xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 64c70b1c)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
76 
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 #ifdef CONFIG_PPC_ISERIES
80 unsigned long iSeries_recal_titan = 0;
81 unsigned long iSeries_recal_tb = 0;
82 static unsigned long first_settimeofday = 1;
83 #endif
84 
85 /* The decrementer counts down by 128 every 128ns on a 601. */
86 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
87 
88 #define XSEC_PER_SEC (1024*1024)
89 
90 #ifdef CONFIG_PPC64
91 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
92 #else
93 /* compute ((xsec << 12) * max) >> 32 */
94 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
95 #endif
96 
97 unsigned long tb_ticks_per_jiffy;
98 unsigned long tb_ticks_per_usec = 100; /* sane default */
99 EXPORT_SYMBOL(tb_ticks_per_usec);
100 unsigned long tb_ticks_per_sec;
101 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
102 u64 tb_to_xs;
103 unsigned tb_to_us;
104 
105 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
106 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
107 u64 ticklen_to_xs;	/* 0.64 fraction */
108 
109 /* If last_tick_len corresponds to about 1/HZ seconds, then
110    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112 
113 DEFINE_SPINLOCK(rtc_lock);
114 EXPORT_SYMBOL_GPL(rtc_lock);
115 
116 u64 tb_to_ns_scale;
117 unsigned tb_to_ns_shift;
118 
119 struct gettimeofday_struct do_gtod;
120 
121 extern struct timezone sys_tz;
122 static long timezone_offset;
123 
124 unsigned long ppc_proc_freq;
125 unsigned long ppc_tb_freq;
126 
127 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128 static DEFINE_PER_CPU(u64, last_jiffy);
129 
130 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
131 /*
132  * Factors for converting from cputime_t (timebase ticks) to
133  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134  * These are all stored as 0.64 fixed-point binary fractions.
135  */
136 u64 __cputime_jiffies_factor;
137 EXPORT_SYMBOL(__cputime_jiffies_factor);
138 u64 __cputime_msec_factor;
139 EXPORT_SYMBOL(__cputime_msec_factor);
140 u64 __cputime_sec_factor;
141 EXPORT_SYMBOL(__cputime_sec_factor);
142 u64 __cputime_clockt_factor;
143 EXPORT_SYMBOL(__cputime_clockt_factor);
144 
145 static void calc_cputime_factors(void)
146 {
147 	struct div_result res;
148 
149 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150 	__cputime_jiffies_factor = res.result_low;
151 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152 	__cputime_msec_factor = res.result_low;
153 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
154 	__cputime_sec_factor = res.result_low;
155 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156 	__cputime_clockt_factor = res.result_low;
157 }
158 
159 /*
160  * Read the PURR on systems that have it, otherwise the timebase.
161  */
162 static u64 read_purr(void)
163 {
164 	if (cpu_has_feature(CPU_FTR_PURR))
165 		return mfspr(SPRN_PURR);
166 	return mftb();
167 }
168 
169 /*
170  * Account time for a transition between system, hard irq
171  * or soft irq state.
172  */
173 void account_system_vtime(struct task_struct *tsk)
174 {
175 	u64 now, delta;
176 	unsigned long flags;
177 
178 	local_irq_save(flags);
179 	now = read_purr();
180 	delta = now - get_paca()->startpurr;
181 	get_paca()->startpurr = now;
182 	if (!in_interrupt()) {
183 		delta += get_paca()->system_time;
184 		get_paca()->system_time = 0;
185 	}
186 	account_system_time(tsk, 0, delta);
187 	local_irq_restore(flags);
188 }
189 
190 /*
191  * Transfer the user and system times accumulated in the paca
192  * by the exception entry and exit code to the generic process
193  * user and system time records.
194  * Must be called with interrupts disabled.
195  */
196 void account_process_vtime(struct task_struct *tsk)
197 {
198 	cputime_t utime;
199 
200 	utime = get_paca()->user_time;
201 	get_paca()->user_time = 0;
202 	account_user_time(tsk, utime);
203 }
204 
205 static void account_process_time(struct pt_regs *regs)
206 {
207 	int cpu = smp_processor_id();
208 
209 	account_process_vtime(current);
210 	run_local_timers();
211 	if (rcu_pending(cpu))
212 		rcu_check_callbacks(cpu, user_mode(regs));
213 	scheduler_tick();
214  	run_posix_cpu_timers(current);
215 }
216 
217 #ifdef CONFIG_PPC_SPLPAR
218 /*
219  * Stuff for accounting stolen time.
