1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/processor.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <linux/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/asm-prototypes.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/timekeeper_internal.h> 77 78 static u64 timebase_read(struct clocksource *); 79 static struct clocksource clocksource_timebase = { 80 .name = "timebase", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = timebase_read, 85 }; 86 87 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 88 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 89 90 static int decrementer_set_next_event(unsigned long evt, 91 struct clock_event_device *dev); 92 static int decrementer_shutdown(struct clock_event_device *evt); 93 94 struct clock_event_device decrementer_clockevent = { 95 .name = "decrementer", 96 .rating = 200, 97 .irq = 0, 98 .set_next_event = decrementer_set_next_event, 99 .set_state_oneshot_stopped = decrementer_shutdown, 100 .set_state_shutdown = decrementer_shutdown, 101 .tick_resume = decrementer_shutdown, 102 .features = CLOCK_EVT_FEAT_ONESHOT | 103 CLOCK_EVT_FEAT_C3STOP, 104 }; 105 EXPORT_SYMBOL(decrementer_clockevent); 106 107 DEFINE_PER_CPU(u64, decrementers_next_tb); 108 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 109 110 #define XSEC_PER_SEC (1024*1024) 111 112 #ifdef CONFIG_PPC64 113 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 114 #else 115 /* compute ((xsec << 12) * max) >> 32 */ 116 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 117 #endif 118 119 unsigned long tb_ticks_per_jiffy; 120 unsigned long tb_ticks_per_usec = 100; /* sane default */ 121 EXPORT_SYMBOL(tb_ticks_per_usec); 122 unsigned long tb_ticks_per_sec; 123 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 124 125 DEFINE_SPINLOCK(rtc_lock); 126 EXPORT_SYMBOL_GPL(rtc_lock); 127 128 static u64 tb_to_ns_scale __read_mostly; 129 static unsigned tb_to_ns_shift __read_mostly; 130 static u64 boot_tb __read_mostly; 131 132 extern struct timezone sys_tz; 133 static long timezone_offset; 134 135 unsigned long ppc_proc_freq; 136 EXPORT_SYMBOL_GPL(ppc_proc_freq); 137 unsigned long ppc_tb_freq; 138 EXPORT_SYMBOL_GPL(ppc_tb_freq); 139 140 bool tb_invalid; 141 142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 143 /* 144 * Factor for converting from cputime_t (timebase ticks) to 145 * microseconds. This is stored as 0.64 fixed-point binary fraction. 146 */ 147 u64 __cputime_usec_factor; 148 EXPORT_SYMBOL(__cputime_usec_factor); 149 150 #ifdef CONFIG_PPC_SPLPAR 151 void (*dtl_consumer)(struct dtl_entry *, u64); 152 #endif 153 154 static void calc_cputime_factors(void) 155 { 156 struct div_result res; 157 158 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 159 __cputime_usec_factor = res.result_low; 160 } 161 162 /* 163 * Read the SPURR on systems that have it, otherwise the PURR, 164 * or if that doesn't exist return the timebase value passed in. 165 */ 166 static inline unsigned long read_spurr(unsigned long tb) 167 { 168 if (cpu_has_feature(CPU_FTR_SPURR)) 169 return mfspr(SPRN_SPURR); 170 if (cpu_has_feature(CPU_FTR_PURR)) 171 return mfspr(SPRN_PURR); 172 return tb; 173 } 174 175 #ifdef CONFIG_PPC_SPLPAR 176 177 #include <asm/dtl.h> 178 179 /* 180 * Scan the dispatch trace log and count up the stolen time. 181 * Should be called with interrupts disabled. 182 */ 183 static u64 scan_dispatch_log(u64 stop_tb) 184 { 185 u64 i = local_paca->dtl_ridx; 186 struct dtl_entry *dtl = local_paca->dtl_curr; 187 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 188 struct lppaca *vpa = local_paca->lppaca_ptr; 189 u64 tb_delta; 190 u64 stolen = 0; 191 u64 dtb; 192 193 if (!dtl) 194 return 0; 195 196 if (i == be64_to_cpu(vpa->dtl_idx)) 197 return 0; 198 while (i < be64_to_cpu(vpa->dtl_idx)) { 199 dtb = be64_to_cpu(dtl->timebase); 200 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 201 be32_to_cpu(dtl->ready_to_enqueue_time); 202 barrier(); 203 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 