_init(void) 934 { 935 struct clocksource *clock; 936 937 if (__USE_RTC()) 938 clock = &clocksource_rtc; 939 else 940 clock = &clocksource_timebase; 941 942 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 943 printk(KERN_ERR "clocksource: %s is already registered\n", 944 clock->name); 945 return; 946 } 947 948 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 949 clock->name, clock->mult, clock->shift); 950 } 951 952 static int decrementer_set_next_event(unsigned long evt, 953 struct clock_event_device *dev) 954 { 955 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt); 956 set_dec(evt); 957 958 /* We may have raced with new irq work */ 959 if (test_irq_work_pending()) 960 set_dec(1); 961 962 return 0; 963 } 964 965 static int decrementer_shutdown(struct clock_event_device *dev) 966 { 967 decrementer_set_next_event(decrementer_max, dev); 968 return 0; 969 } 970 971 /* Interrupt handler for the timer broadcast IPI */ 972 void tick_broadcast_ipi_handler(void) 973 { 974 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 975 976 *next_tb = get_tb_or_rtc(); 977 __timer_interrupt(); 978 } 979 980 static void register_decrementer_clockevent(int cpu) 981 { 982 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 983 984 *dec = decrementer_clockevent; 985 dec->cpumask = cpumask_of(cpu); 986 987 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 988 dec->name, dec->mult, dec->shift, cpu); 989 990 clockevents_register_device(dec); 991 } 992 993 static void enable_large_decrementer(void) 994 { 995 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 996 return; 997 998 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 999 return; 1000 1001 /* 1002 * If we're running as the hypervisor we need to enable the LD manually 1003 * otherwise firmware should have done it for us. 1004 */ 1005 if (cpu_has_feature(CPU_FTR_HVMODE)) 1006 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 1007 } 1008 1009 static void __init set_decrementer_max(void) 1010 { 1011 struct device_node *cpu; 1012 u32 bits = 32; 1013 1014 /* Prior to ISAv3 the decrementer is always 32 bit */ 1015 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1016 return; 1017 1018 cpu = of_find_node_by_type(NULL, "cpu"); 1019 1020 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 1021 if (bits > 64 || bits < 32) { 1022 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 1023 bits = 32; 1024 } 1025 1026 /* calculate the signed maximum given this many bits */ 1027 decrementer_max = (1ul << (bits - 1)) - 1; 1028 } 1029 1030 of_node_put(cpu); 1031 1032 pr_info("time_init: %u bit decrementer (max: %llx)\n", 1033 bits, decrementer_max); 1034 } 1035 1036 static void __init init_decrementer_clockevent(void) 1037 { 1038 int cpu = smp_processor_id(); 1039 1040 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); 1041 1042 decrementer_clockevent.max_delta_ns = 1043 clockevent_delta2ns(decrementer_max, &decrementer_clockevent); 1044 decrementer_clockevent.max_delta_ticks = decrementer_max; 1045 decrementer_clockevent.min_delta_ns = 1046 clockevent_delta2ns(2, &decrementer_clockevent); 1047 decrementer_clockevent.min_delta_ticks = 2; 1048 1049 register_decrementer_clockevent(cpu); 1050 } 1051 1052 void secondary_cpu_time_init(void) 1053 { 1054 /* Enable and test the large decrementer for this cpu */ 1055 enable_large_decrementer(); 1056 1057 /* Start the decrementer on CPUs that have manual control 1058 * such as BookE 1059 */ 1060 start_cpu_decrementer(); 1061 1062 /* FIME: Should make unrelatred change to move snapshot_timebase 1063 * call here ! */ 1064 register_decrementer_clockevent(smp_processor_id()); 1065 } 1066 1067 /* This function is only called on the boot processor */ 1068 void __init time_init(void) 1069 { 1070 struct div_result res; 1071 u64 scale; 1072 unsigned shift; 1073 1074 if (__USE_RTC()) { 1075 /* 601 processor: dec counts down by 128 every 128ns */ 1076 ppc_tb_freq = 1000000000; 1077 } else { 1078 /* Normal PowerPC with timebase register */ 1079 ppc_md.calibrate_decr(); 1080 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1081 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1082 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1083 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1084 } 1085 1086 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1087 tb_ticks_per_sec = ppc_tb_freq; 1088 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1089 calc_cputime_factors(); 1090 1091 /* 1092 * Compute scale factor for sched_clock. 1093 * The calibrate_decr() function has set tb_ticks_per_sec, 1094 * which is the timebase frequency. 1095 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1096 * the 128-bit result as a 64.64 fixed-point number. 