220  */
221 struct cpu_purr_data {
222 	int	initialized;			/* thread is running */
223 	u64	tb;			/* last TB value read */
224 	u64	purr;			/* last PURR value read */
225 	spinlock_t lock;
226 };
227 
228 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
229 
230 static void snapshot_tb_and_purr(void *data)
231 {
232 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
233 
234 	p->tb = mftb();
235 	p->purr = mfspr(SPRN_PURR);
236 	wmb();
237 	p->initialized = 1;
238 }
239 
240 /*
241  * Called during boot when all cpus have come up.
242  */
243 void snapshot_timebases(void)
244 {
245 	int cpu;
246 
247 	if (!cpu_has_feature(CPU_FTR_PURR))
248 		return;
249 	for_each_possible_cpu(cpu)
250 		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
251 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
252 }
253 
254 void calculate_steal_time(void)
255 {
256 	u64 tb, purr;
257 	s64 stolen;
258 	struct cpu_purr_data *pme;
259 
260 	if (!cpu_has_feature(CPU_FTR_PURR))
261 		return;
262 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
263 	if (!pme->initialized)
264 		return;		/* this can happen in early boot */
265 	spin_lock(&pme->lock);
266 	tb = mftb();
267 	purr = mfspr(SPRN_PURR);
268 	stolen = (tb - pme->tb) - (purr - pme->purr);
269 	if (stolen > 0)
270 		account_steal_time(current, stolen);
271 	pme->tb = tb;
272 	pme->purr = purr;
273 	spin_unlock(&pme->lock);
274 }
275 
276 /*
277  * Must be called before the cpu is added to the online map when
278  * a cpu is being brought up at runtime.
279  */
280 static void snapshot_purr(void)
281 {
282 	struct cpu_purr_data *pme;
283 	unsigned long flags;
284 
285 	if (!cpu_has_feature(CPU_FTR_PURR))
286 		return;
287 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
288 	spin_lock_irqsave(&pme->lock, flags);
289 	pme->tb = mftb();
290 	pme->purr = mfspr(SPRN_PURR);
291 	pme->initialized = 1;
292 	spin_unlock_irqrestore(&pme->lock, flags);
293 }
294 
295 #endif /* CONFIG_PPC_SPLPAR */
296 
297 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
298 #define calc_cputime_factors()
299 #define account_process_time(regs)	update_process_times(user_mode(regs))
300 #define calculate_steal_time()		do { } while (0)
301 #endif
302 
303 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
304 #define snapshot_purr()			do { } while (0)
305 #endif
306 
307 /*
308  * Called when a cpu comes up after the system has finished booting,
309  * i.e. as a result of a hotplug cpu action.
310  */
311 void snapshot_timebase(void)
312 {
313 	__get_cpu_var(last_jiffy) = get_tb();
314 	snapshot_purr();
315 }
316 
317 void __delay(unsigned long loops)
318 {
319 	unsigned long start;
320 	int diff;
321 
322 	if (__USE_RTC()) {
323 		start = get_rtcl();
324 		do {
325 			/* the RTCL register wraps at 1000000000 */
326 			diff = get_rtcl() - start;
327 			if (diff < 0)
328 				diff += 1000000000;
329 		} while (diff < loops);
330 	} else {
331 		start = get_tbl();
332 		while (get_tbl() - start < loops)
333 			HMT_low();
334 		HMT_medium();
335 	}
336 }
337 EXPORT_SYMBOL(__delay);
338 
339 void udelay(unsigned long usecs)
340 {
341 	__delay(tb_ticks_per_usec * usecs);
342 }
343 EXPORT_SYMBOL(udelay);
344 
345 static __inline__ void timer_check_rtc(void)
346 {
347         /*
348          * update the rtc when needed, this should be performed on the
349          * right fraction of a second. Half or full second ?
350          * Full second works on mk48t59 clocks, others need testing.