204 /* buffer has overflowed */ 205 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 206 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 207 continue; 208 } 209 if (dtb > stop_tb) 210 break; 211 if (dtl_consumer) 212 dtl_consumer(dtl, i); 213 stolen += tb_delta; 214 ++i; 215 ++dtl; 216 if (dtl == dtl_end) 217 dtl = local_paca->dispatch_log; 218 } 219 local_paca->dtl_ridx = i; 220 local_paca->dtl_curr = dtl; 221 return stolen; 222 } 223 224 /* 225 * Accumulate stolen time by scanning the dispatch trace log. 226 * Called on entry from user mode. 227 */ 228 void notrace accumulate_stolen_time(void) 229 { 230 u64 sst, ust; 231 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 232 struct cpu_accounting_data *acct = &local_paca->accounting; 233 234 /* We are called early in the exception entry, before 235 * soft/hard_enabled are sync'ed to the expected state 236 * for the exception. We are hard disabled but the PACA 237 * needs to reflect that so various debug stuff doesn't 238 * complain 239 */ 240 irq_soft_mask_set(IRQS_DISABLED); 241 242 sst = scan_dispatch_log(acct->starttime_user); 243 ust = scan_dispatch_log(acct->starttime); 244 acct->stime -= sst; 245 acct->utime -= ust; 246 acct->steal_time += ust + sst; 247 248 irq_soft_mask_set(save_irq_soft_mask); 249 } 250 251 static inline u64 calculate_stolen_time(u64 stop_tb) 252 { 253 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 254 return 0; 255 256 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 257 return scan_dispatch_log(stop_tb); 258 259 return 0; 260 } 261 262 #else /* CONFIG_PPC_SPLPAR */ 263 static inline u64 calculate_stolen_time(u64 stop_tb) 264 { 265 return 0; 266 } 267 268 #endif /* CONFIG_PPC_SPLPAR */ 269 270 /* 271 * Account time for a transition between system, hard irq 272 * or soft irq state. 273 */ 274 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 275 unsigned long now, unsigned long stime) 276 { 277 unsigned long stime_scaled = 0; 278 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 279 unsigned long nowscaled, deltascaled; 280 unsigned long utime, utime_scaled; 281 282 nowscaled = read_spurr(now); 283 deltascaled = nowscaled - acct->startspurr; 284 acct->startspurr = nowscaled; 285 utime = acct->utime - acct->utime_sspurr; 286 acct->utime_sspurr = acct->utime; 287 288 /* 289 * Because we don't read the SPURR on every kernel entry/exit, 290 * deltascaled includes both user and system SPURR ticks. 291 * Apportion these ticks to system SPURR ticks and user 292 * SPURR ticks in the same ratio as the system time (delta) 293 * and user time (udelta) values obtained from the timebase 294 * over the same interval. The system ticks get accounted here; 295 * the user ticks get saved up in paca->user_time_scaled to be 296 * used by account_process_tick. 297 */ 298 stime_scaled = stime; 299 utime_scaled = utime; 300 if (deltascaled != stime + utime) { 301 if (utime) { 302 stime_scaled = deltascaled * stime / (stime + utime); 303 utime_scaled = deltascaled - stime_scaled; 304 } else { 305 stime_scaled = deltascaled; 306 } 307 } 308 acct->utime_scaled += utime_scaled; 309 #endif 310 311 return stime_scaled; 312 } 313 314 static unsigned long vtime_delta(struct task_struct *tsk, 315 unsigned long *stime_scaled, 316 unsigned long *steal_time) 317 { 318 unsigned long now, stime; 319 struct cpu_accounting_data *acct = get_accounting(tsk); 320 321 WARN_ON_ONCE(!irqs_disabled()); 322 323 now = mftb(); 324 stime = now - acct->starttime; 325 acct->starttime = now; 326 327 *stime_scaled = vtime_delta_scaled(acct, now, stime); 328 329 *steal_time = calculate_stolen_time(now); 330 331 return stime; 332 } 333 334 void vtime_account_kernel(struct task_struct *tsk) 335 { 336 unsigned long stime, stime_scaled, steal_time; 337 struct cpu_accounting_data *acct = get_accounting(tsk); 338 339 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 340 341 stime -= min(stime, steal_time); 342 acct->steal_time += steal_time; 343 344 if ((tsk->flags & PF_VCPU) && !irq_count()) { 