xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 4a4cfe38)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clocksource.h>
77 
78 static cycle_t rtc_read(void);
79 static struct clocksource clocksource_rtc = {
80 	.name         = "rtc",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.shift        = 22,
85 	.mult         = 0,	/* To be filled in */
86 	.read         = rtc_read,
87 };
88 
89 static cycle_t timebase_read(void);
90 static struct clocksource clocksource_timebase = {
91 	.name         = "timebase",
92 	.rating       = 400,
93 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
94 	.mask         = CLOCKSOURCE_MASK(64),
95 	.shift        = 22,
96 	.mult         = 0,	/* To be filled in */
97 	.read         = timebase_read,
98 };
99 
100 #ifdef CONFIG_PPC_ISERIES
101 static unsigned long __initdata iSeries_recal_titan;
102 static signed long __initdata iSeries_recal_tb;
103 
104 /* Forward declaration is only needed for iSereis compiles */
105 void __init clocksource_init(void);
106 #endif
107 
108 #define XSEC_PER_SEC (1024*1024)
109 
110 #ifdef CONFIG_PPC64
111 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
112 #else
113 /* compute ((xsec << 12) * max) >> 32 */
114 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
115 #endif
116 
117 unsigned long tb_ticks_per_jiffy;
118 unsigned long tb_ticks_per_usec = 100; /* sane default */
119 EXPORT_SYMBOL(tb_ticks_per_usec);
120 unsigned long tb_ticks_per_sec;
121 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
122 u64 tb_to_xs;
123 unsigned tb_to_us;
124 
125 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
126 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
127 u64 ticklen_to_xs;	/* 0.64 fraction */
128 
129 /* If last_tick_len corresponds to about 1/HZ seconds, then
130    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
131 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
132 
133 DEFINE_SPINLOCK(rtc_lock);
134 EXPORT_SYMBOL_GPL(rtc_lock);
135 
136 static u64 tb_to_ns_scale __read_mostly;
137 static unsigned tb_to_ns_shift __read_mostly;
138 static unsigned long boot_tb __read_mostly;
139 
140 struct gettimeofday_struct do_gtod;
141 
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144 
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 
149 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
150 static DEFINE_PER_CPU(u64, last_jiffy);
151 
152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
153 /*
154  * Factors for converting from cputime_t (timebase ticks) to
155  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
156  * These are all stored as 0.64 fixed-point binary fractions.
157  */
158 u64 __cputime_jiffies_factor;
159 EXPORT_SYMBOL(__cputime_jiffies_factor);
160 u64 __cputime_msec_factor;
161 EXPORT_SYMBOL(__cputime_msec_factor);
162 u64 __cputime_sec_factor;
163 EXPORT_SYMBOL(__cputime_sec_factor);
164 u64 __cputime_clockt_factor;
165 EXPORT_SYMBOL(__cputime_clockt_factor);
166 
167 static void calc_cputime_factors(void)
168 {
169 	struct div_result res;
170 
171 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 	__cputime_jiffies_factor = res.result_low;
173 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
174 	__cputime_msec_factor = res.result_low;
175 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 	__cputime_sec_factor = res.result_low;
177 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 	__cputime_clockt_factor = res.result_low;
179 }
180 
181 /*
182  * Read the PURR on systems that have it, otherwise the timebase.
183  */
184 static u64 read_purr(void)
185 {
186 	if (cpu_has_feature(CPU_FTR_PURR))
187 		return mfspr(SPRN_PURR);
188 	return mftb();
189 }
190 
191 /*
192  * Account time for a transition between system, hard irq
193  * or soft irq state.
194  */
195 void account_system_vtime(struct task_struct *tsk)
196 {
197 	u64 now, delta;
198 	unsigned long flags;
199 
200 	local_irq_save(flags);
201 	now = read_purr();
202 	delta = now - get_paca()->startpurr;
203 	get_paca()->startpurr = now;
204 	if (!in_interrupt()) {
205 		delta += get_paca()->system_time;
206 		get_paca()->system_time = 0;
207 	}
208 	account_system_time(tsk, 0, delta);
209 	local_irq_restore(flags);
210 }
211 
212 /*
213  * Transfer the user and system times accumulated in the paca
214  * by the exception entry and exit code to the generic process
215  * user and system time records.
