xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 4603ac18)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78 
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 	.name         = "rtc",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.shift        = 22,
86 	.mult         = 0,	/* To be filled in */
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.shift        = 22,
97 	.mult         = 0,	/* To be filled in */
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109        .name           = "decrementer",
110        .rating         = 200,
111        .shift          = 16,
112        .mult           = 0,	/* To be filled in */
113        .irq            = 0,
114        .set_next_event = decrementer_set_next_event,
115        .set_mode       = decrementer_set_mode,
116        .features       = CLOCK_EVT_FEAT_ONESHOT,
117 };
118 
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 void init_decrementer_clockevent(void);
121 static DEFINE_PER_CPU(u64, decrementer_next_tb);
122 
123 #ifdef CONFIG_PPC_ISERIES
124 static unsigned long __initdata iSeries_recal_titan;
125 static signed long __initdata iSeries_recal_tb;
126 
127 /* Forward declaration is only needed for iSereis compiles */
128 void __init clocksource_init(void);
129 #endif
130 
131 #define XSEC_PER_SEC (1024*1024)
132 
133 #ifdef CONFIG_PPC64
134 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
135 #else
136 /* compute ((xsec << 12) * max) >> 32 */
137 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
138 #endif
139 
140 unsigned long tb_ticks_per_jiffy;
141 unsigned long tb_ticks_per_usec = 100; /* sane default */
142 EXPORT_SYMBOL(tb_ticks_per_usec);
143 unsigned long tb_ticks_per_sec;
144 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
145 u64 tb_to_xs;
146 unsigned tb_to_us;
147 
148 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
149 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
150 u64 ticklen_to_xs;	/* 0.64 fraction */
151 
152 /* If last_tick_len corresponds to about 1/HZ seconds, then
153    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155 
156 DEFINE_SPINLOCK(rtc_lock);
157 EXPORT_SYMBOL_GPL(rtc_lock);
158 
159 static u64 tb_to_ns_scale __read_mostly;
160 static unsigned tb_to_ns_shift __read_mostly;
161 static unsigned long boot_tb __read_mostly;
162 
163 struct gettimeofday_struct do_gtod;
164 
165 extern struct timezone sys_tz;
166 static long timezone_offset;
167 
168 unsigned long ppc_proc_freq;
169 EXPORT_SYMBOL(ppc_proc_freq);
170 unsigned long ppc_tb_freq;
171 
172 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173 static DEFINE_PER_CPU(u64, last_jiffy);
174 
175 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
176 /*
177  * Factors for converting from cputime_t (timebase ticks) to
178  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179  * These are all stored as 0.64 fixed-point binary fractions.
180  */
181 u64 __cputime_jiffies_factor;
182 EXPORT_SYMBOL(__cputime_jiffies_factor);
183 u64 __cputime_msec_factor;
184 EXPORT_SYMBOL(__cputime_msec_factor);
185 u64 __cputime_sec_factor;
186 EXPORT_SYMBOL(__cputime_sec_factor);
187 u64 __cputime_clockt_factor;
188 EXPORT_SYMBOL(__cputime_clockt_factor);
189 
190 static void calc_cputime_factors(void)
191 {
192 	struct div_result res;
193 
194 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195 	__cputime_jiffies_factor = res.result_low;
196 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197 	__cputime_msec_factor = res.result_low;
198 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
199 	__cputime_sec_factor = res.result_low;
200 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201 	__cputime_clockt_factor = res.result_low;
202 }
203 
204 /*
205  * Read the PURR on systems that have it, otherwise the timebase.
206  */
207 static u64 read_purr(void)
208 {
209 	if (cpu_has_feature(CPU_FTR_PURR))
210 		return mfspr(SPRN_PURR);
211 	return mftb();
212 }
213 
214 /*
215  * Read the SPURR on systems that have it, otherwise the purr
216  */
217 static u64 read_spurr(u64 purr)
218 {
219 	if (cpu_has_feature(CPU_FTR_SPURR))
220 		return mfspr(SPRN_SPURR);
221 	return purr;
222 }
223 
224 /*
225  * Account time for a transition between system, hard irq
226  * or soft irq state.
