xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 4e1a33b1)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <linux/suspend.h>
59 #include <linux/rtc.h>
60 #include <linux/cputime.h>
61 #include <asm/trace.h>
62 
63 #include <asm/io.h>
64 #include <asm/processor.h>
65 #include <asm/nvram.h>
66 #include <asm/cache.h>
67 #include <asm/machdep.h>
68 #include <linux/uaccess.h>
69 #include <asm/time.h>
70 #include <asm/prom.h>
71 #include <asm/irq.h>
72 #include <asm/div64.h>
73 #include <asm/smp.h>
74 #include <asm/vdso_datapage.h>
75 #include <asm/firmware.h>
76 #include <asm/asm-prototypes.h>
77 
78 /* powerpc clocksource/clockevent code */
79 
80 #include <linux/clockchips.h>
81 #include <linux/timekeeper_internal.h>
82 
83 static u64 rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 	.name         = "rtc",
86 	.rating       = 400,
87 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88 	.mask         = CLOCKSOURCE_MASK(64),
89 	.read         = rtc_read,
90 };
91 
92 static u64 timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94 	.name         = "timebase",
95 	.rating       = 400,
96 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
97 	.mask         = CLOCKSOURCE_MASK(64),
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
102 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
103 
104 static int decrementer_set_next_event(unsigned long evt,
105 				      struct clock_event_device *dev);
106 static int decrementer_shutdown(struct clock_event_device *evt);
107 
108 struct clock_event_device decrementer_clockevent = {
109 	.name			= "decrementer",
110 	.rating			= 200,
111 	.irq			= 0,
112 	.set_next_event		= decrementer_set_next_event,
113 	.set_state_shutdown	= decrementer_shutdown,
114 	.tick_resume		= decrementer_shutdown,
115 	.features		= CLOCK_EVT_FEAT_ONESHOT |
116 				  CLOCK_EVT_FEAT_C3STOP,
117 };
118 EXPORT_SYMBOL(decrementer_clockevent);
119 
120 DEFINE_PER_CPU(u64, decrementers_next_tb);
121 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
122 
123 #define XSEC_PER_SEC (1024*1024)
124 
125 #ifdef CONFIG_PPC64
126 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
127 #else
128 /* compute ((xsec << 12) * max) >> 32 */
129 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
130 #endif
131 
132 unsigned long tb_ticks_per_jiffy;
133 unsigned long tb_ticks_per_usec = 100; /* sane default */
134 EXPORT_SYMBOL(tb_ticks_per_usec);
135 unsigned long tb_ticks_per_sec;
136 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
137 
138 DEFINE_SPINLOCK(rtc_lock);
139 EXPORT_SYMBOL_GPL(rtc_lock);
140 
141 static u64 tb_to_ns_scale __read_mostly;
142 static unsigned tb_to_ns_shift __read_mostly;
143 static u64 boot_tb __read_mostly;
144 
145 extern struct timezone sys_tz;
146 static long timezone_offset;
147 
148 unsigned long ppc_proc_freq;
149 EXPORT_SYMBOL_GPL(ppc_proc_freq);
150 unsigned long ppc_tb_freq;
151 EXPORT_SYMBOL_GPL(ppc_tb_freq);
152 
153 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
154 /*
155  * Factor for converting from cputime_t (timebase ticks) to
156  * microseconds. This is stored as 0.64 fixed-point binary fraction.
157  */
158 u64 __cputime_usec_factor;
159 EXPORT_SYMBOL(__cputime_usec_factor);
160 
161 #ifdef CONFIG_PPC_SPLPAR
162 void (*dtl_consumer)(struct dtl_entry *, u64);
163 #endif
164 
165 #ifdef CONFIG_PPC64
166 #define get_accounting(tsk)	(&get_paca()->accounting)
167 #else
168 #define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
169 #endif
170 
171 static void calc_cputime_factors(void)
172 {
173 	struct div_result res;
174 
175 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
176 	__cputime_usec_factor = res.result_low;
177 }
178 
179 /*
180  * Read the SPURR on systems that have it, otherwise the PURR,
181  * or if that doesn't exist return the timebase value passed in.
182  */
183 static unsigned long read_spurr(unsigned long tb)
184 {
185 	if (cpu_has_feature(CPU_FTR_SPURR))
186 		return mfspr(SPRN_SPURR);
187 	if (cpu_has_feature(CPU_FTR_PURR))
188 		return mfspr(SPRN_PURR);
189 	return tb;
190 }
191 
192 #ifdef CONFIG_PPC_SPLPAR
193 
194 /*
195  * Scan the dispatch trace log and count up the stolen time.
