xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 53024fe2)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78 
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 	.name         = "rtc",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.shift        = 22,
86 	.mult         = 0,	/* To be filled in */
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.shift        = 22,
97 	.mult         = 0,	/* To be filled in */
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109        .name           = "decrementer",
110        .rating         = 200,
111        .shift          = 16,
112        .mult           = 0,	/* To be filled in */
113        .irq            = 0,
114        .set_next_event = decrementer_set_next_event,
115        .set_mode       = decrementer_set_mode,
116        .features       = CLOCK_EVT_FEAT_ONESHOT,
117 };
118 
119 struct decrementer_clock {
120 	struct clock_event_device event;
121 	u64 next_tb;
122 };
123 
124 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
125 
126 #ifdef CONFIG_PPC_ISERIES
127 static unsigned long __initdata iSeries_recal_titan;
128 static signed long __initdata iSeries_recal_tb;
129 
130 /* Forward declaration is only needed for iSereis compiles */
131 void __init clocksource_init(void);
132 #endif
133 
134 #define XSEC_PER_SEC (1024*1024)
135 
136 #ifdef CONFIG_PPC64
137 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
138 #else
139 /* compute ((xsec << 12) * max) >> 32 */
140 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
141 #endif
142 
143 unsigned long tb_ticks_per_jiffy;
144 unsigned long tb_ticks_per_usec = 100; /* sane default */
145 EXPORT_SYMBOL(tb_ticks_per_usec);
146 unsigned long tb_ticks_per_sec;
147 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
148 u64 tb_to_xs;
149 unsigned tb_to_us;
150 
151 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
152 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
153 u64 ticklen_to_xs;	/* 0.64 fraction */
154 
155 /* If last_tick_len corresponds to about 1/HZ seconds, then
156    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
157 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
158 
159 DEFINE_SPINLOCK(rtc_lock);
160 EXPORT_SYMBOL_GPL(rtc_lock);
161 
162 static u64 tb_to_ns_scale __read_mostly;
163 static unsigned tb_to_ns_shift __read_mostly;
164 static unsigned long boot_tb __read_mostly;
165 
166 struct gettimeofday_struct do_gtod;
167 
168 extern struct timezone sys_tz;
169 static long timezone_offset;
170 
171 unsigned long ppc_proc_freq;
172 EXPORT_SYMBOL(ppc_proc_freq);
173 unsigned long ppc_tb_freq;
174 
175 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
176 static DEFINE_PER_CPU(u64, last_jiffy);
177 
178 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
179 /*
180  * Factors for converting from cputime_t (timebase ticks) to
181  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
182  * These are all stored as 0.64 fixed-point binary fractions.
183  */
184 u64 __cputime_jiffies_factor;
185 EXPORT_SYMBOL(__cputime_jiffies_factor);
186 u64 __cputime_msec_factor;
187 EXPORT_SYMBOL(__cputime_msec_factor);
188 u64 __cputime_sec_factor;
189 EXPORT_SYMBOL(__cputime_sec_factor);
190 u64 __cputime_clockt_factor;
191 EXPORT_SYMBOL(__cputime_clockt_factor);
192 
193 static void calc_cputime_factors(void)
194 {
195 	struct div_result res;
196 
197 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
198 	__cputime_jiffies_factor = res.result_low;
199 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
200 	__cputime_msec_factor = res.result_low;
201 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
202 	__cputime_sec_factor = res.result_low;
203 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
204 	__cputime_clockt_factor = res.result_low;
205 }
206 
207 /*
208  * Read the PURR on systems that have it, otherwise the timebase.
209  */
210 static u64 read_purr(void)
211 {
212 	if (cpu_has_feature(CPU_FTR_PURR))
213 		return mfspr(SPRN_PURR);
214 	return mftb();
215 }
216 
217 /*
218  * Read the SPURR on systems that have it, otherwise the purr
219  */
220 static u64 read_spurr(u64 purr)
221 {
222 	/*
223 	 * cpus without PURR won't have a SPURR
224 	 * We already know the former when we use this, so tell gcc
225 	 */
226 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
227 		return mfspr(SPRN_SPURR);
228 	return purr;
229 }
230 
231 /*
232  * Account time for a transition between system, hard irq
233  * or soft irq state.