227  */
228 void account_system_vtime(struct task_struct *tsk)
229 {
230 	u64 now, nowscaled, delta, deltascaled;
231 	unsigned long flags;
232 
233 	local_irq_save(flags);
234 	now = read_purr();
235 	delta = now - get_paca()->startpurr;
236 	get_paca()->startpurr = now;
237 	nowscaled = read_spurr(now);
238 	deltascaled = nowscaled - get_paca()->startspurr;
239 	get_paca()->startspurr = nowscaled;
240 	if (!in_interrupt()) {
241 		/* deltascaled includes both user and system time.
242 		 * Hence scale it based on the purr ratio to estimate
243 		 * the system time */
244 		deltascaled = deltascaled * get_paca()->system_time /
245 			(get_paca()->system_time + get_paca()->user_time);
246 		delta += get_paca()->system_time;
247 		get_paca()->system_time = 0;
248 	}
249 	account_system_time(tsk, 0, delta);
250 	get_paca()->purrdelta = delta;
251 	account_system_time_scaled(tsk, deltascaled);
252 	get_paca()->spurrdelta = deltascaled;
253 	local_irq_restore(flags);
254 }
255 
256 /*
257  * Transfer the user and system times accumulated in the paca
258  * by the exception entry and exit code to the generic process
259  * user and system time records.
260  * Must be called with interrupts disabled.
261  */
262 void account_process_vtime(struct task_struct *tsk)
263 {
264 	cputime_t utime, utimescaled;
265 
266 	utime = get_paca()->user_time;
267 	get_paca()->user_time = 0;
268 	account_user_time(tsk, utime);
269 
270 	/* Estimate the scaled utime by scaling the real utime based
271 	 * on the last spurr to purr ratio */
272 	utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
273 	get_paca()->spurrdelta = get_paca()->purrdelta = 0;
274 	account_user_time_scaled(tsk, utimescaled);
275 }
276 
277 static void account_process_time(struct pt_regs *regs)
278 {
279 	int cpu = smp_processor_id();
280 
281 	account_process_vtime(current);
282 	run_local_timers();
283 	if (rcu_pending(cpu))
284 		rcu_check_callbacks(cpu, user_mode(regs));
285 	scheduler_tick();
286  	run_posix_cpu_timers(current);
287 }
288 
289 /*
290  * Stuff for accounting stolen time.
291  */
292 struct cpu_purr_data {
293 	int	initialized;			/* thread is running */
294 	u64	tb;			/* last TB value read */
295 	u64	purr;			/* last PURR value read */
296 	u64	spurr;			/* last SPURR value read */
297 };
298 
299 /*
300  * Each entry in the cpu_purr_data array is manipulated only by its
301  * "owner" cpu -- usually in the timer interrupt but also occasionally
302  * in process context for cpu online.  As long as cpus do not touch
303  * each others' cpu_purr_data, disabling local interrupts is
304  * sufficient to serialize accesses.
305  */
306 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
307 
308 static void snapshot_tb_and_purr(void *data)
309 {
310 	unsigned long flags;
311 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
312 
313 	local_irq_save(flags);
314 	p->tb = get_tb_or_rtc();
315 	p->purr = mfspr(SPRN_PURR);
316 	wmb();
317 	p->initialized = 1;
318 	local_irq_restore(flags);
319 }
320 
321 /*
322  * Called during boot when all cpus have come up.
323  */
324 void snapshot_timebases(void)
325 {
326 	if (!cpu_has_feature(CPU_FTR_PURR))
327 		return;
328 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
329 }
330 
331 /*
332  * Must be called with interrupts disabled.