196  * Should be called with interrupts disabled.
197  */
198 static u64 scan_dispatch_log(u64 stop_tb)
199 {
200 	u64 i = local_paca->dtl_ridx;
201 	struct dtl_entry *dtl = local_paca->dtl_curr;
202 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
203 	struct lppaca *vpa = local_paca->lppaca_ptr;
204 	u64 tb_delta;
205 	u64 stolen = 0;
206 	u64 dtb;
207 
208 	if (!dtl)
209 		return 0;
210 
211 	if (i == be64_to_cpu(vpa->dtl_idx))
212 		return 0;
213 	while (i < be64_to_cpu(vpa->dtl_idx)) {
214 		dtb = be64_to_cpu(dtl->timebase);
215 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
216 			be32_to_cpu(dtl->ready_to_enqueue_time);
217 		barrier();
218 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
219 			/* buffer has overflowed */
220 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
221 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
222 			continue;
223 		}
224 		if (dtb > stop_tb)
225 			break;
226 		if (dtl_consumer)
227 			dtl_consumer(dtl, i);
228 		stolen += tb_delta;
229 		++i;
230 		++dtl;
231 		if (dtl == dtl_end)
232 			dtl = local_paca->dispatch_log;
233 	}
234 	local_paca->dtl_ridx = i;
235 	local_paca->dtl_curr = dtl;
236 	return stolen;
237 }
238 
239 /*
240  * Accumulate stolen time by scanning the dispatch trace log.
241  * Called on entry from user mode.
242  */
243 void accumulate_stolen_time(void)
244 {
245 	u64 sst, ust;
246 	u8 save_soft_enabled = local_paca->soft_enabled;
247 	struct cpu_accounting_data *acct = &local_paca->accounting;
248 
249 	/* We are called early in the exception entry, before
250 	 * soft/hard_enabled are sync'ed to the expected state
251 	 * for the exception. We are hard disabled but the PACA
252 	 * needs to reflect that so various debug stuff doesn't
253 	 * complain
254 	 */
255 	local_paca->soft_enabled = 0;
256 
257 	sst = scan_dispatch_log(acct->starttime_user);
258 	ust = scan_dispatch_log(acct->starttime);
259 	acct->stime -= sst;
260 	acct->utime -= ust;
261 	acct->steal_time += ust + sst;
262 
263 	local_paca->soft_enabled = save_soft_enabled;
264 }
265 
266 static inline u64 calculate_stolen_time(u64 stop_tb)
267 {
268 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
269 		return scan_dispatch_log(stop_tb);
270 
271 	return 0;
272 }
273 
274 #else /* CONFIG_PPC_SPLPAR */
275 static inline u64 calculate_stolen_time(u64 stop_tb)
276 {
277 	return 0;
278 }
279 
280 #endif /* CONFIG_PPC_SPLPAR */
281 
282 /*
283  * Account time for a transition between system, hard irq
284  * or soft irq state.
285  */
286 static unsigned long vtime_delta(struct task_struct *tsk,
287 				 unsigned long *stime_scaled,
288 				 unsigned long *steal_time)
289 {
290 	unsigned long now, nowscaled, deltascaled;
291 	unsigned long stime;
292 	unsigned long utime, utime_scaled;
293 	struct cpu_accounting_data *acct = get_accounting(tsk);
294 
295 	WARN_ON_ONCE(!irqs_disabled());
296 
297 	now = mftb();
298 	nowscaled = read_spurr(now);
299 	stime = now - acct->starttime;
300 	acct->starttime = now;
301 	deltascaled = nowscaled - acct->startspurr;
302 	acct->startspurr = nowscaled;
303 
304 	*steal_time = calculate_stolen_time(now);
305 
306 	utime = acct->utime - acct->utime_sspurr;
307 	acct->utime_sspurr = acct->utime;
308 
309 	/*
310 	 * Because we don't read the SPURR on every kernel entry/exit,
311 	 * deltascaled includes both user and system SPURR ticks.
312 	 * Apportion these ticks to system SPURR ticks and user
313 	 * SPURR ticks in the same ratio as the system time (delta)
314 	 * and user time (udelta) values obtained from the timebase
315 	 * over the same interval.  The system ticks get accounted here;
316 	 * the user ticks get saved up in paca->user_time_scaled to be
317 	 * used by account_process_tick.