345 acct->gtime += stime; 346 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 347 acct->utime_scaled += stime_scaled; 348 #endif 349 } else { 350 if (hardirq_count()) 351 acct->hardirq_time += stime; 352 else if (in_serving_softirq()) 353 acct->softirq_time += stime; 354 else 355 acct->stime += stime; 356 357 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 358 acct->stime_scaled += stime_scaled; 359 #endif 360 } 361 } 362 EXPORT_SYMBOL_GPL(vtime_account_kernel); 363 364 void vtime_account_idle(struct task_struct *tsk) 365 { 366 unsigned long stime, stime_scaled, steal_time; 367 struct cpu_accounting_data *acct = get_accounting(tsk); 368 369 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 370 acct->idle_time += stime + steal_time; 371 } 372 373 static void vtime_flush_scaled(struct task_struct *tsk, 374 struct cpu_accounting_data *acct) 375 { 376 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 377 if (acct->utime_scaled) 378 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 379 if (acct->stime_scaled) 380 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 381 382 acct->utime_scaled = 0; 383 acct->utime_sspurr = 0; 384 acct->stime_scaled = 0; 385 #endif 386 } 387 388 /* 389 * Account the whole cputime accumulated in the paca 390 * Must be called with interrupts disabled. 391 * Assumes that vtime_account_kernel/idle() has been called 392 * recently (i.e. since the last entry from usermode) so that 393 * get_paca()->user_time_scaled is up to date. 394 */ 395 void vtime_flush(struct task_struct *tsk) 396 { 397 struct cpu_accounting_data *acct = get_accounting(tsk); 398 399 if (acct->utime) 400 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 401 402 if (acct->gtime) 403 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 404 405 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 406 account_steal_time(cputime_to_nsecs(acct->steal_time)); 407 acct->steal_time = 0; 408 } 409 410 if (acct->idle_time) 411 account_idle_time(cputime_to_nsecs(acct->idle_time)); 412 413 if (acct->stime) 414 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 415 CPUTIME_SYSTEM); 416 417 if (acct->hardirq_time) 418 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 419 CPUTIME_IRQ); 420 if (acct->softirq_time) 421 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 422 CPUTIME_SOFTIRQ); 423 424 vtime_flush_scaled(tsk, acct); 425 426 acct->utime = 0; 427 acct->gtime = 0; 428 acct->idle_time = 0; 429 acct->stime = 0; 430 acct->hardirq_time = 0; 431 acct->softirq_time = 0; 432 } 433 434 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 435 #define calc_cputime_factors() 436 #endif 437 438 void __delay(unsigned long loops) 439 { 440 unsigned long start; 441 442 spin_begin(); 443 if (tb_invalid) { 444 /* 445 * TB is in error state and isn't ticking anymore. 446 * HMI handler was unable to recover from TB error. 447 * Return immediately, so that kernel won't get stuck here. 448 */ 449 spin_cpu_relax(); 450 } else { 451 start = mftb(); 452 while (mftb() - start < loops) 453 spin_cpu_relax(); 454 } 455 spin_end(); 456 } 457 EXPORT_SYMBOL(__delay); 458 459 void udelay(unsigned long usecs) 460 { 461 __delay(tb_ticks_per_usec * usecs); 462 } 463 EXPORT_SYMBOL(udelay); 464 465 #ifdef CONFIG_SMP 466 unsigned long profile_pc(struct pt_regs *regs) 467 { 468 unsigned long pc = instruction_pointer(regs); 469 470 if (in_lock_functions(pc)) 471 return regs->link; 472 473 return pc; 474 } 475 EXPORT_SYMBOL(profile_pc); 476 #endif 477 478 #ifdef CONFIG_IRQ_WORK 479 480 /* 481 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 482 */ 483 #ifdef CONFIG_PPC64 484 static inline unsigned long test_irq_work_pending(void) 485 { 486 unsigned long x; 487 488 asm volatile("lbz %0,%1(13)" 489 : "=r" (x) 490 : "i" (offsetof(struct paca_struct, irq_work_pending))); 491 return x; 492 } 493 494 static inline void set_irq_work_pending_flag(void) 495 { 496 asm volatile("stb %0,%1(13)" : : 497 "r" (1), 498 "i" (offsetof(struct