333  */
334 void calculate_steal_time(void)
335 {
336 	u64 tb, purr;
337 	s64 stolen;
338 	struct cpu_purr_data *pme;
339 
340 	if (!cpu_has_feature(CPU_FTR_PURR))
341 		return;
342 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
343 	if (!pme->initialized)
344 		return;		/* this can happen in early boot */
345 	tb = mftb();
346 	purr = mfspr(SPRN_PURR);
347 	stolen = (tb - pme->tb) - (purr - pme->purr);
348 	if (stolen > 0)
349 		account_steal_time(current, stolen);
350 	pme->tb = tb;
351 	pme->purr = purr;
352 }
353 
354 #ifdef CONFIG_PPC_SPLPAR
355 /*
356  * Must be called before the cpu is added to the online map when
357  * a cpu is being brought up at runtime.
358  */
359 static void snapshot_purr(void)
360 {
361 	struct cpu_purr_data *pme;
362 	unsigned long flags;
363 
364 	if (!cpu_has_feature(CPU_FTR_PURR))
365 		return;
366 	local_irq_save(flags);
367 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
368 	pme->tb = mftb();
369 	pme->purr = mfspr(SPRN_PURR);
370 	pme->initialized = 1;
371 	local_irq_restore(flags);
372 }
373 
374 #endif /* CONFIG_PPC_SPLPAR */
375 
376 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
377 #define calc_cputime_factors()
378 #define account_process_time(regs)	update_process_times(user_mode(regs))
379 #define calculate_steal_time()		do { } while (0)
380 #endif
381 
382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383 #define snapshot_purr()			do { } while (0)
384 #endif
385 
386 /*
387  * Called when a cpu comes up after the system has finished booting,
388  * i.e. as a result of a hotplug cpu action.
389  */
390 void snapshot_timebase(void)
391 {
392 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 	snapshot_purr();
394 }
395 
396 void __delay(unsigned long loops)
397 {
398 	unsigned long start;
399 	int diff;
400 
401 	if (__USE_RTC()) {
402 		start = get_rtcl();
403 		do {
404 			/* the RTCL register wraps at 1000000000 */
405 			diff = get_rtcl() - start;
406 			if (diff < 0)
407 				diff += 1000000000;
408 		} while (diff < loops);
409 	} else {
410 		start = get_tbl();
411 		while (get_tbl() - start < loops)
412 			HMT_low();
413 		HMT_medium();
414 	}
415 }
416 EXPORT_SYMBOL(__delay);
417 
418 void udelay(unsigned long usecs)
419 {
420 	__delay(tb_ticks_per_usec * usecs);
421 }
422 EXPORT_SYMBOL(udelay);
423 
424 
425 /*
426  * There are two copies of tb_to_xs and stamp_xsec so that no
427  * lock is needed to access and use these values in
428  * do_gettimeofday.  We alternate the copies and as long as a
429  * reasonable time elapses between changes, there will never
430  * be inconsistent values.  ntpd has a minimum of one minute
431  * between updates.
432  */
433 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
434 			       u64 new_tb_to_xs)
435 {
436 	unsigned temp_idx;
437 	struct gettimeofday_vars *temp_varp;
438 
439 	temp_idx = (do_gtod.var_idx == 0);
440 	temp_varp = &do_gtod.vars[temp_idx];
441 
442 	temp_varp->tb_to_xs = new_tb_to_xs;
443 	temp_varp->tb_orig_stamp = new_tb_stamp;
444 	temp_varp->stamp_xsec = new_stamp_xsec;
445 	smp_mb();
446 	do_gtod.varp = temp_varp;
447 	do_gtod.var_idx = temp_idx;
448 
449 	/*
450 	 * tb_update_count is used to allow the userspace gettimeofday code
451 	 * to assure itself that it sees a consistent view of the tb_to_xs and
452 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
453 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
454 	 * the two values of tb_update_count match and are even then the
455 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
456 	 * loops back and reads them again until this criteria is met.
457 	 * We expect the caller to have done the first increment of
458 	 * vdso_data->tb_update_count already.