216  * Must be called with interrupts disabled.
217  */
218 void account_process_vtime(struct task_struct *tsk)
219 {
220 	cputime_t utime;
221 
222 	utime = get_paca()->user_time;
223 	get_paca()->user_time = 0;
224 	account_user_time(tsk, utime);
225 }
226 
227 static void account_process_time(struct pt_regs *regs)
228 {
229 	int cpu = smp_processor_id();
230 
231 	account_process_vtime(current);
232 	run_local_timers();
233 	if (rcu_pending(cpu))
234 		rcu_check_callbacks(cpu, user_mode(regs));
235 	scheduler_tick();
236  	run_posix_cpu_timers(current);
237 }
238 
239 /*
240  * Stuff for accounting stolen time.
241  */
242 struct cpu_purr_data {
243 	int	initialized;			/* thread is running */
244 	u64	tb;			/* last TB value read */
245 	u64	purr;			/* last PURR value read */
246 };
247 
248 /*
249  * Each entry in the cpu_purr_data array is manipulated only by its
250  * "owner" cpu -- usually in the timer interrupt but also occasionally
251  * in process context for cpu online.  As long as cpus do not touch
252  * each others' cpu_purr_data, disabling local interrupts is
253  * sufficient to serialize accesses.
254  */
255 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
256 
257 static void snapshot_tb_and_purr(void *data)
258 {
259 	unsigned long flags;
260 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
261 
262 	local_irq_save(flags);
263 	p->tb = get_tb_or_rtc();
264 	p->purr = mfspr(SPRN_PURR);
265 	wmb();
266 	p->initialized = 1;
267 	local_irq_restore(flags);
268 }
269 
270 /*
271  * Called during boot when all cpus have come up.
272  */
273 void snapshot_timebases(void)
274 {
275 	if (!cpu_has_feature(CPU_FTR_PURR))
276 		return;
277 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
278 }
279 
280 /*
281  * Must be called with interrupts disabled.
282  */
283 void calculate_steal_time(void)
284 {
285 	u64 tb, purr;
286 	s64 stolen;
287 	struct cpu_purr_data *pme;
288 
289 	if (!cpu_has_feature(CPU_FTR_PURR))
290 		return;
291 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
292 	if (!pme->initialized)
293 		return;		/* this can happen in early boot */
294 	tb = mftb();
295 	purr = mfspr(SPRN_PURR);
296 	stolen = (tb - pme->tb) - (purr - pme->purr);
297 	if (stolen > 0)
298 		account_steal_time(current, stolen);
299 	pme->tb = tb;
300 	pme->purr = purr;
301 }
302 
303 #ifdef CONFIG_PPC_SPLPAR
304 /*
305  * Must be called before the cpu is added to the online map when
306  * a cpu is being brought up at runtime.
307  */
308 static void snapshot_purr(void)
309 {
310 	struct cpu_purr_data *pme;
311 	unsigned long flags;
312 
313 	if (!cpu_has_feature(CPU_FTR_PURR))
314 		return;
315 	local_irq_save(flags);
316 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
317 	pme->tb = mftb();
318 	pme->purr = mfspr(SPRN_PURR);
319 	pme->initialized = 1;
320 	local_irq_restore(flags);
321 }
322 
323 #endif /* CONFIG_PPC_SPLPAR */
324 
325 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
326 #define calc_cputime_factors()
327 #define account_process_time(regs)	update_process_times(user_mode(regs))
328 #define calculate_steal_time()		do { } while (0)
329 #endif
330 
331 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
332 #define snapshot_purr()			do { } while (0)
333 #endif
334 
335 /*
336  * Called when a cpu comes up after the system has finished booting,
337  * i.e. as a result of a hotplug cpu action.