234  */
235 void account_system_vtime(struct task_struct *tsk)
236 {
237 	u64 now, nowscaled, delta, deltascaled, sys_time;
238 	unsigned long flags;
239 
240 	local_irq_save(flags);
241 	now = read_purr();
242 	nowscaled = read_spurr(now);
243 	delta = now - get_paca()->startpurr;
244 	deltascaled = nowscaled - get_paca()->startspurr;
245 	get_paca()->startpurr = now;
246 	get_paca()->startspurr = nowscaled;
247 	if (!in_interrupt()) {
248 		/* deltascaled includes both user and system time.
249 		 * Hence scale it based on the purr ratio to estimate
250 		 * the system time */
251 		sys_time = get_paca()->system_time;
252 		if (get_paca()->user_time)
253 			deltascaled = deltascaled * sys_time /
254 			     (sys_time + get_paca()->user_time);
255 		delta += sys_time;
256 		get_paca()->system_time = 0;
257 	}
258 	account_system_time(tsk, 0, delta);
259 	account_system_time_scaled(tsk, deltascaled);
260 	get_paca()->purrdelta = delta;
261 	get_paca()->spurrdelta = deltascaled;
262 	local_irq_restore(flags);
263 }
264 
265 /*
266  * Transfer the user and system times accumulated in the paca
267  * by the exception entry and exit code to the generic process
268  * user and system time records.
269  * Must be called with interrupts disabled.
270  */
271 void account_process_tick(struct task_struct *tsk, int user_tick)
272 {
273 	cputime_t utime, utimescaled;
274 
275 	utime = get_paca()->user_time;
276 	get_paca()->user_time = 0;
277 	account_user_time(tsk, utime);
278 
279 	/* Estimate the scaled utime by scaling the real utime based
280 	 * on the last spurr to purr ratio */
281 	utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
282 	get_paca()->spurrdelta = get_paca()->purrdelta = 0;
283 	account_user_time_scaled(tsk, utimescaled);
284 }
285 
286 /*
287  * Stuff for accounting stolen time.
288  */
289 struct cpu_purr_data {
290 	int	initialized;			/* thread is running */
291 	u64	tb;			/* last TB value read */
292 	u64	purr;			/* last PURR value read */
293 	u64	spurr;			/* last SPURR value read */
294 };
295 
296 /*
297  * Each entry in the cpu_purr_data array is manipulated only by its
298  * "owner" cpu -- usually in the timer interrupt but also occasionally
299  * in process context for cpu online.  As long as cpus do not touch
300  * each others' cpu_purr_data, disabling local interrupts is
301  * sufficient to serialize accesses.
302  */
303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
304 
305 static void snapshot_tb_and_purr(void *data)
306 {
307 	unsigned long flags;
308 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
309 
310 	local_irq_save(flags);
311 	p->tb = get_tb_or_rtc();
312 	p->purr = mfspr(SPRN_PURR);
313 	wmb();
314 	p->initialized = 1;
315 	local_irq_restore(flags);
316 }
317 
318 /*
319  * Called during boot when all cpus have come up.
320  */
321 void snapshot_timebases(void)
322 {
323 	if (!cpu_has_feature(CPU_FTR_PURR))
324 		return;
325 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
326 }
327 
328 /*
329  * Must be called with interrupts disabled.