paca_struct, irq_work_pending))); 499 } 500 501 static inline void clear_irq_work_pending(void) 502 { 503 asm volatile("stb %0,%1(13)" : : 504 "r" (0), 505 "i" (offsetof(struct paca_struct, irq_work_pending))); 506 } 507 508 #else /* 32-bit */ 509 510 DEFINE_PER_CPU(u8, irq_work_pending); 511 512 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 513 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 514 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 515 516 #endif /* 32 vs 64 bit */ 517 518 void arch_irq_work_raise(void) 519 { 520 /* 521 * 64-bit code that uses irq soft-mask can just cause an immediate 522 * interrupt here that gets soft masked, if this is called under 523 * local_irq_disable(). It might be possible to prevent that happening 524 * by noticing interrupts are disabled and setting decrementer pending 525 * to be replayed when irqs are enabled. The problem there is that 526 * tracing can call irq_work_raise, including in code that does low 527 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 528 * which could get tangled up if we're messing with the same state 529 * here. 530 */ 531 preempt_disable(); 532 set_irq_work_pending_flag(); 533 set_dec(1); 534 preempt_enable(); 535 } 536 537 #else /* CONFIG_IRQ_WORK */ 538 539 #define test_irq_work_pending() 0 540 #define clear_irq_work_pending() 541 542 #endif /* CONFIG_IRQ_WORK */ 543 544 /* 545 * timer_interrupt - gets called when the decrementer overflows, 546 * with interrupts disabled. 547 */ 548 void timer_interrupt(struct pt_regs *regs) 549 { 550 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 551 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 552 struct pt_regs *old_regs; 553 u64 now; 554 555 /* Some implementations of hotplug will get timer interrupts while 556 * offline, just ignore these and we also need to set 557 * decrementers_next_tb as MAX to make sure __check_irq_replay 558 * don't replay timer interrupt when return, otherwise we'll trap 559 * here infinitely :( 560 */ 561 if (unlikely(!cpu_online(smp_processor_id()))) { 562 *next_tb = ~(u64)0; 563 set_dec(decrementer_max); 564 return; 565 } 566 567 /* Ensure a positive value is written to the decrementer, or else 568 * some CPUs will continue to take decrementer exceptions. When the 569 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 570 * 31 bits, which is about 4 seconds on most systems, which gives 571 * the watchdog a chance of catching timer interrupt hard lockups. 572 */ 573 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 574 set_dec(0x7fffffff); 575 else 576 set_dec(decrementer_max); 577 578 /* Conditionally hard-enable interrupts now that the DEC has been 579 * bumped to its maximum value 580 */ 581 may_hard_irq_enable(); 582 583 584 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 585 if (atomic_read(&ppc_n_lost_interrupts) != 0) 586 do_IRQ(regs); 587 #endif 588 589 old_regs = set_irq_regs(regs); 590 irq_enter(); 591 trace_timer_interrupt_entry(regs); 592 593 if (test_irq_work_pending()) { 594 clear_irq_work_pending(); 595 irq_work_run(); 596 } 597 598 now = get_tb(); 599 if (now >= *next_tb) { 600 *next_tb = ~(u64)0; 601 if (evt->event_handler) 602 evt->event_handler(evt); 603 __this_cpu_inc(irq_stat.timer_irqs_event); 604 } else { 605 now = *next_tb - now; 606 if (now <= decrementer_max) 607 set_dec(now); 608 /* We may have raced with new irq work */ 609 if (test_irq_work_pending()) 610 set_dec(1); 611 __this_cpu_inc(irq_stat.timer_irqs_others); 612 } 613 614 trace_timer_interrupt_exit(regs); 615 irq_exit(); 616 set_irq_regs(old_regs); 617 } 618 EXPORT_SYMBOL(timer_interrupt); 619 620 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 621 void timer_broadcast_interrupt(void) 622 { 623 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 624 625 *next_tb = ~(u64)0; 626 tick_receive_broadcast(); 627 __this_cpu_inc(irq_stat.broadcast_irqs_event); 628 } 629 #endif 630 631 #ifdef CONFIG_SUSPEND 632 static void generic_suspend_disable_irqs(void) 633 { 634 /* Disable the decrementer, so that it doesn't interfere 635 * with suspending. 