338  */
339 void snapshot_timebase(void)
340 {
341 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
342 	snapshot_purr();
343 }
344 
345 void __delay(unsigned long loops)
346 {
347 	unsigned long start;
348 	int diff;
349 
350 	if (__USE_RTC()) {
351 		start = get_rtcl();
352 		do {
353 			/* the RTCL register wraps at 1000000000 */
354 			diff = get_rtcl() - start;
355 			if (diff < 0)
356 				diff += 1000000000;
357 		} while (diff < loops);
358 	} else {
359 		start = get_tbl();
360 		while (get_tbl() - start < loops)
361 			HMT_low();
362 		HMT_medium();
363 	}
364 }
365 EXPORT_SYMBOL(__delay);
366 
367 void udelay(unsigned long usecs)
368 {
369 	__delay(tb_ticks_per_usec * usecs);
370 }
371 EXPORT_SYMBOL(udelay);
372 
373 
374 /*
375  * There are two copies of tb_to_xs and stamp_xsec so that no
376  * lock is needed to access and use these values in
377  * do_gettimeofday.  We alternate the copies and as long as a
378  * reasonable time elapses between changes, there will never
379  * be inconsistent values.  ntpd has a minimum of one minute
380  * between updates.
381  */
382 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
383 			       u64 new_tb_to_xs)
384 {
385 	unsigned temp_idx;
386 	struct gettimeofday_vars *temp_varp;
387 
388 	temp_idx = (do_gtod.var_idx == 0);
389 	temp_varp = &do_gtod.vars[temp_idx];
390 
391 	temp_varp->tb_to_xs = new_tb_to_xs;
392 	temp_varp->tb_orig_stamp = new_tb_stamp;
393 	temp_varp->stamp_xsec = new_stamp_xsec;
394 	smp_mb();
395 	do_gtod.varp = temp_varp;
396 	do_gtod.var_idx = temp_idx;
397 
398 	/*
399 	 * tb_update_count is used to allow the userspace gettimeofday code
400 	 * to assure itself that it sees a consistent view of the tb_to_xs and
401 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
402 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
403 	 * the two values of tb_update_count match and are even then the
404 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
405 	 * loops back and reads them again until this criteria is met.
406 	 * We expect the caller to have done the first increment of
407 	 * vdso_data->tb_update_count already.
408 	 */
409 	vdso_data->tb_orig_stamp = new_tb_stamp;
410 	vdso_data->stamp_xsec = new_stamp_xsec;
411 	vdso_data->tb_to_xs = new_tb_to_xs;
412 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
413 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
414 	smp_wmb();
415 	++(vdso_data->tb_update_count);
416 }
417 
418 #ifdef CONFIG_SMP
419 unsigned long profile_pc(struct pt_regs *regs)
420 {
421 	unsigned long pc = instruction_pointer(regs);
422 
423 	if (in_lock_functions(pc))
424 		return regs->link;
425 
426 	return pc;
427 }
428 EXPORT_SYMBOL(profile_pc);
429 #endif
430 
431 #ifdef CONFIG_PPC_ISERIES
432 
433 /*
434  * This function recalibrates the timebase based on the 49-bit time-of-day
435  * value in the Titan chip.  The Titan is much more accurate than the value
436  * returned by the service processor for the timebase frequency.
437  */
438 
439 static int __init iSeries_tb_recal(void)
440 {
441 	struct div_result divres;
442 	unsigned long titan, tb;
443 
444 	/* Make sure we only run on iSeries */
445 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
446 		return -ENODEV;
447 
448 	tb = get_tb();
449 	titan = HvCallXm_loadTod();
450 	if ( iSeries_recal_titan ) {
451 		unsigned long tb_ticks = tb - iSeries_recal_tb;
452 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
453 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
454 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
455 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
456 		char sign = '+';
457 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
458 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
459 
460 		if ( tick_diff < 0 ) {
461 			tick_diff = -tick_diff;
462 			sign = '-';
463 		}
464 		if ( tick_diff ) {
465 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
466 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
467 						new_tb_ticks_per_jiffy, sign, tick_diff );
468 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
469 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
470 				calc_cputime_factors();
471 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
472 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
473 				tb_to_xs = divres.result_low;
474 				do_gtod.varp->tb_to_xs = tb_to_xs;
475 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
476 				vdso_data->tb_to_xs = tb_to_xs;
477 			}
478 			else {
479 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
480 					"                   new tb_ticks_per_jiffy = %lu\n"
481 					"                   old tb_ticks_per_jiffy = %lu\n",
482 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
483 			}
484 		}
485 	}
486 	iSeries_recal_titan = titan;
487 	iSeries_recal_tb = tb;
488 
489 	/* Called here as now we know accurate values for the timebase */
490 	clocksource_init();
491 	return 0;
492 }
493 late_initcall(iSeries_tb_recal);
494 
495 /* Called from platform early init */
496 void __init iSeries_time_init_early(void)
497 {
498 	iSeries_recal_tb = get_tb();
499 	iSeries_recal_titan = HvCallXm_loadTod();
500 }
501 #endif /* CONFIG_PPC_ISERIES */
502 
503 /*
504  * For iSeries shared processors, we have to let the hypervisor
505  * set the hardware decrementer.  We set a virtual decrementer
506  * in the lppaca and call the hypervisor if the virtual
507  * decrementer is less than the current value in the hardware
508  * decrementer. (almost always the new decrementer value will
509  * be greater than the current hardware decementer so the hypervisor
510  * call will not be needed)
511  */
512 
513 /*
514  * timer_interrupt - gets called when the decrementer overflows,
515  * with interrupts disabled.