318 	 */
319 	*stime_scaled = stime;
320 	utime_scaled = utime;
321 	if (deltascaled != stime + utime) {
322 		if (utime) {
323 			*stime_scaled = deltascaled * stime / (stime + utime);
324 			utime_scaled = deltascaled - *stime_scaled;
325 		} else {
326 			*stime_scaled = deltascaled;
327 		}
328 	}
329 	acct->utime_scaled += utime_scaled;
330 
331 	return stime;
332 }
333 
334 void vtime_account_system(struct task_struct *tsk)
335 {
336 	unsigned long stime, stime_scaled, steal_time;
337 	struct cpu_accounting_data *acct = get_accounting(tsk);
338 
339 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
340 
341 	stime -= min(stime, steal_time);
342 	acct->steal_time += steal_time;
343 
344 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
345 		acct->gtime += stime;
346 		acct->utime_scaled += stime_scaled;
347 	} else {
348 		if (hardirq_count())
349 			acct->hardirq_time += stime;
350 		else if (in_serving_softirq())
351 			acct->softirq_time += stime;
352 		else
353 			acct->stime += stime;
354 
355 		acct->stime_scaled += stime_scaled;
356 	}
357 }
358 EXPORT_SYMBOL_GPL(vtime_account_system);
359 
360 void vtime_account_idle(struct task_struct *tsk)
361 {
362 	unsigned long stime, stime_scaled, steal_time;
363 	struct cpu_accounting_data *acct = get_accounting(tsk);
364 
365 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
366 	acct->idle_time += stime + steal_time;
367 }
368 
369 /*
370  * Account the whole cputime accumulated in the paca
371  * Must be called with interrupts disabled.
372  * Assumes that vtime_account_system/idle() has been called
373  * recently (i.e. since the last entry from usermode) so that
374  * get_paca()->user_time_scaled is up to date.
375  */
376 void vtime_flush(struct task_struct *tsk)
377 {
378 	struct cpu_accounting_data *acct = get_accounting(tsk);
379 
380 	if (acct->utime)
381 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
382 
383 	if (acct->utime_scaled)
384 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
385 
386 	if (acct->gtime)
387 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
388 
389 	if (acct->steal_time)
390 		account_steal_time(cputime_to_nsecs(acct->steal_time));
391 
392 	if (acct->idle_time)
393 		account_idle_time(cputime_to_nsecs(acct->idle_time));
394 
395 	if (acct->stime)
396 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
397 					  CPUTIME_SYSTEM);
398 	if (acct->stime_scaled)
399 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
400 
401 	if (acct->hardirq_time)
402 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
403 					  CPUTIME_IRQ);
404 	if (acct->softirq_time)
405 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
406 					  CPUTIME_SOFTIRQ);
407 
408 	acct->utime = 0;
409 	acct->utime_scaled = 0;
410 	acct->utime_sspurr = 0;
411 	acct->gtime = 0;
412 	acct->steal_time = 0;
413 	acct->idle_time = 0;
414 	acct->stime = 0;
415 	acct->stime_scaled = 0;
416 	acct->hardirq_time = 0;
417 	acct->softirq_time = 0;
418 }
419 
420 #ifdef CONFIG_PPC32
421 /*
422  * Called from the context switch with interrupts disabled, to charge all
423  * accumulated times to the current process, and to prepare accounting on
424  * the next process.