636 */ 637 638 set_dec(decrementer_max); 639 local_irq_disable(); 640 set_dec(decrementer_max); 641 } 642 643 static void generic_suspend_enable_irqs(void) 644 { 645 local_irq_enable(); 646 } 647 648 /* Overrides the weak version in kernel/power/main.c */ 649 void arch_suspend_disable_irqs(void) 650 { 651 if (ppc_md.suspend_disable_irqs) 652 ppc_md.suspend_disable_irqs(); 653 generic_suspend_disable_irqs(); 654 } 655 656 /* Overrides the weak version in kernel/power/main.c */ 657 void arch_suspend_enable_irqs(void) 658 { 659 generic_suspend_enable_irqs(); 660 if (ppc_md.suspend_enable_irqs) 661 ppc_md.suspend_enable_irqs(); 662 } 663 #endif 664 665 unsigned long long tb_to_ns(unsigned long long ticks) 666 { 667 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 668 } 669 EXPORT_SYMBOL_GPL(tb_to_ns); 670 671 /* 672 * Scheduler clock - returns current time in nanosec units. 673 * 674 * Note: mulhdu(a, b) (multiply high double unsigned) returns 675 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 676 * are 64-bit unsigned numbers. 677 */ 678 notrace unsigned long long sched_clock(void) 679 { 680 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 681 } 682 683 684 #ifdef CONFIG_PPC_PSERIES 685 686 /* 687 * Running clock - attempts to give a view of time passing for a virtualised 688 * kernels. 689 * Uses the VTB register if available otherwise a next best guess. 690 */ 691 unsigned long long running_clock(void) 692 { 693 /* 694 * Don't read the VTB as a host since KVM does not switch in host 695 * timebase into the VTB when it takes a guest off the CPU, reading the 696 * VTB would result in reading 'last switched out' guest VTB. 697 * 698 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 699 * would be unsafe to rely only on the #ifdef above. 700 */ 701 if (firmware_has_feature(FW_FEATURE_LPAR) && 702 cpu_has_feature(CPU_FTR_ARCH_207S)) 703 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 704 705 /* 706 * This is a next best approximation without a VTB. 707 * On a host which is running bare metal there should never be any stolen 708 * time and on a host which doesn't do any virtualisation TB *should* equal 709 * VTB so it makes no difference anyway. 710 */ 711 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 712 } 713 #endif 714 715 static int __init get_freq(char *name, int cells, unsigned long *val) 716 { 717 struct device_node *cpu; 718 const __be32 *fp; 719 int found = 0; 720 721 /* The cpu node should have timebase and clock frequency properties */ 722 cpu = of_find_node_by_type(NULL, "cpu"); 723 724 if (cpu) { 725 fp = of_get_property(cpu, name, NULL); 726 if (fp) { 727 found = 1; 728 *val = of_read_ulong(fp, cells); 729 } 730 731 of_node_put(cpu); 732 } 733 734 return found; 735 } 736 737 static void start_cpu_decrementer(void) 738 { 739 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 740 unsigned int tcr; 741 742 /* Clear any pending timer interrupts */ 743 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 744 745 tcr = mfspr(SPRN_TCR); 746 /* 747 * The watchdog may have already been enabled by u-boot. So leave 748 * TRC[WP] (Watchdog Period) alone. 749 */ 750 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 751 tcr |= TCR_DIE; /* Enable decrementer */ 752 mtspr(SPRN_TCR, tcr); 753 #endif 754 } 755 756 void __init generic_calibrate_decr(void) 757 { 758 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 759 760 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 761 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 762 763 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 764 "(not found)\n"); 765 } 766 767 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 768 769 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 770 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 771 772 printk(KERN_ERR "WARNING: Estimating processor frequency " 773 "(not found)\n"); 774 } 775 } 776 777 int update_persistent_clock64(struct