330  */
331 void calculate_steal_time(void)
332 {
333 	u64 tb, purr;
334 	s64 stolen;
335 	struct cpu_purr_data *pme;
336 
337 	pme = &__get_cpu_var(cpu_purr_data);
338 	if (!pme->initialized)
339 		return;		/* !CPU_FTR_PURR or early in early boot */
340 	tb = mftb();
341 	purr = mfspr(SPRN_PURR);
342 	stolen = (tb - pme->tb) - (purr - pme->purr);
343 	if (stolen > 0)
344 		account_steal_time(current, stolen);
345 	pme->tb = tb;
346 	pme->purr = purr;
347 }
348 
349 #ifdef CONFIG_PPC_SPLPAR
350 /*
351  * Must be called before the cpu is added to the online map when
352  * a cpu is being brought up at runtime.
353  */
354 static void snapshot_purr(void)
355 {
356 	struct cpu_purr_data *pme;
357 	unsigned long flags;
358 
359 	if (!cpu_has_feature(CPU_FTR_PURR))
360 		return;
361 	local_irq_save(flags);
362 	pme = &__get_cpu_var(cpu_purr_data);
363 	pme->tb = mftb();
364 	pme->purr = mfspr(SPRN_PURR);
365 	pme->initialized = 1;
366 	local_irq_restore(flags);
367 }
368 
369 #endif /* CONFIG_PPC_SPLPAR */
370 
371 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
372 #define calc_cputime_factors()
373 #define calculate_steal_time()		do { } while (0)
374 #endif
375 
376 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
377 #define snapshot_purr()			do { } while (0)
378 #endif
379 
380 /*
381  * Called when a cpu comes up after the system has finished booting,
382  * i.e. as a result of a hotplug cpu action.
383  */
384 void snapshot_timebase(void)
385 {
386 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
387 	snapshot_purr();
388 }
389 
390 void __delay(unsigned long loops)
391 {
392 	unsigned long start;
393 	int diff;
394 
395 	if (__USE_RTC()) {
396 		start = get_rtcl();
397 		do {
398 			/* the RTCL register wraps at 1000000000 */
399 			diff = get_rtcl() - start;
400 			if (diff < 0)
401 				diff += 1000000000;
402 		} while (diff < loops);
403 	} else {
404 		start = get_tbl();
405 		while (get_tbl() - start < loops)
406 			HMT_low();
407 		HMT_medium();
408 	}
409 }
410 EXPORT_SYMBOL(__delay);
411 
412 void udelay(unsigned long usecs)
413 {
414 	__delay(tb_ticks_per_usec * usecs);
415 }
416 EXPORT_SYMBOL(udelay);
417 
418 
419 /*
420  * There are two copies of tb_to_xs and stamp_xsec so that no
421  * lock is needed to access and use these values in
422  * do_gettimeofday.  We alternate the copies and as long as a
423  * reasonable time elapses between changes, there will never
424  * be inconsistent values.  ntpd has a minimum of one minute
425  * between updates.
426  */
427 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
428 			       u64 new_tb_to_xs)
429 {
430 	unsigned temp_idx;
431 	struct gettimeofday_vars *temp_varp;
432 
433 	temp_idx = (do_gtod.var_idx == 0);
434 	temp_varp = &do_gtod.vars[temp_idx];
435 
436 	temp_varp->tb_to_xs = new_tb_to_xs;
437 	temp_varp->tb_orig_stamp = new_tb_stamp;
438 	temp_varp->stamp_xsec = new_stamp_xsec;
439 	smp_mb();
440 	do_gtod.varp = temp_varp;
441 	do_gtod.var_idx = temp_idx;
442 
443 	/*
444 	 * tb_update_count is used to allow the userspace gettimeofday code
445 	 * to assure itself that it sees a consistent view of the tb_to_xs and
446 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
447 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
448 	 * the two values of tb_update_count match and are even then the
449 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
450 	 * loops back and reads them again until this criteria is met.
451 	 * We expect the caller to have done the first increment of
452 	 * vdso_data->tb_update_count already.