425  */
426 void arch_vtime_task_switch(struct task_struct *prev)
427 {
428 	struct cpu_accounting_data *acct = get_accounting(current);
429 
430 	acct->starttime = get_accounting(prev)->starttime;
431 	acct->startspurr = get_accounting(prev)->startspurr;
432 }
433 #endif /* CONFIG_PPC32 */
434 
435 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
436 #define calc_cputime_factors()
437 #endif
438 
439 void __delay(unsigned long loops)
440 {
441 	unsigned long start;
442 	int diff;
443 
444 	if (__USE_RTC()) {
445 		start = get_rtcl();
446 		do {
447 			/* the RTCL register wraps at 1000000000 */
448 			diff = get_rtcl() - start;
449 			if (diff < 0)
450 				diff += 1000000000;
451 		} while (diff < loops);
452 	} else {
453 		start = get_tbl();
454 		while (get_tbl() - start < loops)
455 			HMT_low();
456 		HMT_medium();
457 	}
458 }
459 EXPORT_SYMBOL(__delay);
460 
461 void udelay(unsigned long usecs)
462 {
463 	__delay(tb_ticks_per_usec * usecs);
464 }
465 EXPORT_SYMBOL(udelay);
466 
467 #ifdef CONFIG_SMP
468 unsigned long profile_pc(struct pt_regs *regs)
469 {
470 	unsigned long pc = instruction_pointer(regs);
471 
472 	if (in_lock_functions(pc))
473 		return regs->link;
474 
475 	return pc;
476 }
477 EXPORT_SYMBOL(profile_pc);
478 #endif
479 
480 #ifdef CONFIG_IRQ_WORK
481 
482 /*
483  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
484  */
485 #ifdef CONFIG_PPC64
486 static inline unsigned long test_irq_work_pending(void)
487 {
488 	unsigned long x;
489 
490 	asm volatile("lbz %0,%1(13)"
491 		: "=r" (x)
492 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
493 	return x;
494 }
495 
496 static inline void set_irq_work_pending_flag(void)
497 {
498 	asm volatile("stb %0,%1(13)" : :
499 		"r" (1),
500 		"i" (offsetof(struct paca_struct, irq_work_pending)));
501 }
502 
503 static inline void clear_irq_work_pending(void)
504 {
505 	asm volatile("stb %0,%1(13)" : :
506 		"r" (0),
507 		"i" (offsetof(struct paca_struct, irq_work_pending)));
508 }
509 
510 #else /* 32-bit */
511 
512 DEFINE_PER_CPU(u8, irq_work_pending);
513 
514 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
515 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
516 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
517 
518 #endif /* 32 vs 64 bit */
519 
520 void arch_irq_work_raise(void)
521 {
522 	preempt_disable();
523 	set_irq_work_pending_flag();
524 	set_dec(1);
525 	preempt_enable();
526 }
527 
528 #else  /* CONFIG_IRQ_WORK */
529 
530 #define test_irq_work_pending()	0
531 #define clear_irq_work_pending()
532 
533 #endif /* CONFIG_IRQ_WORK */
534 
535 static void __timer_interrupt(void)
536 {
537 	struct pt_regs *regs = get_irq_regs();
538 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
539 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
540 	u64 now;
541 
542 	trace_timer_interrupt_entry(regs);
543 
544 	if (test_irq_work_pending()) {
545 		clear_irq_work_pending();
546 		irq_work_run();
547 	}
548 
549 	now = get_tb_or_rtc();
550 	if (now >= *next_tb) {
551 		*next_tb = ~(u64)0;
552 		if (evt->event_handler)
553 			evt->event_handler(evt);
554 		__this_cpu_inc(irq_stat.timer_irqs_event);
555 	} else {
556 		now = *next_tb - now;
557 		if (now <= decrementer_max)
558 			set_dec(now);
559 		/* We may have raced with new irq work */
560 		if (test_irq_work_pending())
561 			set_dec(1);
562 		__this_cpu_inc(irq_stat.timer_irqs_others);
563 	}
564 
565 #ifdef CONFIG_PPC64
566 	/* collect purr register values often, for accurate calculations */
567 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
568 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
569 		cu->current_tb = mfspr(SPRN_PURR);
570 	}
571 #endif
572 
573 	trace_timer_interrupt_exit(regs);
574 }
575 
576 /*
577  * timer_interrupt - gets called when the decrementer overflows,
578  * with interrupts disabled.
579  */
580 void timer_interrupt(struct pt_regs * regs)
581 {
582 	struct pt_regs *old_regs;
583 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
584 
585 	/* Ensure a positive value is written to the decrementer, or else
586 	 * some CPUs will continue to take decrementer exceptions.
587 	 */
588 	set_dec(decrementer_max);
589 
590 	/* Some implementations of hotplug will get timer interrupts while
591 	 * offline, just ignore these and we also need to set
592 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
593 	 * don't replay timer interrupt when return, otherwise we'll trap
594 	 * here infinitely :(
595 	 */
596 	if (!cpu_online(smp_processor_id())) {
597 		*next_tb = ~(u64)0;
598 		return;
599 	}
600 
601 	/* Conditionally hard-enable interrupts now that the DEC has been
602 	 * bumped to its maximum value
603 	 */
604 	may_hard_irq_enable();
605 
606 
607 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
608 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
609 		do_IRQ(regs);
610 #endif
611 
612 	old_regs = set_irq_regs(regs);
613 	irq_enter();
614 
615 	__timer_interrupt();
616 	irq_exit();
617 	set_irq_regs(old_regs);
618 }
619 EXPORT_SYMBOL(timer_interrupt);
620 
621 /*
622  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
623  * left pending on exit from a KVM guest.  We don't need to do anything
624  * to clear them, as they are edge-triggered.