459 	 */
460 	vdso_data->tb_orig_stamp = new_tb_stamp;
461 	vdso_data->stamp_xsec = new_stamp_xsec;
462 	vdso_data->tb_to_xs = new_tb_to_xs;
463 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
464 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
465 	smp_wmb();
466 	++(vdso_data->tb_update_count);
467 }
468 
469 #ifdef CONFIG_SMP
470 unsigned long profile_pc(struct pt_regs *regs)
471 {
472 	unsigned long pc = instruction_pointer(regs);
473 
474 	if (in_lock_functions(pc))
475 		return regs->link;
476 
477 	return pc;
478 }
479 EXPORT_SYMBOL(profile_pc);
480 #endif
481 
482 #ifdef CONFIG_PPC_ISERIES
483 
484 /*
485  * This function recalibrates the timebase based on the 49-bit time-of-day
486  * value in the Titan chip.  The Titan is much more accurate than the value
487  * returned by the service processor for the timebase frequency.
488  */
489 
490 static int __init iSeries_tb_recal(void)
491 {
492 	struct div_result divres;
493 	unsigned long titan, tb;
494 
495 	/* Make sure we only run on iSeries */
496 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
497 		return -ENODEV;
498 
499 	tb = get_tb();
500 	titan = HvCallXm_loadTod();
501 	if ( iSeries_recal_titan ) {
502 		unsigned long tb_ticks = tb - iSeries_recal_tb;
503 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
504 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
505 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
506 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
507 		char sign = '+';
508 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
509 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
510 
511 		if ( tick_diff < 0 ) {
512 			tick_diff = -tick_diff;
513 			sign = '-';
514 		}
515 		if ( tick_diff ) {
516 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
517 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
518 						new_tb_ticks_per_jiffy, sign, tick_diff );
519 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
520 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
521 				calc_cputime_factors();
522 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
523 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
524 				tb_to_xs = divres.result_low;
525 				do_gtod.varp->tb_to_xs = tb_to_xs;
526 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
527 				vdso_data->tb_to_xs = tb_to_xs;
528 			}
529 			else {
530 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
531 					"                   new tb_ticks_per_jiffy = %lu\n"
532 					"                   old tb_ticks_per_jiffy = %lu\n",
533 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
534 			}
535 		}
536 	}
537 	iSeries_recal_titan = titan;
538 	iSeries_recal_tb = tb;
539 
540 	/* Called here as now we know accurate values for the timebase */
541 	clocksource_init();
542 	return 0;
543 }
544 late_initcall(iSeries_tb_recal);
545 
546 /* Called from platform early init */
547 void __init iSeries_time_init_early(void)
548 {
549 	iSeries_recal_tb = get_tb();
550 	iSeries_recal_titan = HvCallXm_loadTod();
551 }
552 #endif /* CONFIG_PPC_ISERIES */
553 
554 /*
555  * For iSeries shared processors, we have to let the hypervisor
556  * set the hardware decrementer.  We set a virtual decrementer
557  * in the lppaca and call the hypervisor if the virtual
558  * decrementer is less than the current value in the hardware
559  * decrementer. (almost always the new decrementer value will
560  * be greater than the current hardware decementer so the hypervisor
561  * call will not be needed)
562  */
563 
564 /*
565  * timer_interrupt - gets called when the decrementer overflows,
566  * with interrupts disabled.