timespec64 now) 778 { 779 struct rtc_time tm; 780 781 if (!ppc_md.set_rtc_time) 782 return -ENODEV; 783 784 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 785 786 return ppc_md.set_rtc_time(&tm); 787 } 788 789 static void __read_persistent_clock(struct timespec64 *ts) 790 { 791 struct rtc_time tm; 792 static int first = 1; 793 794 ts->tv_nsec = 0; 795 /* XXX this is a litle fragile but will work okay in the short term */ 796 if (first) { 797 first = 0; 798 if (ppc_md.time_init) 799 timezone_offset = ppc_md.time_init(); 800 801 /* get_boot_time() isn't guaranteed to be safe to call late */ 802 if (ppc_md.get_boot_time) { 803 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 804 return; 805 } 806 } 807 if (!ppc_md.get_rtc_time) { 808 ts->tv_sec = 0; 809 return; 810 } 811 ppc_md.get_rtc_time(&tm); 812 813 ts->tv_sec = rtc_tm_to_time64(&tm); 814 } 815 816 void read_persistent_clock64(struct timespec64 *ts) 817 { 818 __read_persistent_clock(ts); 819 820 /* Sanitize it in case real time clock is set below EPOCH */ 821 if (ts->tv_sec < 0) { 822 ts->tv_sec = 0; 823 ts->tv_nsec = 0; 824 } 825 826 } 827 828 /* clocksource code */ 829 static notrace u64 timebase_read(struct clocksource *cs) 830 { 831 return (u64)get_tb(); 832 } 833 834 835 void update_vsyscall(struct timekeeper *tk) 836 { 837 struct timespec64 xt; 838 struct clocksource *clock = tk->tkr_mono.clock; 839 u32 mult = tk->tkr_mono.mult; 840 u32 shift = tk->tkr_mono.shift; 841 u64 cycle_last = tk->tkr_mono.cycle_last; 842 u64 new_tb_to_xs, new_stamp_xsec; 843 u64 frac_sec; 844 845 if (clock != &clocksource_timebase) 846 return; 847 848 xt.tv_sec = tk->xtime_sec; 849 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 850 851 /* Make userspace gettimeofday spin until we're done. */ 852 ++vdso_data->tb_update_count; 853 smp_mb(); 854 855 /* 856 * This computes ((2^20 / 1e9) * mult) >> shift as a 857 * 0.64 fixed-point fraction. 858 * The computation in the else clause below won't overflow 859 * (as long as the timebase frequency is >= 1.049 MHz) 860 * but loses precision because we lose the low bits of the constant 861 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. 862 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns 863 * over a second. (Shift values are usually 22, 23 or 24.) 864 * For high frequency clocks such as the 512MHz timebase clock 865 * on POWER[6789], the mult value is small (e.g. 32768000) 866 * and so we can shift the constant by 16 initially 867 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the 868 * remaining shifts after the multiplication, which gives a 869 * more accurate result (e.g. with mult = 32768000, shift = 24, 870 * the error is only about 1.2e-12, or 0.7ns over 10 minutes). 871 */ 872 if (mult <= 62500000 && clock->shift >= 16) 873 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); 874 else 875 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 876 877 /* 878 * Compute the fractional second in units of 2^-32 seconds. 879 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift 880 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives 881 * it in units of 2^-32 seconds. 882 * We assume shift <= 32 because clocks_calc_mult_shift() 883 * generates shift values in the range 0 - 32. 884 */ 885 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); 886 do_div(frac_sec, NSEC_PER_SEC); 887 888 /* 889 * Work out new stamp_xsec value for any legacy users of systemcfg. 890 * stamp_xsec is in units of 2^-20 seconds. 