625  */
626 void hdec_interrupt(struct pt_regs *regs)
627 {
628 }
629 
630 #ifdef CONFIG_SUSPEND
631 static void generic_suspend_disable_irqs(void)
632 {
633 	/* Disable the decrementer, so that it doesn't interfere
634 	 * with suspending.
635 	 */
636 
637 	set_dec(decrementer_max);
638 	local_irq_disable();
639 	set_dec(decrementer_max);
640 }
641 
642 static void generic_suspend_enable_irqs(void)
643 {
644 	local_irq_enable();
645 }
646 
647 /* Overrides the weak version in kernel/power/main.c */
648 void arch_suspend_disable_irqs(void)
649 {
650 	if (ppc_md.suspend_disable_irqs)
651 		ppc_md.suspend_disable_irqs();
652 	generic_suspend_disable_irqs();
653 }
654 
655 /* Overrides the weak version in kernel/power/main.c */
656 void arch_suspend_enable_irqs(void)
657 {
658 	generic_suspend_enable_irqs();
659 	if (ppc_md.suspend_enable_irqs)
660 		ppc_md.suspend_enable_irqs();
661 }
662 #endif
663 
664 unsigned long long tb_to_ns(unsigned long long ticks)
665 {
666 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
667 }
668 EXPORT_SYMBOL_GPL(tb_to_ns);
669 
670 /*
671  * Scheduler clock - returns current time in nanosec units.
672  *
673  * Note: mulhdu(a, b) (multiply high double unsigned) returns
674  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
675  * are 64-bit unsigned numbers.
676  */
677 unsigned long long sched_clock(void)
678 {
679 	if (__USE_RTC())
680 		return get_rtc();
681 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
682 }
683 
684 
685 #ifdef CONFIG_PPC_PSERIES
686 
687 /*
688  * Running clock - attempts to give a view of time passing for a virtualised
689  * kernels.
690  * Uses the VTB register if available otherwise a next best guess.
691  */
692 unsigned long long running_clock(void)
693 {
694 	/*
695 	 * Don't read the VTB as a host since KVM does not switch in host
696 	 * timebase into the VTB when it takes a guest off the CPU, reading the
697 	 * VTB would result in reading 'last switched out' guest VTB.
698 	 *
699 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
700 	 * would be unsafe to rely only on the #ifdef above.
701 	 */
702 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
703 	    cpu_has_feature(CPU_FTR_ARCH_207S))
704 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
705 
706 	/*
707 	 * This is a next best approximation without a VTB.
708 	 * On a host which is running bare metal there should never be any stolen
709 	 * time and on a host which doesn't do any virtualisation TB *should* equal
710 	 * VTB so it makes no difference anyway.
711 	 */
712 	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
713 }
714 #endif
715 
716 static int __init get_freq(char *name, int cells, unsigned long *val)
717 {
718 	struct device_node *cpu;
719 	const __be32 *fp;
720 	int found = 0;
721 
722 	/* The cpu node should have timebase and clock frequency properties */
723 	cpu = of_find_node_by_type(NULL, "cpu");
724 
725 	if (cpu) {
726 		fp = of_get_property(cpu, name, NULL);
727 		if (fp) {
728 			found = 1;
729 			*val = of_read_ulong(fp, cells);
730 		}
731 
732 		of_node_put(cpu);
733 	}
734 
735 	return found;
736 }
737 
738 static void start_cpu_decrementer(void)
739 {
740 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
741 	/* Clear any pending timer interrupts */
742 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
743 
744 	/* Enable decrementer interrupt */
745 	mtspr(SPRN_TCR, TCR_DIE);
746 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
747 }
748 
749 void __init generic_calibrate_decr(void)
750 {
751 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
752 
753 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
754 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
755 
756 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
757 				"(not found)\n");
758 	}
759 
760 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
761 
762 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
763 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
764 
765 		printk(KERN_ERR "WARNING: Estimating processor frequency "
766 				"(not found)\n");
767 	}
768 }
769 
770 int update_persistent_clock(struct timespec now)
771 {
772 	struct rtc_time tm;
773 
774 	if (!ppc_md.set_rtc_time)
775 		return -ENODEV;
776 
777 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
778 	tm.tm_year -= 1900;
779 	tm.tm_mon -= 1;
780 
781 	return ppc_md.set_rtc_time(&tm);
782 }
783 
784 static void __read_persistent_clock(struct timespec *ts)
785 {
786 	struct rtc_time tm;
787 	static int first = 1;
788 
789 	ts->tv_nsec = 0;
790 	/* XXX this is a litle fragile but will work okay in the short term */
791 	if (first) {
792 		first = 0;
793 		if (ppc_md.time_init)
794 			timezone_offset = ppc_md.time_init();
795 