567  */
568 void timer_interrupt(struct pt_regs * regs)
569 {
570 	struct pt_regs *old_regs;
571 	int cpu = smp_processor_id();
572 	struct clock_event_device *evt = &per_cpu(decrementers, cpu);
573 	u64 now;
574 
575 	/* Ensure a positive value is written to the decrementer, or else
576 	 * some CPUs will continuue to take decrementer exceptions */
577 	set_dec(DECREMENTER_MAX);
578 
579 #ifdef CONFIG_PPC32
580 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
581 		do_IRQ(regs);
582 #endif
583 
584 	now = get_tb_or_rtc();
585 	if (now < per_cpu(decrementer_next_tb, cpu)) {
586 		/* not time for this event yet */
587 		now = per_cpu(decrementer_next_tb, cpu) - now;
588 		if (now <= DECREMENTER_MAX)
589 			set_dec((unsigned int)now - 1);
590 		return;
591 	}
592 	old_regs = set_irq_regs(regs);
593 	irq_enter();
594 
595 	calculate_steal_time();
596 
597 #ifdef CONFIG_PPC_ISERIES
598 	if (firmware_has_feature(FW_FEATURE_ISERIES))
599 		get_lppaca()->int_dword.fields.decr_int = 0;
600 #endif
601 
602 	/*
603 	 * We cannot disable the decrementer, so in the period
604 	 * between this cpu's being marked offline in cpu_online_map
605 	 * and calling stop-self, it is taking timer interrupts.
606 	 * Avoid calling into the scheduler rebalancing code if this
607 	 * is the case.
608 	 */
609 	if (!cpu_is_offline(cpu))
610 		account_process_time(regs);
611 
612 	if (evt->event_handler)
613 		evt->event_handler(evt);
614 	else
615 		evt->set_next_event(DECREMENTER_MAX, evt);
616 
617 #ifdef CONFIG_PPC_ISERIES
618 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
619 		process_hvlpevents();
620 #endif
621 
622 #ifdef CONFIG_PPC64
623 	/* collect purr register values often, for accurate calculations */
624 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
625 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
626 		cu->current_tb = mfspr(SPRN_PURR);
627 	}
628 #endif
629 
630 	irq_exit();
631 	set_irq_regs(old_regs);
632 }
633 
634 void wakeup_decrementer(void)
635 {
636 	unsigned long ticks;
637 
638 	/*
639 	 * The timebase gets saved on sleep and restored on wakeup,
640 	 * so all we need to do is to reset the decrementer.
641 	 */
642 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
643 	if (ticks < tb_ticks_per_jiffy)
644 		ticks = tb_ticks_per_jiffy - ticks;
645 	else
646 		ticks = 1;
647 	set_dec(ticks);
648 }
649 
650 #ifdef CONFIG_SMP
651 void __init smp_space_timers(unsigned int max_cpus)
652 {
653 	int i;
654 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
655 
656 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
657 	previous_tb -= tb_ticks_per_jiffy;
658 
659 	for_each_possible_cpu(i) {
660 		if (i == boot_cpuid)
661 			continue;
662 		per_cpu(last_jiffy, i) = previous_tb;
663 	}
664 }
665 #endif
666 
667 /*
668  * Scheduler clock - returns current time in nanosec units.
669  *
670  * Note: mulhdu(a, b) (multiply high double unsigned) returns
671  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
672  * are 64-bit unsigned numbers.
673  */
674 unsigned long long sched_clock(void)
675 {
676 	if (__USE_RTC())
677 		return get_rtc();
678 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
679 }
680 
681 static int __init get_freq(char *name, int cells, unsigned long *val)
682 {
683 	struct device_node *cpu;
684 	const unsigned int *fp;
685 	int found = 0;
686 
687 	/* The cpu node should have timebase and clock frequency properties */
688 	cpu = of_find_node_by_type(NULL, "cpu");
689 
690 	if (cpu) {
691 		fp = of_get_property(cpu, name, NULL);
692 		if (fp) {
693 			found = 1;
694 			*val = of_read_ulong(fp, cells);
695 		}
696 
697 		of_node_put(cpu);
698 	}
699 
700 	return found;
701 }
702 
703 void __init generic_calibrate_decr(void)
704 {
705 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
706 
707 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
708 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
709 
710 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
711 				"(not found)\n");
712 	}
713 
714 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
715 
716 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
717 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
718 
719 		printk(KERN_ERR "WARNING: Estimating processor frequency "