516  */
517 void timer_interrupt(struct pt_regs * regs)
518 {
519 	struct pt_regs *old_regs;
520 	int next_dec;
521 	int cpu = smp_processor_id();
522 	unsigned long ticks;
523 	u64 tb_next_jiffy;
524 
525 #ifdef CONFIG_PPC32
526 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
527 		do_IRQ(regs);
528 #endif
529 
530 	old_regs = set_irq_regs(regs);
531 	irq_enter();
532 
533 	profile_tick(CPU_PROFILING);
534 	calculate_steal_time();
535 
536 #ifdef CONFIG_PPC_ISERIES
537 	if (firmware_has_feature(FW_FEATURE_ISERIES))
538 		get_lppaca()->int_dword.fields.decr_int = 0;
539 #endif
540 
541 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
542 	       >= tb_ticks_per_jiffy) {
543 		/* Update last_jiffy */
544 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
545 		/* Handle RTCL overflow on 601 */
546 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
547 			per_cpu(last_jiffy, cpu) -= 1000000000;
548 
549 		/*
550 		 * We cannot disable the decrementer, so in the period
551 		 * between this cpu's being marked offline in cpu_online_map
552 		 * and calling stop-self, it is taking timer interrupts.
553 		 * Avoid calling into the scheduler rebalancing code if this
554 		 * is the case.
555 		 */
556 		if (!cpu_is_offline(cpu))
557 			account_process_time(regs);
558 
559 		/*
560 		 * No need to check whether cpu is offline here; boot_cpuid
561 		 * should have been fixed up by now.
562 		 */
563 		if (cpu != boot_cpuid)
564 			continue;
565 
566 		write_seqlock(&xtime_lock);
567 		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
568 		if (__USE_RTC() && tb_next_jiffy >= 1000000000)
569 			tb_next_jiffy -= 1000000000;
570 		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
571 			tb_last_jiffy = tb_next_jiffy;
572 			do_timer(1);
573 		}
574 		write_sequnlock(&xtime_lock);
575 	}
576 
577 	next_dec = tb_ticks_per_jiffy - ticks;
578 	set_dec(next_dec);
579 
580 #ifdef CONFIG_PPC_ISERIES
581 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
582 		process_hvlpevents();
583 #endif
584 
585 #ifdef CONFIG_PPC64
586 	/* collect purr register values often, for accurate calculations */
587 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
588 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
589 		cu->current_tb = mfspr(SPRN_PURR);
590 	}
591 #endif
592 
593 	irq_exit();
594 	set_irq_regs(old_regs);
595 }
596 
597 void wakeup_decrementer(void)
598 {
599 	unsigned long ticks;
600 
601 	/*
602 	 * The timebase gets saved on sleep and restored on wakeup,
603 	 * so all we need to do is to reset the decrementer.
604 	 */
605 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
606 	if (ticks < tb_ticks_per_jiffy)
607 		ticks = tb_ticks_per_jiffy - ticks;
608 	else
609 		ticks = 1;
610 	set_dec(ticks);
611 }
612 
613 #ifdef CONFIG_SMP
614 void __init smp_space_timers(unsigned int max_cpus)
615 {
616 	int i;
617 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
618 
619 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
620 	previous_tb -= tb_ticks_per_jiffy;
621 
622 	for_each_possible_cpu(i) {
623 		if (i == boot_cpuid)
624 			continue;
625 		per_cpu(last_jiffy, i) = previous_tb;
626 	}
627 }
628 #endif
629 
630 /*
631  * Scheduler clock - returns current time in nanosec units.