796 		/* get_boot_time() isn't guaranteed to be safe to call late */
797 		if (ppc_md.get_boot_time) {
798 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
799 			return;
800 		}
801 	}
802 	if (!ppc_md.get_rtc_time) {
803 		ts->tv_sec = 0;
804 		return;
805 	}
806 	ppc_md.get_rtc_time(&tm);
807 
808 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
809 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
810 }
811 
812 void read_persistent_clock(struct timespec *ts)
813 {
814 	__read_persistent_clock(ts);
815 
816 	/* Sanitize it in case real time clock is set below EPOCH */
817 	if (ts->tv_sec < 0) {
818 		ts->tv_sec = 0;
819 		ts->tv_nsec = 0;
820 	}
821 
822 }
823 
824 /* clocksource code */
825 static u64 rtc_read(struct clocksource *cs)
826 {
827 	return (u64)get_rtc();
828 }
829 
830 static u64 timebase_read(struct clocksource *cs)
831 {
832 	return (u64)get_tb();
833 }
834 
835 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
836 			 struct clocksource *clock, u32 mult, u64 cycle_last)
837 {
838 	u64 new_tb_to_xs, new_stamp_xsec;
839 	u32 frac_sec;
840 
841 	if (clock != &clocksource_timebase)
842 		return;
843 
844 	/* Make userspace gettimeofday spin until we're done. */
845 	++vdso_data->tb_update_count;
846 	smp_mb();
847 
848 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
849 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
850 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
851 	do_div(new_stamp_xsec, 1000000000);
852 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
853 
854 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
855 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
856 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
857 
858 	/*
859 	 * tb_update_count is used to allow the userspace gettimeofday code
860 	 * to assure itself that it sees a consistent view of the tb_to_xs and
861 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
862 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
863 	 * the two values of tb_update_count match and are even then the
864 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
865 	 * loops back and reads them again until this criteria is met.
866 	 * We expect the caller to have done the first increment of
867 	 * vdso_data->tb_update_count already.
868 	 */
869 	vdso_data->tb_orig_stamp = cycle_last;
870 	vdso_data->stamp_xsec = new_stamp_xsec;
871 	vdso_data->tb_to_xs = new_tb_to_xs;
872 	vdso_data->wtom_clock_sec = wtm->tv_sec;
873 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
874 	vdso_data->stamp_xtime = *wall_time;
875 	vdso_data->stamp_sec_fraction = frac_sec;
876 	smp_wmb();
877 	++(vdso_data->tb_update_count);
878 }
879 
880 void update_vsyscall_tz(void)
881 {
882 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
883 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
884 }
885 
886 static void __init clocksource_init(void)
887 {
888 	struct clocksource *clock;
889 
890 	if (__USE_RTC())
891 		clock = &clocksource_rtc;
892 	else
893 		clock = &clocksource_timebase;
894 
895 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
896 		printk(KERN_ERR "clocksource: %s is already registered\n",
897 		       clock->name);
898 		return;
899 	}
900 
901 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
902 	       clock->name, clock->mult, clock->shift);
903 }
904 
905 static int decrementer_set_next_event(unsigned long evt,
906 				      struct clock_event_device *dev)
907 {
908 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
909 	set_dec(evt);
910 
911 	/* We may have raced with new irq work */
912 	if (test_irq_work_pending())
913 		set_dec(1);
914 
915 	return 0;
916 }
917 
918 static int decrementer_shutdown(struct clock_event_device *dev)
919 {
920 	decrementer_set_next_event(decrementer_max, dev);
921 	return 0;
922 }
923 
924 /* Interrupt handler for the timer broadcast IPI */
925 void tick_broadcast_ipi_handler(void)
926 {
927 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
928 
929 	*next_tb = get_tb_or_rtc();
930 	__timer_interrupt();
931 }
932 
933 static void register_decrementer_clockevent(int cpu)
934 {
935 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
936 
937 	*dec = decrementer_clockevent;
938 	dec->cpumask = cpumask_of(cpu);
939 
940 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
941 		    dec->name, dec->mult, dec->shift, cpu);
942 
943 	clockevents_register_device(dec);
944 }
945 
946 static void enable_large_decrementer(void)
947 {
948 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
949 		return;
950 
951 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
952 		return;
953 
954 	/*
955 	 * If we're running as the hypervisor we need to enable the LD manually
956 	 * otherwise firmware should have done it for us.