720 				"(not found)\n");
721 	}
722 
723 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
724 	/* Set the time base to zero */
725 	mtspr(SPRN_TBWL, 0);
726 	mtspr(SPRN_TBWU, 0);
727 
728 	/* Clear any pending timer interrupts */
729 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
730 
731 	/* Enable decrementer interrupt */
732 	mtspr(SPRN_TCR, TCR_DIE);
733 #endif
734 }
735 
736 int update_persistent_clock(struct timespec now)
737 {
738 	struct rtc_time tm;
739 
740 	if (!ppc_md.set_rtc_time)
741 		return 0;
742 
743 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
744 	tm.tm_year -= 1900;
745 	tm.tm_mon -= 1;
746 
747 	return ppc_md.set_rtc_time(&tm);
748 }
749 
750 unsigned long read_persistent_clock(void)
751 {
752 	struct rtc_time tm;
753 	static int first = 1;
754 
755 	/* XXX this is a litle fragile but will work okay in the short term */
756 	if (first) {
757 		first = 0;
758 		if (ppc_md.time_init)
759 			timezone_offset = ppc_md.time_init();
760 
761 		/* get_boot_time() isn't guaranteed to be safe to call late */
762 		if (ppc_md.get_boot_time)
763 			return ppc_md.get_boot_time() -timezone_offset;
764 	}
765 	if (!ppc_md.get_rtc_time)
766 		return 0;
767 	ppc_md.get_rtc_time(&tm);
768 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
769 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
770 }
771 
772 /* clocksource code */
773 static cycle_t rtc_read(void)
774 {
775 	return (cycle_t)get_rtc();
776 }
777 
778 static cycle_t timebase_read(void)
779 {
780 	return (cycle_t)get_tb();
781 }
782 
783 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
784 {
785 	u64 t2x, stamp_xsec;
786 
787 	if (clock != &clocksource_timebase)
788 		return;
789 
790 	/* Make userspace gettimeofday spin until we're done. */
791 	++vdso_data->tb_update_count;
792 	smp_mb();
793 
794 	/* XXX this assumes clock->shift == 22 */
795 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
796 	t2x = (u64) clock->mult * 4611686018ULL;
797 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
798 	do_div(stamp_xsec, 1000000000);
799 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
800 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
801 }
802 
803 void update_vsyscall_tz(void)
804 {
805 	/* Make userspace gettimeofday spin until we're done. */
806 	++vdso_data->tb_update_count;
807 	smp_mb();
808 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
809 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
810 	smp_mb();
811 	++vdso_data->tb_update_count;
812 }
813 
814 void __init clocksource_init(void)
815 {
816 	struct clocksource *clock;
817 
818 	if (__USE_RTC())
819 		clock = &clocksource_rtc;
820 	else
821 		clock = &clocksource_timebase;
822 
823 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
824 
825 	if (clocksource_register(clock)) {
826 		printk(KERN_ERR "clocksource: %s is already registered\n",
827 		       clock->name);
828 		return;
829 	}
830 
831 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
832 	       clock->name, clock->mult, clock->shift);
833 }
834 
835 static int decrementer_set_next_event(unsigned long evt,
836 				      struct clock_event_device *dev)
837 {
838 	__get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
839 	/* The decrementer interrupts on the 0 -> -1 transition */
840 	if (evt)
841 		--evt;
842 	set_dec(evt);
843 	return 0;
844 }
845 
846 static void decrementer_set_mode(enum clock_event_mode mode,
847 				 struct clock_event_device *dev)
848 {
849 	if (mode != CLOCK_EVT_MODE_ONESHOT)
850 		decrementer_set_next_event(DECREMENTER_MAX, dev);
851 }
852 
853 static void register_decrementer_clockevent(int cpu)
854 {
855 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
856 
857 	*dec = decrementer_clockevent;
858 	dec->cpumask = cpumask_of_cpu(cpu);
859 
860 	printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
861 	       dec->name, dec->mult, dec->shift, cpu);
862 
863 	clockevents_register_device(dec);
864 }
865 
866 void init_decrementer_clockevent(void)
867 {
868 	int cpu = smp_processor_id();
869 
870 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
871 					     decrementer_clockevent.shift);
872 	decrementer_clockevent.max_delta_ns =