351          * Note that this update is basically only used through
352          * the adjtimex system calls. Setting the HW clock in
353          * any other way is a /dev/rtc and userland business.
354          * This is still wrong by -0.5/+1.5 jiffies because of the
355          * timer interrupt resolution and possible delay, but here we
356          * hit a quantization limit which can only be solved by higher
357          * resolution timers and decoupling time management from timer
358          * interrupts. This is also wrong on the clocks
359          * which require being written at the half second boundary.
360          * We should have an rtc call that only sets the minutes and
361          * seconds like on Intel to avoid problems with non UTC clocks.
362          */
363         if (ppc_md.set_rtc_time && ntp_synced() &&
364 	    xtime.tv_sec - last_rtc_update >= 659 &&
365 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
366 		struct rtc_time tm;
367 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
368 		tm.tm_year -= 1900;
369 		tm.tm_mon -= 1;
370 		if (ppc_md.set_rtc_time(&tm) == 0)
371 			last_rtc_update = xtime.tv_sec + 1;
372 		else
373 			/* Try again one minute later */
374 			last_rtc_update += 60;
375         }
376 }
377 
378 /*
379  * This version of gettimeofday has microsecond resolution.
380  */
381 static inline void __do_gettimeofday(struct timeval *tv)
382 {
383 	unsigned long sec, usec;
384 	u64 tb_ticks, xsec;
385 	struct gettimeofday_vars *temp_varp;
386 	u64 temp_tb_to_xs, temp_stamp_xsec;
387 
388 	/*
389 	 * These calculations are faster (gets rid of divides)
390 	 * if done in units of 1/2^20 rather than microseconds.
391 	 * The conversion to microseconds at the end is done
392 	 * without a divide (and in fact, without a multiply)
393 	 */
394 	temp_varp = do_gtod.varp;
395 
396 	/* Sampling the time base must be done after loading
397 	 * do_gtod.varp in order to avoid racing with update_gtod.
398 	 */
399 	data_barrier(temp_varp);
400 	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
401 	temp_tb_to_xs = temp_varp->tb_to_xs;
402 	temp_stamp_xsec = temp_varp->stamp_xsec;
403 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
404 	sec = xsec / XSEC_PER_SEC;
405 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
406 	usec = SCALE_XSEC(usec, 1000000);
407 
408 	tv->tv_sec = sec;
409 	tv->tv_usec = usec;
410 }
411 
412 void do_gettimeofday(struct timeval *tv)
413 {
414 	if (__USE_RTC()) {
415 		/* do this the old way */
416 		unsigned long flags, seq;
417 		unsigned int sec, nsec, usec;
418 
419 		do {
420 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
421 			sec = xtime.tv_sec;
422 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
423 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
424 		usec = nsec / 1000;
425 		while (usec >= 1000000) {
426 			usec -= 1000000;
427 			++sec;
428 		}
429 		tv->tv_sec = sec;
430 		tv->tv_usec = usec;
431 		return;
432 	}
433 	__do_gettimeofday(tv);
434 }
435 
436 EXPORT_SYMBOL(do_gettimeofday);
437 
438 /*
439  * There are two copies of tb_to_xs and stamp_xsec so that no
440  * lock is needed to access and use these values in
441  * do_gettimeofday.  We alternate the copies and as long as a
442  * reasonable time elapses between changes, there will never
443  * be inconsistent values.  ntpd has a minimum of one minute
444  * between updates.
445  */
446 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
447 			       u64 new_tb_to_xs)
448 {
449 	unsigned temp_idx;
450 	struct gettimeofday_vars *temp_varp;
451 
452 	temp_idx = (do_gtod.var_idx == 0);
453 	temp_varp = &do_gtod.vars[temp_idx];
454 
455 	temp_varp->tb_to_xs = new_tb_to_xs;
456 	temp_varp->tb_orig_stamp = new_tb_stamp;
457 	temp_varp->stamp_xsec = new_stamp_xsec;
458 	smp_mb();
459 	do_gtod.varp = temp_varp;
460 	do_gtod.var_idx = temp_idx;
461 
462 	/*
463 	 * tb_update_count is used to allow the userspace gettimeofday code
464 	 * to assure itself that it sees a consistent view of the tb_to_xs and
465 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
466 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
467 	 * the two values of tb_update_count match and are even then the
468 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
469 	 * loops back and reads them again until this criteria is met.