1097 * We then shift that number right until it is less than 1.0, 1098 * giving us the scale factor and shift count to use in 1099 * sched_clock(). 1100 */ 1101 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1102 scale = res.result_low; 1103 for (shift = 0; res.result_high != 0; ++shift) { 1104 scale = (scale >> 1) | (res.result_high << 63); 1105 res.result_high >>= 1; 1106 } 1107 tb_to_ns_scale = scale; 1108 tb_to_ns_shift = shift; 1109 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1110 boot_tb = get_tb_or_rtc(); 1111 1112 /* If platform provided a timezone (pmac), we correct the time */ 1113 if (timezone_offset) { 1114 sys_tz.tz_minuteswest = -timezone_offset / 60; 1115 sys_tz.tz_dsttime = 0; 1116 } 1117 1118 vdso_data->tb_update_count = 0; 1119 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1120 1121 /* initialise and enable the large decrementer (if we have one) */ 1122 set_decrementer_max(); 1123 enable_large_decrementer(); 1124 1125 /* Start the decrementer on CPUs that have manual control 1126 * such as BookE 1127 */ 1128 start_cpu_decrementer(); 1129 1130 /* Register the clocksource */ 1131 clocksource_init(); 1132 1133 init_decrementer_clockevent(); 1134 tick_setup_hrtimer_broadcast(); 1135 1136 #ifdef CONFIG_COMMON_CLK 1137 of_clk_init(NULL); 1138 #endif 1139 } 1140 1141 1142 #define FEBRUARY 2 1143 #define STARTOFTIME 1970 1144 #define SECDAY 86400L 1145 #define SECYR (SECDAY * 365) 1146 #define leapyear(year) ((year) % 4 == 0 && \ 1147 ((year) % 100 != 0 || (year) % 400 == 0)) 1148 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1149 #define days_in_month(a) (month_days[(a) - 1]) 1150 1151 static int month_days[12] = { 1152 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1153 }; 1154 1155 void to_tm(int tim, struct rtc_time * tm) 1156 { 1157 register int i; 1158 register long hms, day; 1159 1160 day = tim / SECDAY; 1161 hms = tim % SECDAY; 1162 1163 /* Hours, minutes, seconds are easy */ 1164 tm->tm_hour = hms / 3600; 1165 tm->tm_min = (hms % 3600) / 60; 1166 tm->tm_sec = (hms % 3600) % 60; 1167 1168 /* Number of years in days */ 1169 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1170 day -= days_in_year(i); 1171 tm->tm_year = i; 1172 1173 /* Number of months in days left */ 1174 if (leapyear(tm->tm_year)) 1175 days_in_month(FEBRUARY) = 29; 1176 for (i = 1; day >= days_in_month(i); i++) 1177 day -= days_in_month(i); 1178 days_in_month(FEBRUARY) = 28; 1179 tm->tm_mon = i; 1180 1181 /* Days are what is left over (+1) from all that. */ 1182 tm->tm_mday = day + 1; 1183 1184 /* 1185 * No-one uses the day of the week. 1186 */ 1187 tm->tm_wday = -1; 1188 } 1189 EXPORT_SYMBOL(to_tm); 1190 1191 /* 1192 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1193 * result. 1194 */ 1195 void div128_by_32(u64 dividend_high, u64 dividend_low, 1196 unsigned divisor, struct div_result *dr) 1197 { 1198 unsigned long a, b, c, d; 1199 unsigned long w, x, y, z; 1200 u64 ra, rb, rc; 1201 1202 a = dividend_high >> 32; 1203 b = dividend_high & 0xffffffff; 1204 c = dividend_low >> 32; 1205 d = dividend_low & 0xffffffff; 1206 1207 w = a / divisor; 1208 ra = ((u64)(a - (w * divisor)) << 32) + b; 1209 1210 rb = ((u64) do_div(ra, divisor) << 32) + c; 1211 x = ra; 1212 1213 rc = ((u64) do_div(rb, divisor) << 32) + d; 1214 y = rb; 1215 1216 do_div(rc, divisor); 1217 z = rc; 1218 1219 dr->result_high = ((u64)w << 32) + x; 1220 dr->result_low = ((u64)y << 32) + z; 1221 1222 } 1223 1224 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1225 void calibrate_delay(void) 1226 { 1227 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1228 * as the number of __delay(1) in a jiffy, so make it so 1229 */ 1230 loops_per_jiffy = tb_ticks_per_jiffy; 1231 } 1232 1233 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1234 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1235 { 1236 ppc_md.get_rtc_time(tm); 1237 return rtc_valid_tm(tm); 1238 } 1239 1240 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1241 { 1242 if (!ppc_md.set_rtc_time) 1243 return -EOPNOTSUPP; 1244 1245 if (ppc_md.set_rtc_time(tm) < 0) 1246 return -EOPNOTSUPP; 1247 1248 return 0; 1249 } 1250 1251 static const struct rtc_class_ops rtc_generic_ops = { 1252 .read_time = rtc_generic_get_time, 1253 .set_time = rtc_generic_set_time, 1254 }; 1255 1256 static int __init rtc_init(void) 1257 { 1258 struct platform_device *pdev; 1259 1260 if (!ppc_md.get_rtc_time) 1261 return -ENODEV; 1262 1263 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1264 &rtc_generic_ops, 1265 sizeof(rtc_generic_ops)); 1266 1267 return PTR_ERR_OR_ZERO(pdev); 1268 } 1269 1270 device_initcall(rtc_init); 1271 #endif 1272