873 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
874 	decrementer_clockevent.min_delta_ns = 1000;
875 
876 	register_decrementer_clockevent(cpu);
877 }
878 
879 void secondary_cpu_time_init(void)
880 {
881 	/* FIME: Should make unrelatred change to move snapshot_timebase
882 	 * call here ! */
883 	register_decrementer_clockevent(smp_processor_id());
884 }
885 
886 /* This function is only called on the boot processor */
887 void __init time_init(void)
888 {
889 	unsigned long flags;
890 	struct div_result res;
891 	u64 scale, x;
892 	unsigned shift;
893 
894 	if (__USE_RTC()) {
895 		/* 601 processor: dec counts down by 128 every 128ns */
896 		ppc_tb_freq = 1000000000;
897 		tb_last_jiffy = get_rtcl();
898 	} else {
899 		/* Normal PowerPC with timebase register */
900 		ppc_md.calibrate_decr();
901 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
902 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
903 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
904 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
905 		tb_last_jiffy = get_tb();
906 	}
907 
908 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
909 	tb_ticks_per_sec = ppc_tb_freq;
910 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
911 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
912 	calc_cputime_factors();
913 
914 	/*
915 	 * Calculate the length of each tick in ns.  It will not be
916 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
917 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
918 	 * rounded up.
919 	 */
920 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
921 	do_div(x, ppc_tb_freq);
922 	tick_nsec = x;
923 	last_tick_len = x << TICKLEN_SCALE;
924 
925 	/*
926 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
927 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
928 	 * It is computed as:
929 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
930 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
931 	 * which turns out to be N = 51 - SHIFT_HZ.
932 	 * This gives the result as a 0.64 fixed-point fraction.
933 	 * That value is reduced by an offset amounting to 1 xsec per
934 	 * 2^31 timebase ticks to avoid problems with time going backwards
935 	 * by 1 xsec when we do timer_recalc_offset due to losing the
936 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
937 	 * since there are 2^20 xsec in a second.
938 	 */
939 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
940 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
941 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
942 	ticklen_to_xs = res.result_low;
943 
944 	/* Compute tb_to_xs from tick_nsec */
945 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
946 
947 	/*
948 	 * Compute scale factor for sched_clock.
949 	 * The calibrate_decr() function has set tb_ticks_per_sec,
950 	 * which is the timebase frequency.
951 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
952 	 * the 128-bit result as a 64.64 fixed-point number.
953 	 * We then shift that number right until it is less than 1.0,
954 	 * giving us the scale factor and shift count to use in
955 	 * sched_clock().
956 	 */
957 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
958 	scale = res.result_low;
959 	for (shift = 0; res.result_high != 0; ++shift) {
960 		scale = (scale >> 1) | (res.result_high << 63);
961 		res.result_high >>= 1;
962 	}
963 	tb_to_ns_scale = scale;
964 	tb_to_ns_shift = shift;
965 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
966 	boot_tb = get_tb_or_rtc();
967 
968 	write_seqlock_irqsave(&xtime_lock, flags);
969 
970 	/* If platform provided a timezone (pmac), we correct the time */
971         if (timezone_offset) {
972 		sys_tz.tz_minuteswest = -timezone_offset / 60;
973 		sys_tz.tz_dsttime = 0;
974         }
975 
976 	do_gtod.varp = &do_gtod.vars[0];
977 	do_gtod.var_idx = 0;
978 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
979 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
980 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
981 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
982 	do_gtod.varp->tb_to_xs = tb_to_xs;
983 	do_gtod.tb_to_us = tb_to_us;
984 
985 	vdso_data->tb_orig_stamp = tb_last_jiffy;
986 	vdso_data->tb_update_count = 0;