470 	 * We expect the caller to have done the first increment of
471 	 * vdso_data->tb_update_count already.
472 	 */
473 	vdso_data->tb_orig_stamp = new_tb_stamp;
474 	vdso_data->stamp_xsec = new_stamp_xsec;
475 	vdso_data->tb_to_xs = new_tb_to_xs;
476 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
477 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
478 	smp_wmb();
479 	++(vdso_data->tb_update_count);
480 }
481 
482 /*
483  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
484  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
485  * difference tb - tb_orig_stamp small enough to always fit inside a
486  * 32 bits number. This is a requirement of our fast 32 bits userland
487  * implementation in the vdso. If we "miss" a call to this function
488  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
489  * with a too big difference, then the vdso will fallback to calling
490  * the syscall
491  */
492 static __inline__ void timer_recalc_offset(u64 cur_tb)
493 {
494 	unsigned long offset;
495 	u64 new_stamp_xsec;
496 	u64 tlen, t2x;
497 	u64 tb, xsec_old, xsec_new;
498 	struct gettimeofday_vars *varp;
499 
500 	if (__USE_RTC())
501 		return;
502 	tlen = current_tick_length();
503 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
504 	if (tlen == last_tick_len && offset < 0x80000000u)
505 		return;
506 	if (tlen != last_tick_len) {
507 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
508 		last_tick_len = tlen;
509 	} else
510 		t2x = do_gtod.varp->tb_to_xs;
511 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
512 	do_div(new_stamp_xsec, 1000000000);
513 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
514 
515 	++vdso_data->tb_update_count;
516 	smp_mb();
517 
518 	/*
519 	 * Make sure time doesn't go backwards for userspace gettimeofday.
520 	 */
521 	tb = get_tb();
522 	varp = do_gtod.varp;
523 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
524 		+ varp->stamp_xsec;
525 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
526 	if (xsec_new < xsec_old)
527 		new_stamp_xsec += xsec_old - xsec_new;
528 
529 	update_gtod(cur_tb, new_stamp_xsec, t2x);
530 }
531 
532 #ifdef CONFIG_SMP
533 unsigned long profile_pc(struct pt_regs *regs)
534 {
535 	unsigned long pc = instruction_pointer(regs);
536 
537 	if (in_lock_functions(pc))
538 		return regs->link;
539 
540 	return pc;
541 }
542 EXPORT_SYMBOL(profile_pc);
543 #endif
544 
545 #ifdef CONFIG_PPC_ISERIES
546 
547 /*
548  * This function recalibrates the timebase based on the 49-bit time-of-day
549  * value in the Titan chip.  The Titan is much more accurate than the value
550  * returned by the service processor for the timebase frequency.
551  */
552 
553 static void iSeries_tb_recal(void)
554 {
555 	struct div_result divres;
556 	unsigned long titan, tb;
557 	tb = get_tb();
558 	titan = HvCallXm_loadTod();
559 	if ( iSeries_recal_titan ) {
560 		unsigned long tb_ticks = tb - iSeries_recal_tb;
561 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
562 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
563 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
564 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
565 		char sign = '+';
566 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
567 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
568 
569 		if ( tick_diff < 0 ) {
570 			tick_diff = -tick_diff;
571 			sign = '-';
572 		}
573 		if ( tick_diff ) {
574 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
575 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
576 						new_tb_ticks_per_jiffy, sign, tick_diff );
577 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
578 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
579 				calc_cputime_factors();
580 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
581 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
582 				tb_to_xs = divres.result_low;
583 				do_gtod.varp->tb_to_xs = tb_to_xs;
584 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
585 				vdso_data->tb_to_xs = tb_to_xs;
586 			}
587 			else {
588 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
589 					"                   new tb_ticks_per_jiffy = %lu\n"
590 					"                   old tb_ticks_per_jiffy = %lu\n",
591 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
592 			}
593 		}
594 	}
595 	iSeries_recal_titan = titan;
596 	iSeries_recal_tb = tb;
597 }
598 #endif
599 
600 /*
601  * For iSeries shared processors, we have to let the hypervisor
602  * set the hardware decrementer.  We set a virtual decrementer
603  * in the lppaca and call the hypervisor if the virtual
604  * decrementer is less than the current value in the hardware
605  * decrementer. (almost always the new decrementer value will
606  * be greater than the current hardware decementer so the hypervisor
607  * call will not be needed)
608  */
609 
610 /*
611  * timer_interrupt - gets called when the decrementer overflows,
612  * with interrupts disabled.