453 	 */
454 	vdso_data->tb_orig_stamp = new_tb_stamp;
455 	vdso_data->stamp_xsec = new_stamp_xsec;
456 	vdso_data->tb_to_xs = new_tb_to_xs;
457 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
458 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
459 	smp_wmb();
460 	++(vdso_data->tb_update_count);
461 }
462 
463 #ifdef CONFIG_SMP
464 unsigned long profile_pc(struct pt_regs *regs)
465 {
466 	unsigned long pc = instruction_pointer(regs);
467 
468 	if (in_lock_functions(pc))
469 		return regs->link;
470 
471 	return pc;
472 }
473 EXPORT_SYMBOL(profile_pc);
474 #endif
475 
476 #ifdef CONFIG_PPC_ISERIES
477 
478 /*
479  * This function recalibrates the timebase based on the 49-bit time-of-day
480  * value in the Titan chip.  The Titan is much more accurate than the value
481  * returned by the service processor for the timebase frequency.
482  */
483 
484 static int __init iSeries_tb_recal(void)
485 {
486 	struct div_result divres;
487 	unsigned long titan, tb;
488 
489 	/* Make sure we only run on iSeries */
490 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
491 		return -ENODEV;
492 
493 	tb = get_tb();
494 	titan = HvCallXm_loadTod();
495 	if ( iSeries_recal_titan ) {
496 		unsigned long tb_ticks = tb - iSeries_recal_tb;
497 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
498 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
499 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
500 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
501 		char sign = '+';
502 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
503 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
504 
505 		if ( tick_diff < 0 ) {
506 			tick_diff = -tick_diff;
507 			sign = '-';
508 		}
509 		if ( tick_diff ) {
510 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
511 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
512 						new_tb_ticks_per_jiffy, sign, tick_diff );
513 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
514 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
515 				calc_cputime_factors();
516 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
517 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
518 				tb_to_xs = divres.result_low;
519 				do_gtod.varp->tb_to_xs = tb_to_xs;
520 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
521 				vdso_data->tb_to_xs = tb_to_xs;
522 			}
523 			else {
524 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
525 					"                   new tb_ticks_per_jiffy = %lu\n"
526 					"                   old tb_ticks_per_jiffy = %lu\n",
527 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
528 			}
529 		}
530 	}
531 	iSeries_recal_titan = titan;
532 	iSeries_recal_tb = tb;
533 
534 	/* Called here as now we know accurate values for the timebase */
535 	clocksource_init();
536 	return 0;
537 }
538 late_initcall(iSeries_tb_recal);
539 
540 /* Called from platform early init */
541 void __init iSeries_time_init_early(void)
542 {
543 	iSeries_recal_tb = get_tb();
544 	iSeries_recal_titan = HvCallXm_loadTod();
545 }
546 #endif /* CONFIG_PPC_ISERIES */
547 
548 /*
549  * For iSeries shared processors, we have to let the hypervisor
550  * set the hardware decrementer.  We set a virtual decrementer
551  * in the lppaca and call the hypervisor if the virtual
552  * decrementer is less than the current value in the hardware
553  * decrementer. (almost always the new decrementer value will
554  * be greater than the current hardware decementer so the hypervisor
555  * call will not be needed)
556  */
557 
558 /*
559  * timer_interrupt - gets called when the decrementer overflows,
560  * with interrupts disabled.