632  *
633  * Note: mulhdu(a, b) (multiply high double unsigned) returns
634  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
635  * are 64-bit unsigned numbers.
636  */
637 unsigned long long sched_clock(void)
638 {
639 	if (__USE_RTC())
640 		return get_rtc();
641 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
642 }
643 
644 static int __init get_freq(char *name, int cells, unsigned long *val)
645 {
646 	struct device_node *cpu;
647 	const unsigned int *fp;
648 	int found = 0;
649 
650 	/* The cpu node should have timebase and clock frequency properties */
651 	cpu = of_find_node_by_type(NULL, "cpu");
652 
653 	if (cpu) {
654 		fp = of_get_property(cpu, name, NULL);
655 		if (fp) {
656 			found = 1;
657 			*val = of_read_ulong(fp, cells);
658 		}
659 
660 		of_node_put(cpu);
661 	}
662 
663 	return found;
664 }
665 
666 void __init generic_calibrate_decr(void)
667 {
668 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
669 
670 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
671 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
672 
673 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
674 				"(not found)\n");
675 	}
676 
677 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
678 
679 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
680 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
681 
682 		printk(KERN_ERR "WARNING: Estimating processor frequency "
683 				"(not found)\n");
684 	}
685 
686 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
687 	/* Set the time base to zero */
688 	mtspr(SPRN_TBWL, 0);
689 	mtspr(SPRN_TBWU, 0);
690 
691 	/* Clear any pending timer interrupts */
692 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
693 
694 	/* Enable decrementer interrupt */
695 	mtspr(SPRN_TCR, TCR_DIE);
696 #endif
697 }
698 
699 int update_persistent_clock(struct timespec now)
700 {
701 	struct rtc_time tm;
702 
703 	if (!ppc_md.set_rtc_time)
704 		return 0;
705 
706 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
707 	tm.tm_year -= 1900;
708 	tm.tm_mon -= 1;
709 
710 	return ppc_md.set_rtc_time(&tm);
711 }
712 
713 unsigned long read_persistent_clock(void)
714 {
715 	struct rtc_time tm;
716 	static int first = 1;
717 
718 	/* XXX this is a litle fragile but will work okay in the short term */
719 	if (first) {
720 		first = 0;
721 		if (ppc_md.time_init)
722 			timezone_offset = ppc_md.time_init();
723 
724 		/* get_boot_time() isn't guaranteed to be safe to call late */
725 		if (ppc_md.get_boot_time)
726 			return ppc_md.get_boot_time() -timezone_offset;
727 	}
728 	if (!ppc_md.get_rtc_time)
729 		return 0;
730 	ppc_md.get_rtc_time(&tm);
731 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
732 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
733 }
734 
735 /* clocksource code */
736 static cycle_t rtc_read(void)
737 {
738 	return (cycle_t)get_rtc();
739 }
740 
741 static cycle_t timebase_read(void)
742 {
743 	return (cycle_t)get_tb();
744 }
745 
746 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
747 {
748 	u64 t2x, stamp_xsec;
749 
750 	if (clock != &clocksource_timebase)
751 		return;
752 
753 	/* Make userspace gettimeofday spin until we're done. */
754 	++vdso_data->tb_update_count;
755 	smp_mb();
756 
757 	/* XXX this assumes clock->shift == 22 */
758 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
759 	t2x = (u64) clock->mult * 4611686018ULL;
760 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
761 	do_div(stamp_xsec, 1000000000);
762 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
763 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
764 }
765 
766 void update_vsyscall_tz(void)
767 {
768 	/* Make userspace gettimeofday spin until we're done. */
769 	++vdso_data->tb_update_count;
770 	smp_mb();
771 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
772 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
773 	smp_mb();
774 	++vdso_data->tb_update_count;
775 }
776 
777 void __init clocksource_init(void)
778 {
779 	struct clocksource *clock;
780 
781 	if (__USE_RTC())
782 		clock = &clocksource_rtc;
783 	else
784 		clock = &clocksource_timebase;
785 
786 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
787 
788 	if (clocksource_register(clock)) {
789 		printk(KERN_ERR "clocksource: %s is already registered\n",
790 		       clock->name);
791 		return;
792 	}
793 
794 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
795 	       clock->name, clock->mult, clock->shift);
796 }
797 
798 /* This function is only called on the boot processor */
799 void __init time_init(void)
800 {
801 	unsigned long flags;
802 	struct div_result res;
803 	u64 scale, x;
804 	unsigned shift;
805 
806 	if (__USE_RTC()) {
807 		/* 601 processor: dec counts down by 128 every 128ns */
808 		ppc_tb_freq = 1000000000;
809 		tb_last_jiffy = get_rtcl();
810 	} else {
811 		/* Normal PowerPC with timebase register */
812 		ppc_md.calibrate_decr();
813 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
814 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
815 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
816 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
817 		tb_last_jiffy = get_tb();
818 	}
819 
820 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
821 	tb_ticks_per_sec = ppc_tb_freq;
822 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
823 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
824 	calc_cputime_factors();
825 
826 	/*
827 	 * Calculate the length of each tick in ns.  It will not be
828 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
829 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
830 	 * rounded up.