613  */
614 void timer_interrupt(struct pt_regs * regs)
615 {
616 	struct pt_regs *old_regs;
617 	int next_dec;
618 	int cpu = smp_processor_id();
619 	unsigned long ticks;
620 	u64 tb_next_jiffy;
621 
622 #ifdef CONFIG_PPC32
623 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
624 		do_IRQ(regs);
625 #endif
626 
627 	old_regs = set_irq_regs(regs);
628 	irq_enter();
629 
630 	profile_tick(CPU_PROFILING);
631 	calculate_steal_time();
632 
633 #ifdef CONFIG_PPC_ISERIES
634 	if (firmware_has_feature(FW_FEATURE_ISERIES))
635 		get_lppaca()->int_dword.fields.decr_int = 0;
636 #endif
637 
638 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
639 	       >= tb_ticks_per_jiffy) {
640 		/* Update last_jiffy */
641 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
642 		/* Handle RTCL overflow on 601 */
643 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
644 			per_cpu(last_jiffy, cpu) -= 1000000000;
645 
646 		/*
647 		 * We cannot disable the decrementer, so in the period
648 		 * between this cpu's being marked offline in cpu_online_map
649 		 * and calling stop-self, it is taking timer interrupts.
650 		 * Avoid calling into the scheduler rebalancing code if this
651 		 * is the case.
652 		 */
653 		if (!cpu_is_offline(cpu))
654 			account_process_time(regs);
655 
656 		/*
657 		 * No need to check whether cpu is offline here; boot_cpuid
658 		 * should have been fixed up by now.
659 		 */
660 		if (cpu != boot_cpuid)
661 			continue;
662 
663 		write_seqlock(&xtime_lock);
664 		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
665 		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
666 			tb_last_jiffy = tb_next_jiffy;
667 			do_timer(1);
668 			timer_recalc_offset(tb_last_jiffy);
669 			timer_check_rtc();
670 		}
671 		write_sequnlock(&xtime_lock);
672 	}
673 
674 	next_dec = tb_ticks_per_jiffy - ticks;
675 	set_dec(next_dec);
676 
677 #ifdef CONFIG_PPC_ISERIES
678 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
679 		process_hvlpevents();
680 #endif
681 
682 #ifdef CONFIG_PPC64
683 	/* collect purr register values often, for accurate calculations */
684 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
685 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
686 		cu->current_tb = mfspr(SPRN_PURR);
687 	}
688 #endif
689 
690 	irq_exit();
691 	set_irq_regs(old_regs);
692 }
693 
694 void wakeup_decrementer(void)
695 {
696 	unsigned long ticks;
697 
698 	/*
699 	 * The timebase gets saved on sleep and restored on wakeup,
700 	 * so all we need to do is to reset the decrementer.
701 	 */
702 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
703 	if (ticks < tb_ticks_per_jiffy)
704 		ticks = tb_ticks_per_jiffy - ticks;
705 	else
706 		ticks = 1;
707 	set_dec(ticks);
708 }
709 
710 #ifdef CONFIG_SMP
711 void __init smp_space_timers(unsigned int max_cpus)
712 {
713 	int i;
714 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
715 
716 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
717 	previous_tb -= tb_ticks_per_jiffy;
718 
719 	for_each_possible_cpu(i) {
720 		if (i == boot_cpuid)
721 			continue;
722 		per_cpu(last_jiffy, i) = previous_tb;
723 	}
724 }
725 #endif
726 
727 /*
728  * Scheduler clock - returns current time in nanosec units.
729  *
730  * Note: mulhdu(a, b) (multiply high double unsigned) returns
731  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
732  * are 64-bit unsigned numbers.