891 */ 892 new_stamp_xsec = frac_sec >> 12; 893 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; 894 895 /* 896 * tb_update_count is used to allow the userspace gettimeofday code 897 * to assure itself that it sees a consistent view of the tb_to_xs and 898 * stamp_xsec variables. It reads the tb_update_count, then reads 899 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 900 * the two values of tb_update_count match and are even then the 901 * tb_to_xs and stamp_xsec values are consistent. If not, then it 902 * loops back and reads them again until this criteria is met. 903 */ 904 vdso_data->tb_orig_stamp = cycle_last; 905 vdso_data->stamp_xsec = new_stamp_xsec; 906 vdso_data->tb_to_xs = new_tb_to_xs; 907 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; 908 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; 909 vdso_data->stamp_xtime_sec = xt.tv_sec; 910 vdso_data->stamp_xtime_nsec = xt.tv_nsec; 911 vdso_data->stamp_sec_fraction = frac_sec; 912 vdso_data->hrtimer_res = hrtimer_resolution; 913 smp_wmb(); 914 ++(vdso_data->tb_update_count); 915 } 916 917 void update_vsyscall_tz(void) 918 { 919 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 920 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 921 } 922 923 static void __init clocksource_init(void) 924 { 925 struct clocksource *clock = &clocksource_timebase; 926 927 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 928 printk(KERN_ERR "clocksource: %s is already registered\n", 929 clock->name); 930 return; 931 } 932 933 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 934 clock->name, clock->mult, clock->shift); 935 } 936 937 static int decrementer_set_next_event(unsigned long evt, 938 struct clock_event_device *dev) 939 { 940 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 941 set_dec(evt); 942 943 /* We may have raced with new irq work */ 944 if (test_irq_work_pending()) 945 set_dec(1); 946 947 return 0; 948 } 949 950 static int decrementer_shutdown(struct clock_event_device *dev) 951 { 952 decrementer_set_next_event(decrementer_max, dev); 953 return 0; 954 } 955 956 static void register_decrementer_clockevent(int cpu) 957 { 958 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 959 960 *dec = decrementer_clockevent; 961 dec->cpumask = cpumask_of(cpu); 962 963 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 964 965 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 966 dec->name, dec->mult, dec->shift, cpu); 967 968 /* Set values for KVM, see kvm_emulate_dec() */ 969 decrementer_clockevent.mult = dec->mult; 970 decrementer_clockevent.shift = dec->shift; 971 } 972 973 static void enable_large_decrementer(void) 974 { 975 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 976 return; 977 978 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 979 return; 980 981 /* 982 * If we're running as the hypervisor we need to enable the LD manually 983 * otherwise firmware should have done it for us. 984 */ 985 if (cpu_has_feature(CPU_FTR_HVMODE)) 986 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 987 } 988 989 static void __init set_decrementer_max(void) 990 { 991 struct device_node *cpu; 992 u32 bits = 32; 993 994 /* Prior to ISAv3 the decrementer is always 32 bit */ 995 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 996 return; 997 998 cpu = of_find_node_by_type(NULL, "cpu"); 999 1000 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 1001 if (bits > 64 || bits < 32) { 1002 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 1003 bits = 32; 1004 } 1005 1006 /* calculate the signed maximum given this many bits */ 1007 decrementer_max = (1ul << (bits - 1)) - 1; 1008 } 1009 1010 of_node_put(cpu); 1011 1012 pr_info("time_init: %u bit decrementer (max: %llx)\n", 1013 bits, decrementer_max); 1014 } 1015 1016 static void __init init_decrementer_clockevent(void) 1017 { 1018 register_decrementer_clockevent(smp_processor_id()); 1019 } 1020 1021 void secondary_cpu_time_init(void) 1022 { 1023 /* Enable and test the large decrementer for this cpu */ 1024 enable_large_decrementer(); 1025 1026 /* Start the decrementer on CPUs that have manual control 1027 * such as BookE 1028 */ 1029 start_cpu_decrementer(); 1030 1031 /* FIME: Should make unrelatred change to move snapshot_timebase 1032 * call here ! */ 1033 register_decrementer_clockevent(smp_processor_id()); 1034 } 1035 1036 /* This function is only called on the boot processor */ 1037 void __init time_init(void) 1038 { 1039 struct div_result res; 1040 u64 scale; 1041 unsigned shift; 1042 1043 /* Normal PowerPC with timebase register */ 1044 ppc_md.calibrate_decr(); 1045 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1046 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1047 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1048 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1049 1050 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1051 tb_ticks_per_sec = ppc_tb_freq; 1052 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1053 calc_cputime_factors(); 1054 1055 /* 1056 * Compute scale factor for sched_clock. 