831 	 */
832 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
833 	do_div(x, ppc_tb_freq);
834 	tick_nsec = x;
835 	last_tick_len = x << TICKLEN_SCALE;
836 
837 	/*
838 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
839 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
840 	 * It is computed as:
841 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
842 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
843 	 * which turns out to be N = 51 - SHIFT_HZ.
844 	 * This gives the result as a 0.64 fixed-point fraction.
845 	 * That value is reduced by an offset amounting to 1 xsec per
846 	 * 2^31 timebase ticks to avoid problems with time going backwards
847 	 * by 1 xsec when we do timer_recalc_offset due to losing the
848 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
849 	 * since there are 2^20 xsec in a second.
850 	 */
851 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
852 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
853 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
854 	ticklen_to_xs = res.result_low;
855 
856 	/* Compute tb_to_xs from tick_nsec */
857 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
858 
859 	/*
860 	 * Compute scale factor for sched_clock.
861 	 * The calibrate_decr() function has set tb_ticks_per_sec,
862 	 * which is the timebase frequency.
863 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
864 	 * the 128-bit result as a 64.64 fixed-point number.
865 	 * We then shift that number right until it is less than 1.0,
866 	 * giving us the scale factor and shift count to use in
867 	 * sched_clock().
868 	 */
869 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
870 	scale = res.result_low;
871 	for (shift = 0; res.result_high != 0; ++shift) {
872 		scale = (scale >> 1) | (res.result_high << 63);
873 		res.result_high >>= 1;
874 	}
875 	tb_to_ns_scale = scale;
876 	tb_to_ns_shift = shift;
877 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
878 	boot_tb = get_tb_or_rtc();
879 
880 	write_seqlock_irqsave(&xtime_lock, flags);
881 
882 	/* If platform provided a timezone (pmac), we correct the time */
883         if (timezone_offset) {
884 		sys_tz.tz_minuteswest = -timezone_offset / 60;
885 		sys_tz.tz_dsttime = 0;
886         }
887 
888 	do_gtod.varp = &do_gtod.vars[0];
889 	do_gtod.var_idx = 0;
890 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
891 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
892 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
893 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
894 	do_gtod.varp->tb_to_xs = tb_to_xs;
895 	do_gtod.tb_to_us = tb_to_us;
896 
897 	vdso_data->tb_orig_stamp = tb_last_jiffy;
898 	vdso_data->tb_update_count = 0;
899 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
900 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
901 	vdso_data->tb_to_xs = tb_to_xs;
902 
903 	time_freq = 0;
904 
905 	write_sequnlock_irqrestore(&xtime_lock, flags);
906 
907 	/* Register the clocksource, if we're not running on iSeries */
908 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
909 		clocksource_init();
910 
911 	/* Not exact, but the timer interrupt takes care of this */
912 	set_dec(tb_ticks_per_jiffy);
913 }
914 
915 
916 #define FEBRUARY	2
917 #define	STARTOFTIME	1970
918 #define SECDAY		86400L
919 #define SECYR		(SECDAY * 365)
920 #define	leapyear(year)		((year) % 4 == 0 && \
921 				 ((year) % 100 != 0 || (year) % 400 == 0))
922 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
923 #define	days_in_month(a) 	(month_days[(a) - 1])
924 
925 static int month_days[12] = {
926 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
927 };
928 
929 /*
930  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
931  */
932 void GregorianDay(struct rtc_time * tm)
933 {
934 	int leapsToDate;