733  */
734 unsigned long long sched_clock(void)
735 {
736 	if (__USE_RTC())
737 		return get_rtc();
738 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
739 }
740 
741 int do_settimeofday(struct timespec *tv)
742 {
743 	time_t wtm_sec, new_sec = tv->tv_sec;
744 	long wtm_nsec, new_nsec = tv->tv_nsec;
745 	unsigned long flags;
746 	u64 new_xsec;
747 	unsigned long tb_delta;
748 
749 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
750 		return -EINVAL;
751 
752 	write_seqlock_irqsave(&xtime_lock, flags);
753 
754 	/*
755 	 * Updating the RTC is not the job of this code. If the time is
756 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
757 	 * is cleared.  Tools like clock/hwclock either copy the RTC
758 	 * to the system time, in which case there is no point in writing
759 	 * to the RTC again, or write to the RTC but then they don't call
760 	 * settimeofday to perform this operation.
761 	 */
762 #ifdef CONFIG_PPC_ISERIES
763 	if (firmware_has_feature(FW_FEATURE_ISERIES) && first_settimeofday) {
764 		iSeries_tb_recal();
765 		first_settimeofday = 0;
766 	}
767 #endif
768 
769 	/* Make userspace gettimeofday spin until we're done. */
770 	++vdso_data->tb_update_count;
771 	smp_mb();
772 
773 	/*
774 	 * Subtract off the number of nanoseconds since the
775 	 * beginning of the last tick.
776 	 */
777 	tb_delta = tb_ticks_since(tb_last_jiffy);
778 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
779 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
780 
781 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
782 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
783 
784  	set_normalized_timespec(&xtime, new_sec, new_nsec);
785 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
786 
787 	/* In case of a large backwards jump in time with NTP, we want the
788 	 * clock to be updated as soon as the PLL is again in lock.
789 	 */
790 	last_rtc_update = new_sec - 658;
791 
792 	ntp_clear();
793 
794 	new_xsec = xtime.tv_nsec;
795 	if (new_xsec != 0) {
796 		new_xsec *= XSEC_PER_SEC;
797 		do_div(new_xsec, NSEC_PER_SEC);
798 	}
799 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
800 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
801 
802 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
803 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
804 
805 	write_sequnlock_irqrestore(&xtime_lock, flags);
806 	clock_was_set();
807 	return 0;
808 }
809 
810 EXPORT_SYMBOL(do_settimeofday);
811 
812 static int __init get_freq(char *name, int cells, unsigned long *val)
813 {
814 	struct device_node *cpu;
815 	const unsigned int *fp;
816 	int found = 0;
817 
818 	/* The cpu node should have timebase and clock frequency properties */
819 	cpu = of_find_node_by_type(NULL, "cpu");
820 
821 	if (cpu) {
822 		fp = of_get_property(cpu, name, NULL);
823 		if (fp) {
824 			found = 1;
825 			*val = of_read_ulong(fp, cells);
826 		}
827 
828 		of_node_put(cpu);
829 	}
830 
831 	return found;
832 }
833 
834 void __init generic_calibrate_decr(void)
835 {
836 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
837 
838 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
839 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
840 
841 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
842 				"(not found)\n");
843 	}
844 
845 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
846 
847 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
848 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
849 
850 		printk(KERN_ERR "WARNING: Estimating processor frequency "
851 				"(not found)\n");
852 	}
853 
854 #ifdef CONFIG_BOOKE
855 	/* Set the time base to zero */
856 	mtspr(SPRN_TBWL, 0);
857 	mtspr(SPRN_TBWU, 0);
858 
859 	/* Clear any pending timer interrupts */
860 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
861 
862 	/* Enable decrementer interrupt */
863 	mtspr(SPRN_TCR, TCR_DIE);
864 #endif
865 }
866 
867 unsigned long get_boot_time(void)
868 {
869 	struct rtc_time tm;
870 
871 	if (ppc_md.get_boot_time)
872 		return ppc_md.get_boot_time();
873 	if (!ppc_md.get_rtc_time)
874 		return 0;
875 	ppc_md.get_rtc_time(&tm);
876 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
877 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
878 }
879 
880 /* This function is only called on the boot processor */
881 void __init time_init(void)
882 {
883 	unsigned long flags;
884 	unsigned long tm = 0;
885 	struct div_result res;
886 	u64 scale, x;
887 	unsigned shift;
888 
889         if (ppc_md.time_init != NULL)
890                 timezone_offset = ppc_md.time_init();
891 
892 	if (__USE_RTC()) {
893 		/* 601 processor: dec counts down by 128 every 128ns */
894 		ppc_tb_freq = 1000000000;
895 		tb_last_jiffy = get_rtcl();
896 	} else {
897 		/* Normal PowerPC with timebase register */
898 		ppc_md.calibrate_decr();
899 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
900 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
901 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
902 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
903 		tb_last_jiffy = get_tb();
904 	}
905 
906 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
907 	tb_ticks_per_sec = ppc_tb_freq;
908 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
909 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
910 	calc_cputime_factors();
911 
912 	/*
913 	 * Calculate the length of each tick in ns.  It will not be
914 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
915 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
916 	 * rounded up.