1057 * The calibrate_decr() function has set tb_ticks_per_sec, 1058 * which is the timebase frequency. 1059 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1060 * the 128-bit result as a 64.64 fixed-point number. 1061 * We then shift that number right until it is less than 1.0, 1062 * giving us the scale factor and shift count to use in 1063 * sched_clock(). 1064 */ 1065 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1066 scale = res.result_low; 1067 for (shift = 0; res.result_high != 0; ++shift) { 1068 scale = (scale >> 1) | (res.result_high << 63); 1069 res.result_high >>= 1; 1070 } 1071 tb_to_ns_scale = scale; 1072 tb_to_ns_shift = shift; 1073 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1074 boot_tb = get_tb(); 1075 1076 /* If platform provided a timezone (pmac), we correct the time */ 1077 if (timezone_offset) { 1078 sys_tz.tz_minuteswest = -timezone_offset / 60; 1079 sys_tz.tz_dsttime = 0; 1080 } 1081 1082 vdso_data->tb_update_count = 0; 1083 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1084 1085 /* initialise and enable the large decrementer (if we have one) */ 1086 set_decrementer_max(); 1087 enable_large_decrementer(); 1088 1089 /* Start the decrementer on CPUs that have manual control 1090 * such as BookE 1091 */ 1092 start_cpu_decrementer(); 1093 1094 /* Register the clocksource */ 1095 clocksource_init(); 1096 1097 init_decrementer_clockevent(); 1098 tick_setup_hrtimer_broadcast(); 1099 1100 of_clk_init(NULL); 1101 } 1102 1103 /* 1104 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1105 * result. 1106 */ 1107 void div128_by_32(u64 dividend_high, u64 dividend_low, 1108 unsigned divisor, struct div_result *dr) 1109 { 1110 unsigned long a, b, c, d; 1111 unsigned long w, x, y, z; 1112 u64 ra, rb, rc; 1113 1114 a = dividend_high >> 32; 1115 b = dividend_high & 0xffffffff; 1116 c = dividend_low >> 32; 1117 d = dividend_low & 0xffffffff; 1118 1119 w = a / divisor; 1120 ra = ((u64)(a - (w * divisor)) << 32) + b; 1121 1122 rb = ((u64) do_div(ra, divisor) << 32) + c; 1123 x = ra; 1124 1125 rc = ((u64) do_div(rb, divisor) << 32) + d; 1126 y = rb; 1127 1128 do_div(rc, divisor); 1129 z = rc; 1130 1131 dr->result_high = ((u64)w << 32) + x; 1132 dr->result_low = ((u64)y << 32) + z; 1133 1134 } 1135 1136 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1137 void calibrate_delay(void) 1138 { 1139 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1140 * as the number of __delay(1) in a jiffy, so make it so 1141 */ 1142 loops_per_jiffy = tb_ticks_per_jiffy; 1143 } 1144 1145 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1146 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1147 { 1148 ppc_md.get_rtc_time(tm); 1149 return 0; 1150 } 1151 1152 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1153 { 1154 if (!ppc_md.set_rtc_time) 1155 return -EOPNOTSUPP; 1156 1157 if (ppc_md.set_rtc_time(tm) < 0) 1158 return -EOPNOTSUPP; 1159 1160 return 0; 1161 } 1162 1163 static const struct rtc_class_ops rtc_generic_ops = { 1164 .read_time = rtc_generic_get_time, 1165 .set_time = rtc_generic_set_time, 1166 }; 1167 1168 static int __init rtc_init(void) 1169 { 1170 struct platform_device *pdev; 1171 1172 if (!ppc_md.get_rtc_time) 1173 return -ENODEV; 1174 1175 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1176 &rtc_generic_ops, 1177 sizeof(rtc_generic_ops)); 1178 1179 return PTR_ERR_OR_ZERO(pdev); 1180 } 1181 1182 device_initcall(rtc_init); 1183 #endif 1184