561  */
562 void timer_interrupt(struct pt_regs * regs)
563 {
564 	struct pt_regs *old_regs;
565 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
566 	struct clock_event_device *evt = &decrementer->event;
567 	u64 now;
568 
569 	/* Ensure a positive value is written to the decrementer, or else
570 	 * some CPUs will continuue to take decrementer exceptions */
571 	set_dec(DECREMENTER_MAX);
572 
573 #ifdef CONFIG_PPC32
574 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
575 		do_IRQ(regs);
576 #endif
577 
578 	now = get_tb_or_rtc();
579 	if (now < decrementer->next_tb) {
580 		/* not time for this event yet */
581 		now = decrementer->next_tb - now;
582 		if (now <= DECREMENTER_MAX)
583 			set_dec((int)now);
584 		return;
585 	}
586 	old_regs = set_irq_regs(regs);
587 	irq_enter();
588 
589 	calculate_steal_time();
590 
591 #ifdef CONFIG_PPC_ISERIES
592 	if (firmware_has_feature(FW_FEATURE_ISERIES))
593 		get_lppaca()->int_dword.fields.decr_int = 0;
594 #endif
595 
596 	if (evt->event_handler)
597 		evt->event_handler(evt);
598 
599 #ifdef CONFIG_PPC_ISERIES
600 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
601 		process_hvlpevents();
602 #endif
603 
604 #ifdef CONFIG_PPC64
605 	/* collect purr register values often, for accurate calculations */
606 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
607 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
608 		cu->current_tb = mfspr(SPRN_PURR);
609 	}
610 #endif
611 
612 	irq_exit();
613 	set_irq_regs(old_regs);
614 }
615 
616 void wakeup_decrementer(void)
617 {
618 	unsigned long ticks;
619 
620 	/*
621 	 * The timebase gets saved on sleep and restored on wakeup,
622 	 * so all we need to do is to reset the decrementer.
623 	 */
624 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
625 	if (ticks < tb_ticks_per_jiffy)
626 		ticks = tb_ticks_per_jiffy - ticks;
627 	else
628 		ticks = 1;
629 	set_dec(ticks);
630 }
631 
632 #ifdef CONFIG_SMP
633 void __init smp_space_timers(unsigned int max_cpus)
634 {
635 	int i;
636 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
637 
638 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
639 	previous_tb -= tb_ticks_per_jiffy;
640 
641 	for_each_possible_cpu(i) {
642 		if (i == boot_cpuid)
643 			continue;
644 		per_cpu(last_jiffy, i) = previous_tb;
645 	}
646 }
647 #endif
648 
649 /*
650  * Scheduler clock - returns current time in nanosec units.
651  *
652  * Note: mulhdu(a, b) (multiply high double unsigned) returns
653  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
654  * are 64-bit unsigned numbers.
655  */
656 unsigned long long sched_clock(void)
657 {
658 	if (__USE_RTC())
659 		return get_rtc();
660 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
661 }
662 
663 static int __init get_freq(char *name, int cells, unsigned long *val)
664 {
665 	struct device_node *cpu;
666 	const unsigned int *fp;
667 	int found = 0;
668 
669 	/* The cpu node should have timebase and clock frequency properties */
670 	cpu = of_find_node_by_type(NULL, "cpu");
671 
672 	if (cpu) {
673 		fp = of_get_property(cpu, name, NULL);
674 		if (fp) {
675 			found = 1;
676 			*val = of_read_ulong(fp, cells);
677 		}
678 
679 		of_node_put(cpu);
680 	}
681 
682 	return found;
683 }
684 
685 void __init generic_calibrate_decr(void)
686 {
687 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
688 
689 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
690 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
691 
692 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
693 				"(not found)\n");
694 	}
695 
696 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
697 
698 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
699 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
700 
701 		printk(KERN_ERR "WARNING: Estimating processor frequency "
702 				"(not found)\n");
703 	}
704 
705 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
706 	/* Set the time base to zero */
707 	mtspr(SPRN_TBWL, 0);
708 	mtspr(SPRN_TBWU, 0);
709 
710 	/* Clear any pending timer interrupts */
711 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
712 
713 	/* Enable decrementer interrupt */
714 	mtspr(SPRN_TCR, TCR_DIE);
715 #endif
716 }
717 
718 int update_persistent_clock(struct timespec now)
719 {
720 	struct rtc_time tm;
721 
722 	if (!ppc_md.set_rtc_time)
723 		return 0;
724 
725 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
726 	tm.tm_year -= 1900;
727 	tm.tm_mon -= 1;
728 
729 	return ppc_md.set_rtc_time(&tm);
730 }
731 
732 unsigned long read_persistent_clock(void)
733 {
734 	struct rtc_time tm;
735 	static int first = 1;
736 
737 	/* XXX this is a litle fragile but will work okay in the short term */
738 	if (first) {
739 		first = 0;
740 		if (ppc_md.time_init)