917 	 */
918 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
919 	do_div(x, ppc_tb_freq);
920 	tick_nsec = x;
921 	last_tick_len = x << TICKLEN_SCALE;
922 
923 	/*
924 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
925 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
926 	 * It is computed as:
927 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
928 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
929 	 * which turns out to be N = 51 - SHIFT_HZ.
930 	 * This gives the result as a 0.64 fixed-point fraction.
931 	 * That value is reduced by an offset amounting to 1 xsec per
932 	 * 2^31 timebase ticks to avoid problems with time going backwards
933 	 * by 1 xsec when we do timer_recalc_offset due to losing the
934 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
935 	 * since there are 2^20 xsec in a second.
936 	 */
937 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
938 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
939 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
940 	ticklen_to_xs = res.result_low;
941 
942 	/* Compute tb_to_xs from tick_nsec */
943 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
944 
945 	/*
946 	 * Compute scale factor for sched_clock.
947 	 * The calibrate_decr() function has set tb_ticks_per_sec,
948 	 * which is the timebase frequency.
949 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
950 	 * the 128-bit result as a 64.64 fixed-point number.
951 	 * We then shift that number right until it is less than 1.0,
952 	 * giving us the scale factor and shift count to use in
953 	 * sched_clock().
954 	 */
955 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
956 	scale = res.result_low;
957 	for (shift = 0; res.result_high != 0; ++shift) {
958 		scale = (scale >> 1) | (res.result_high << 63);
959 		res.result_high >>= 1;
960 	}
961 	tb_to_ns_scale = scale;
962 	tb_to_ns_shift = shift;
963 
964 	tm = get_boot_time();
965 
966 	write_seqlock_irqsave(&xtime_lock, flags);
967 
968 	/* If platform provided a timezone (pmac), we correct the time */
969         if (timezone_offset) {
970 		sys_tz.tz_minuteswest = -timezone_offset / 60;
971 		sys_tz.tz_dsttime = 0;
972 		tm -= timezone_offset;
973         }
974 
975 	xtime.tv_sec = tm;
976 	xtime.tv_nsec = 0;
977 	do_gtod.varp = &do_gtod.vars[0];
978 	do_gtod.var_idx = 0;
979 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
980 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
981 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
982 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
983 	do_gtod.varp->tb_to_xs = tb_to_xs;
984 	do_gtod.tb_to_us = tb_to_us;
985 
986 	vdso_data->tb_orig_stamp = tb_last_jiffy;
987 	vdso_data->tb_update_count = 0;
988 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
989 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
990 	vdso_data->tb_to_xs = tb_to_xs;
991 
992 	time_freq = 0;
993 
994 	last_rtc_update = xtime.tv_sec;
995 	set_normalized_timespec(&wall_to_monotonic,
996 	                        -xtime.tv_sec, -xtime.tv_nsec);
997 	write_sequnlock_irqrestore(&xtime_lock, flags);
998 
999 	/* Not exact, but the timer interrupt takes care of this */
1000 	set_dec(tb_ticks_per_jiffy);
1001 }
1002 
1003 
1004 #define FEBRUARY	2
1005 #define	STARTOFTIME	1970
1006 #define SECDAY		86400L
1007 #define SECYR		(SECDAY * 365)
1008 #define	leapyear(year)		((year) % 4 == 0 && \
1009 				 ((year) % 100 != 0 || (year) % 400 == 0))
1010 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1011 #define	days_in_month(a) 	(month_days[(a) - 1])
1012 
1013 static int month_days[12] = {
1014 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1015 };
1016 
1017 /*
1018  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1019  */
1020 void GregorianDay(struct rtc_time * tm)
1021 {
1022 	int leapsToDate;