935 	int lastYear;
936 	int day;
937 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
938 
939 	lastYear = tm->tm_year - 1;
940 
941 	/*
942 	 * Number of leap corrections to apply up to end of last year
943 	 */
944 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
945 
946 	/*
947 	 * This year is a leap year if it is divisible by 4 except when it is
948 	 * divisible by 100 unless it is divisible by 400
949 	 *
950 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
951 	 */
952 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
953 
954 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
955 		   tm->tm_mday;
956 
957 	tm->tm_wday = day % 7;
958 }
959 
960 void to_tm(int tim, struct rtc_time * tm)
961 {
962 	register int    i;
963 	register long   hms, day;
964 
965 	day = tim / SECDAY;
966 	hms = tim % SECDAY;
967 
968 	/* Hours, minutes, seconds are easy */
969 	tm->tm_hour = hms / 3600;
970 	tm->tm_min = (hms % 3600) / 60;
971 	tm->tm_sec = (hms % 3600) % 60;
972 
973 	/* Number of years in days */
974 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
975 		day -= days_in_year(i);
976 	tm->tm_year = i;
977 
978 	/* Number of months in days left */
979 	if (leapyear(tm->tm_year))
980 		days_in_month(FEBRUARY) = 29;
981 	for (i = 1; day >= days_in_month(i); i++)
982 		day -= days_in_month(i);
983 	days_in_month(FEBRUARY) = 28;
984 	tm->tm_mon = i;
985 
986 	/* Days are what is left over (+1) from all that. */
987 	tm->tm_mday = day + 1;
988 
989 	/*
990 	 * Determine the day of week
991 	 */
992 	GregorianDay(tm);
993 }
994 
995 /* Auxiliary function to compute scaling factors */
996 /* Actually the choice of a timebase running at 1/4 the of the bus
997  * frequency giving resolution of a few tens of nanoseconds is quite nice.
998  * It makes this computation very precise (27-28 bits typically) which
999  * is optimistic considering the stability of most processor clock
1000  * oscillators and the precision with which the timebase frequency
1001  * is measured but does not harm.
1002  */
1003 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1004 {
1005         unsigned mlt=0, tmp, err;
1006         /* No concern for performance, it's done once: use a stupid
1007          * but safe and compact method to find the multiplier.
1008          */
1009 
1010         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1011                 if (mulhwu(inscale, mlt|tmp) < outscale)
1012 			mlt |= tmp;
1013         }
1014 
1015         /* We might still be off by 1 for the best approximation.
1016          * A side effect of this is that if outscale is too large
1017          * the returned value will be zero.
1018          * Many corner cases have been checked and seem to work,
1019          * some might have been forgotten in the test however.
1020          */
1021 
1022         err = inscale * (mlt+1);
1023         if (err <= inscale/2)
1024 		mlt++;
1025         return mlt;
1026 }
1027 
1028 /*
1029  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1030  * result.
1031  */
1032 void div128_by_32(u64 dividend_high, u64 dividend_low,
1033 		  unsigned divisor, struct div_result *dr)
1034 {
1035 	unsigned long a, b, c, d;
1036 	unsigned long w, x, y, z;
1037 	u64 ra, rb, rc;
1038 
1039 	a = dividend_high >> 32;
1040 	b = dividend_high & 0xffffffff;
1041 	c = dividend_low >> 32;
1042 	d = dividend_low & 0xffffffff;
1043 
1044 	w = a / divisor;
1045 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1046 
1047 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1048 	x = ra;
1049 
1050 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1051 	y = rb;
1052 
1053 	do_div(rc, divisor);
1054 	z = rc;
1055 
1056 	dr->result_high = ((u64)w << 32) + x;
1057 	dr->result_low  = ((u64)y << 32) + z;
1058 
1059 }
1060