741 			timezone_offset = ppc_md.time_init();
742 
743 		/* get_boot_time() isn't guaranteed to be safe to call late */
744 		if (ppc_md.get_boot_time)
745 			return ppc_md.get_boot_time() -timezone_offset;
746 	}
747 	if (!ppc_md.get_rtc_time)
748 		return 0;
749 	ppc_md.get_rtc_time(&tm);
750 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
751 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
752 }
753 
754 /* clocksource code */
755 static cycle_t rtc_read(void)
756 {
757 	return (cycle_t)get_rtc();
758 }
759 
760 static cycle_t timebase_read(void)
761 {
762 	return (cycle_t)get_tb();
763 }
764 
765 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
766 {
767 	u64 t2x, stamp_xsec;
768 
769 	if (clock != &clocksource_timebase)
770 		return;
771 
772 	/* Make userspace gettimeofday spin until we're done. */
773 	++vdso_data->tb_update_count;
774 	smp_mb();
775 
776 	/* XXX this assumes clock->shift == 22 */
777 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
778 	t2x = (u64) clock->mult * 4611686018ULL;
779 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
780 	do_div(stamp_xsec, 1000000000);
781 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
782 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
783 }
784 
785 void update_vsyscall_tz(void)
786 {
787 	/* Make userspace gettimeofday spin until we're done. */
788 	++vdso_data->tb_update_count;
789 	smp_mb();
790 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
791 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
792 	smp_mb();
793 	++vdso_data->tb_update_count;
794 }
795 
796 void __init clocksource_init(void)
797 {
798 	struct clocksource *clock;
799 
800 	if (__USE_RTC())
801 		clock = &clocksource_rtc;
802 	else
803 		clock = &clocksource_timebase;
804 
805 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
806 
807 	if (clocksource_register(clock)) {
808 		printk(KERN_ERR "clocksource: %s is already registered\n",
809 		       clock->name);
810 		return;
811 	}
812 
813 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
814 	       clock->name, clock->mult, clock->shift);
815 }
816 
817 static int decrementer_set_next_event(unsigned long evt,
818 				      struct clock_event_device *dev)
819 {
820 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
821 	set_dec(evt);
822 	return 0;
823 }
824 
825 static void decrementer_set_mode(enum clock_event_mode mode,
826 				 struct clock_event_device *dev)
827 {
828 	if (mode != CLOCK_EVT_MODE_ONESHOT)
829 		decrementer_set_next_event(DECREMENTER_MAX, dev);
830 }
831 
832 static void register_decrementer_clockevent(int cpu)
833 {
834 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
835 
836 	*dec = decrementer_clockevent;
837 	dec->cpumask = cpumask_of_cpu(cpu);
838 
839 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
840 	       dec->name, dec->mult, dec->shift, cpu);
841 
842 	clockevents_register_device(dec);
843 }
844 
845 static void __init init_decrementer_clockevent(void)
846 {
847 	int cpu = smp_processor_id();
848 
849 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
850 					     decrementer_clockevent.shift);
851 	decrementer_clockevent.max_delta_ns =
852 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
853 	decrementer_clockevent.min_delta_ns =
854 		clockevent_delta2ns(2, &decrementer_clockevent);
855 
856 	register_decrementer_clockevent(cpu);
857 }
858 
859 void secondary_cpu_time_init(void)
860 {
861 	/* FIME: Should make unrelatred change to move snapshot_timebase
862 	 * call here ! */
863 	register_decrementer_clockevent(smp_processor_id());
864 }
865 
866 /* This function is only called on the boot processor */
867 void __init time_init(void)
868 {
869 	unsigned long flags;
870 	struct div_result res;
871 	u64 scale, x;
872 	unsigned shift;
873 
874 	if (__USE_RTC()) {
875 		/* 601 processor: dec counts down by 128 every 128ns */
876 		ppc_tb_freq = 1000000000;
877 		tb_last_jiffy = get_rtcl();
878 	} else {
879 		/* Normal PowerPC with timebase register */
880 		ppc_md.calibrate_decr();
881 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
882 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
883 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
884 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
885 		tb_last_jiffy = get_tb();
886 	}
887 
888 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
889 	tb_ticks_per_sec = ppc_tb_freq;
890 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
891 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
892 	calc_cputime_factors();
893 
894 	/*
895 	 * Calculate the length of each tick in ns.  It will not be
896 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
897 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
898 	 * rounded up.