1023 	int lastYear;
1024 	int day;
1025 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1026 
1027 	lastYear = tm->tm_year - 1;
1028 
1029 	/*
1030 	 * Number of leap corrections to apply up to end of last year
1031 	 */
1032 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1033 
1034 	/*
1035 	 * This year is a leap year if it is divisible by 4 except when it is
1036 	 * divisible by 100 unless it is divisible by 400
1037 	 *
1038 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1039 	 */
1040 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1041 
1042 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1043 		   tm->tm_mday;
1044 
1045 	tm->tm_wday = day % 7;
1046 }
1047 
1048 void to_tm(int tim, struct rtc_time * tm)
1049 {
1050 	register int    i;
1051 	register long   hms, day;
1052 
1053 	day = tim / SECDAY;
1054 	hms = tim % SECDAY;
1055 
1056 	/* Hours, minutes, seconds are easy */
1057 	tm->tm_hour = hms / 3600;
1058 	tm->tm_min = (hms % 3600) / 60;
1059 	tm->tm_sec = (hms % 3600) % 60;
1060 
1061 	/* Number of years in days */
1062 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1063 		day -= days_in_year(i);
1064 	tm->tm_year = i;
1065 
1066 	/* Number of months in days left */
1067 	if (leapyear(tm->tm_year))
1068 		days_in_month(FEBRUARY) = 29;
1069 	for (i = 1; day >= days_in_month(i); i++)
1070 		day -= days_in_month(i);
1071 	days_in_month(FEBRUARY) = 28;
1072 	tm->tm_mon = i;
1073 
1074 	/* Days are what is left over (+1) from all that. */
1075 	tm->tm_mday = day + 1;
1076 
1077 	/*
1078 	 * Determine the day of week
1079 	 */
1080 	GregorianDay(tm);
1081 }
1082 
1083 /* Auxiliary function to compute scaling factors */
1084 /* Actually the choice of a timebase running at 1/4 the of the bus
1085  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1086  * It makes this computation very precise (27-28 bits typically) which
1087  * is optimistic considering the stability of most processor clock
1088  * oscillators and the precision with which the timebase frequency
1089  * is measured but does not harm.
1090  */
1091 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1092 {
1093         unsigned mlt=0, tmp, err;
1094         /* No concern for performance, it's done once: use a stupid
1095          * but safe and compact method to find the multiplier.
1096          */
1097 
1098         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1099                 if (mulhwu(inscale, mlt|tmp) < outscale)
1100 			mlt |= tmp;
1101         }
1102 
1103         /* We might still be off by 1 for the best approximation.
1104          * A side effect of this is that if outscale is too large
1105          * the returned value will be zero.
1106          * Many corner cases have been checked and seem to work,
1107          * some might have been forgotten in the test however.
1108          */
1109 
1110         err = inscale * (mlt+1);
1111         if (err <= inscale/2)
1112 		mlt++;
1113         return mlt;
1114 }
1115 
1116 /*
1117  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1118  * result.
1119  */
1120 void div128_by_32(u64 dividend_high, u64 dividend_low,
1121 		  unsigned divisor, struct div_result *dr)
1122 {
1123 	unsigned long a, b, c, d;
1124 	unsigned long w, x, y, z;
1125 	u64 ra, rb, rc;
1126 
1127 	a = dividend_high >> 32;
1128 	b = dividend_high & 0xffffffff;
1129 	c = dividend_low >> 32;
1130 	d = dividend_low & 0xffffffff;
1131 
1132 	w = a / divisor;
1133 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1134 
1135 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1136 	x = ra;
1137 
1138 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1139 	y = rb;
1140 
1141 	do_div(rc, divisor);
1142 	z = rc;
1143 
1144 	dr->result_high = ((u64)w << 32) + x;
1145 	dr->result_low  = ((u64)y << 32) + z;
1146 
1147 }
1148