957 	 */
958 	if (cpu_has_feature(CPU_FTR_HVMODE))
959 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
960 }
961 
962 static void __init set_decrementer_max(void)
963 {
964 	struct device_node *cpu;
965 	u32 bits = 32;
966 
967 	/* Prior to ISAv3 the decrementer is always 32 bit */
968 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
969 		return;
970 
971 	cpu = of_find_node_by_type(NULL, "cpu");
972 
973 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
974 		if (bits > 64 || bits < 32) {
975 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
976 			bits = 32;
977 		}
978 
979 		/* calculate the signed maximum given this many bits */
980 		decrementer_max = (1ul << (bits - 1)) - 1;
981 	}
982 
983 	of_node_put(cpu);
984 
985 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
986 		bits, decrementer_max);
987 }
988 
989 static void __init init_decrementer_clockevent(void)
990 {
991 	int cpu = smp_processor_id();
992 
993 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
994 
995 	decrementer_clockevent.max_delta_ns =
996 		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
997 	decrementer_clockevent.min_delta_ns =
998 		clockevent_delta2ns(2, &decrementer_clockevent);
999 
1000 	register_decrementer_clockevent(cpu);
1001 }
1002 
1003 void secondary_cpu_time_init(void)
1004 {
1005 	/* Enable and test the large decrementer for this cpu */
1006 	enable_large_decrementer();
1007 
1008 	/* Start the decrementer on CPUs that have manual control
1009 	 * such as BookE
1010 	 */
1011 	start_cpu_decrementer();
1012 
1013 	/* FIME: Should make unrelatred change to move snapshot_timebase
1014 	 * call here ! */
1015 	register_decrementer_clockevent(smp_processor_id());
1016 }
1017 
1018 /* This function is only called on the boot processor */
1019 void __init time_init(void)
1020 {
1021 	struct div_result res;
1022 	u64 scale;
1023 	unsigned shift;
1024 
1025 	if (__USE_RTC()) {
1026 		/* 601 processor: dec counts down by 128 every 128ns */
1027 		ppc_tb_freq = 1000000000;
1028 	} else {
1029 		/* Normal PowerPC with timebase register */
1030 		ppc_md.calibrate_decr();
1031 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1032 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1033 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1034 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1035 	}
1036 
1037 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1038 	tb_ticks_per_sec = ppc_tb_freq;
1039 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1040 	calc_cputime_factors();
1041 
1042 	/*
1043 	 * Compute scale factor for sched_clock.
1044 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1045 	 * which is the timebase frequency.
1046 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1047 	 * the 128-bit result as a 64.64 fixed-point number.
1048 	 * We then shift that number right until it is less than 1.0,
1049 	 * giving us the scale factor and shift count to use in
1050 	 * sched_clock().