899 	 */
900 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
901 	do_div(x, ppc_tb_freq);
902 	tick_nsec = x;
903 	last_tick_len = x << TICKLEN_SCALE;
904 
905 	/*
906 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
907 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
908 	 * It is computed as:
909 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
910 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
911 	 * which turns out to be N = 51 - SHIFT_HZ.
912 	 * This gives the result as a 0.64 fixed-point fraction.
913 	 * That value is reduced by an offset amounting to 1 xsec per
914 	 * 2^31 timebase ticks to avoid problems with time going backwards
915 	 * by 1 xsec when we do timer_recalc_offset due to losing the
916 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
917 	 * since there are 2^20 xsec in a second.
918 	 */
919 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
920 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
921 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
922 	ticklen_to_xs = res.result_low;
923 
924 	/* Compute tb_to_xs from tick_nsec */
925 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
926 
927 	/*
928 	 * Compute scale factor for sched_clock.
929 	 * The calibrate_decr() function has set tb_ticks_per_sec,
930 	 * which is the timebase frequency.
931 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
932 	 * the 128-bit result as a 64.64 fixed-point number.
933 	 * We then shift that number right until it is less than 1.0,
934 	 * giving us the scale factor and shift count to use in
935 	 * sched_clock().
936 	 */
937 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
938 	scale = res.result_low;
939 	for (shift = 0; res.result_high != 0; ++shift) {
940 		scale = (scale >> 1) | (res.result_high << 63);
941 		res.result_high >>= 1;
942 	}
943 	tb_to_ns_scale = scale;
944 	tb_to_ns_shift = shift;
945 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
946 	boot_tb = get_tb_or_rtc();
947 
948 	write_seqlock_irqsave(&xtime_lock, flags);
949 
950 	/* If platform provided a timezone (pmac), we correct the time */
951         if (timezone_offset) {
952 		sys_tz.tz_minuteswest = -timezone_offset / 60;
953 		sys_tz.tz_dsttime = 0;
954         }
955 
956 	do_gtod.varp = &do_gtod.vars[0];
957 	do_gtod.var_idx = 0;
958 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
959 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
960 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
961 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
962 	do_gtod.varp->tb_to_xs = tb_to_xs;
963 	do_gtod.tb_to_us = tb_to_us;
964 
965 	vdso_data->tb_orig_stamp = tb_last_jiffy;
966 	vdso_data->tb_update_count = 0;
967 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
968 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
969 	vdso_data->tb_to_xs = tb_to_xs;
970 
971 	time_freq = 0;
972 
973 	write_sequnlock_irqrestore(&xtime_lock, flags);
974 
975 	/* Register the clocksource, if we're not running on iSeries */
976 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
977 		clocksource_init();
978 
979 	init_decrementer_clockevent();
980 }
981 
982 
983 #define FEBRUARY	2
984 #define	STARTOFTIME	1970
985 #define SECDAY		86400L
986 #define SECYR		(SECDAY * 365)
987 #define	leapyear(year)		((year) % 4 == 0 && \
988 				 ((year) % 100 != 0 || (year) % 400 == 0))
989 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
990 #define	days_in_month(a) 	(month_days[(a) - 1])
991 
992 static int month_days[12] = {
993 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
994 };
995 
996 /*
997  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
998  */
999 void GregorianDay(struct rtc_time * tm)
1000 {
1001 	int leapsToDate;
1002 	int lastYear;
1003 	int day;
1004 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1005 
1006 	lastYear = tm->tm_year - 1;
1007 
1008 	/*
1009 	 * Number of leap corrections to apply up to end of last year
1010 	 */
1011 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1012 
1013 	/*
1014 	 * This year is a leap year if it is divisible by 4 except when it is
1015 	 * divisible by 100 unless it is divisible by 400
1016 	 *
1017 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1018 	 */
1019 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1020 
1021 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1022 		   tm->tm_mday;
1023 
1024 	tm->tm_wday = day % 7;
1025 }
1026 
1027 void to_tm(int tim, struct rtc_time * tm)
1028 {
1029 	register int    i;
1030 	register long   hms, day;
1031 
1032 	day = tim / SECDAY;
1033 	hms = tim % SECDAY;
1034 
1035 	/* Hours, minutes, seconds are easy */
1036 	tm->tm_hour = hms / 3600;
1037 	tm->tm_min = (hms % 3600) / 60;
1038 	tm->tm_sec = (hms % 3600) % 60;
1039 
1040 	/* Number of years in days */
1041 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1042 		day -= days_in_year(i);
1043 	tm->tm_year = i;
1044 
1045 	/* Number of months in days left */
1046 	if (leapyear(tm->tm_year))
1047 		days_in_month(FEBRUARY) = 29;
1048 	for (i = 1; day >= days_in_month(i); i++)
1049 		day -= days_in_month(i);
1050 	days_in_month(FEBRUARY) = 28;
1051 	tm->tm_mon = i;
1052 
1053 	/* Days are what is left over (+1) from all that. */
1054 	tm->tm_mday = day + 1;
1055 
1056 	/*
1057 	 * Determine the day of week
1058 	 */
1059 	GregorianDay(tm);
1060 }
1061 
1062 /* Auxiliary function to compute scaling factors */
1063 /* Actually the choice of a timebase running at 1/4 the of the bus
1064  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1065  * It makes this computation very precise (27-28 bits typically) which
1066  * is optimistic considering the stability of most processor clock
1067  * oscillators and the precision with which the timebase frequency
1068  * is measured but does not harm.
1069  */
1070 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1071 {
1072         unsigned mlt=0, tmp, err;
1073         /* No concern for performance, it's done once: use a stupid
1074          * but safe and compact method to find the multiplier.
1075          */
1076 
1077         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1078                 if (mulhwu(inscale, mlt|tmp) < outscale)
1079 			mlt |= tmp;
1080         }
1081 
1082         /* We might still be off by 1 for the best approximation.
1083          * A side effect of this is that if outscale is too large
1084          * the returned value will be zero.
1085          * Many corner cases have been checked and seem to work,
1086          * some might have been forgotten in the test however.
1087          */
1088 
1089         err = inscale * (mlt+1);
1090         if (err <= inscale/2)
1091 		mlt++;
1092         return mlt;
1093 }
1094 
1095 /*
1096  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1097  * result.
1098  */
1099 void div128_by_32(u64 dividend_high, u64 dividend_low,
1100 		  unsigned divisor, struct div_result *dr)
1101 {
1102 	unsigned long a, b, c, d;
1103 	unsigned long w, x, y, z;
1104 	u64 ra, rb, rc;
1105 
1106 	a = dividend_high >> 32;
1107 	b = dividend_high & 0xffffffff;
1108 	c = dividend_low >> 32;
1109 	d = dividend_low & 0xffffffff;
1110 
1111 	w = a / divisor;
1112 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1113 
1114 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1115 	x = ra;
1116 
1117 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1118 	y = rb;
1119 
1120 	do_div(rc, divisor);
1121 	z = rc;
1122 
1123 	dr->result_high = ((u64)w << 32) + x;
1124 	dr->result_low  = ((u64)y << 32) + z;
1125 
1126 }
1127