1051 	 */
1052 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1053 	scale = res.result_low;
1054 	for (shift = 0; res.result_high != 0; ++shift) {
1055 		scale = (scale >> 1) | (res.result_high << 63);
1056 		res.result_high >>= 1;
1057 	}
1058 	tb_to_ns_scale = scale;
1059 	tb_to_ns_shift = shift;
1060 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1061 	boot_tb = get_tb_or_rtc();
1062 
1063 	/* If platform provided a timezone (pmac), we correct the time */
1064 	if (timezone_offset) {
1065 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1066 		sys_tz.tz_dsttime = 0;
1067 	}
1068 
1069 	vdso_data->tb_update_count = 0;
1070 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1071 
1072 	/* initialise and enable the large decrementer (if we have one) */
1073 	set_decrementer_max();
1074 	enable_large_decrementer();
1075 
1076 	/* Start the decrementer on CPUs that have manual control
1077 	 * such as BookE
1078 	 */
1079 	start_cpu_decrementer();
1080 
1081 	/* Register the clocksource */
1082 	clocksource_init();
1083 
1084 	init_decrementer_clockevent();
1085 	tick_setup_hrtimer_broadcast();
1086 
1087 #ifdef CONFIG_COMMON_CLK
1088 	of_clk_init(NULL);
1089 #endif
1090 }
1091 
1092 
1093 #define FEBRUARY	2
1094 #define	STARTOFTIME	1970
1095 #define SECDAY		86400L
1096 #define SECYR		(SECDAY * 365)
1097 #define	leapyear(year)		((year) % 4 == 0 && \
1098 				 ((year) % 100 != 0 || (year) % 400 == 0))
1099 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1100 #define	days_in_month(a) 	(month_days[(a) - 1])
1101 
1102 static int month_days[12] = {
1103 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1104 };
1105 
1106 void to_tm(int tim, struct rtc_time * tm)
1107 {
1108 	register int    i;
1109 	register long   hms, day;
1110 
1111 	day = tim / SECDAY;
1112 	hms = tim % SECDAY;
1113 
1114 	/* Hours, minutes, seconds are easy */
1115 	tm->tm_hour = hms / 3600;
1116 	tm->tm_min = (hms % 3600) / 60;
1117 	tm->tm_sec = (hms % 3600) % 60;
1118 
1119 	/* Number of years in days */
1120 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1121 		day -= days_in_year(i);
1122 	tm->tm_year = i;
1123 
1124 	/* Number of months in days left */
1125 	if (leapyear(tm->tm_year))
1126 		days_in_month(FEBRUARY) = 29;
1127 	for (i = 1; day >= days_in_month(i); i++)
1128 		day -= days_in_month(i);
1129 	days_in_month(FEBRUARY) = 28;
1130 	tm->tm_mon = i;
1131 
1132 	/* Days are what is left over (+1) from all that. */
1133 	tm->tm_mday = day + 1;
1134 
1135 	/*
1136 	 * No-one uses the day of the week.
1137 	 */
1138 	tm->tm_wday = -1;
1139 }
1140 EXPORT_SYMBOL(to_tm);
1141 
1142 /*
1143  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1144  * result.
1145  */
1146 void div128_by_32(u64 dividend_high, u64 dividend_low,
1147 		  unsigned divisor, struct div_result *dr)
1148 {
1149 	unsigned long a, b, c, d;
1150 	unsigned long w, x, y, z;
1151 	u64 ra, rb, rc;
1152 
1153 	a = dividend_high >> 32;
1154 	b = dividend_high & 0xffffffff;
1155 	c = dividend_low >> 32;
1156 	d = dividend_low & 0xffffffff;
1157 
1158 	w = a / divisor;
1159 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1160 
1161 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1162 	x = ra;
1163 
1164 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1165 	y = rb;
1166 
1167 	do_div(rc, divisor);
1168 	z = rc;
1169 
1170 	dr->result_high = ((u64)w << 32) + x;
1171 	dr->result_low  = ((u64)y << 32) + z;
1172 
1173 }
1174 
1175 /* We don't need to calibrate delay, we use the CPU timebase for that */
1176 void calibrate_delay(void)
1177 {
1178 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1179 	 * as the number of __delay(1) in a jiffy, so make it so
1180 	 */
1181 	loops_per_jiffy = tb_ticks_per_jiffy;
1182 }
1183 
1184 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1185 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1186 {
1187 	ppc_md.get_rtc_time(tm);
1188 	return rtc_valid_tm(tm);
1189 }
1190 
1191 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1192 {
1193 	if (!ppc_md.set_rtc_time)
1194 		return -EOPNOTSUPP;
1195 
1196 	if (ppc_md.set_rtc_time(tm) < 0)
1197 		return -EOPNOTSUPP;
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct rtc_class_ops rtc_generic_ops = {
1203 	.read_time = rtc_generic_get_time,
1204 	.set_time = rtc_generic_set_time,
1205 };
1206 
1207 static int __init rtc_init(void)
1208 {
1209 	struct platform_device *pdev;
1210 
1211 	if (!ppc_md.get_rtc_time)
1212 		return -ENODEV;
1213 
1214 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1215 					     &rtc_generic_ops,
1216 					     sizeof(rtc_generic_ops));
1217 
1218 	return PTR_ERR_OR_ZERO(pdev);
1219 }
1220 
1221 device_initcall(rtc_init);
1222 #endif
1223