987 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
988 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
989 	vdso_data->tb_to_xs = tb_to_xs;
990 
991 	time_freq = 0;
992 
993 	write_sequnlock_irqrestore(&xtime_lock, flags);
994 
995 	/* Register the clocksource, if we're not running on iSeries */
996 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
997 		clocksource_init();
998 
999 	init_decrementer_clockevent();
1000 }
1001 
1002 
1003 #define FEBRUARY	2
1004 #define	STARTOFTIME	1970
1005 #define SECDAY		86400L
1006 #define SECYR		(SECDAY * 365)
1007 #define	leapyear(year)		((year) % 4 == 0 && \
1008 				 ((year) % 100 != 0 || (year) % 400 == 0))
1009 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1010 #define	days_in_month(a) 	(month_days[(a) - 1])
1011 
1012 static int month_days[12] = {
1013 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1014 };
1015 
1016 /*
1017  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1018  */
1019 void GregorianDay(struct rtc_time * tm)
1020 {
1021 	int leapsToDate;
1022 	int lastYear;
1023 	int day;
1024 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1025 
1026 	lastYear = tm->tm_year - 1;
1027 
1028 	/*
1029 	 * Number of leap corrections to apply up to end of last year
1030 	 */
1031 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1032 
1033 	/*
1034 	 * This year is a leap year if it is divisible by 4 except when it is
1035 	 * divisible by 100 unless it is divisible by 400
1036 	 *
1037 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1038 	 */
1039 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1040 
1041 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1042 		   tm->tm_mday;
1043 
1044 	tm->tm_wday = day % 7;
1045 }
1046 
1047 void to_tm(int tim, struct rtc_time * tm)
1048 {
1049 	register int    i;
1050 	register long   hms, day;
1051 
1052 	day = tim / SECDAY;
1053 	hms = tim % SECDAY;
1054 
1055 	/* Hours, minutes, seconds are easy */
1056 	tm->tm_hour = hms / 3600;
1057 	tm->tm_min = (hms % 3600) / 60;
1058 	tm->tm_sec = (hms % 3600) % 60;
1059 
1060 	/* Number of years in days */
1061 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1062 		day -= days_in_year(i);
1063 	tm->tm_year = i;
1064 
1065 	/* Number of months in days left */
1066 	if (leapyear(tm->tm_year))
1067 		days_in_month(FEBRUARY) = 29;
1068 	for (i = 1; day >= days_in_month(i); i++)
1069 		day -= days_in_month(i);
1070 	days_in_month(FEBRUARY) = 28;
1071 	tm->tm_mon = i;
1072 
1073 	/* Days are what is left over (+1) from all that. */
1074 	tm->tm_mday = day + 1;
1075 
1076 	/*
1077 	 * Determine the day of week
1078 	 */
1079 	GregorianDay(tm);
1080 }
1081 
1082 /* Auxiliary function to compute scaling factors */
1083 /* Actually the choice of a timebase running at 1/4 the of the bus
1084  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1085  * It makes this computation very precise (27-28 bits typically) which
1086  * is optimistic considering the stability of most processor clock
1087  * oscillators and the precision with which the timebase frequency
1088  * is measured but does not harm.
1089  */
1090 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1091 {
1092         unsigned mlt=0, tmp, err;
1093         /* No concern for performance, it's done once: use a stupid
1094          * but safe and compact method to find the multiplier.
1095          */
1096 
1097         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1098                 if (mulhwu(inscale, mlt|tmp) < outscale)
1099 			mlt |= tmp;
1100         }
1101 
1102         /* We might still be off by 1 for the best approximation.
1103          * A side effect of this is that if outscale is too large
1104          * the returned value will be zero.
1105          * Many corner cases have been checked and seem to work,
1106          * some might have been forgotten in the test however.
1107          */
1108 
1109         err = inscale * (mlt+1);
1110         if (err <= inscale/2)
1111 		mlt++;
1112         return mlt;
1113 }
1114 
1115 /*
1116  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1117  * result.
1118  */
1119 void div128_by_32(u64 dividend_high, u64 dividend_low,
1120 		  unsigned divisor, struct div_result *dr)
1121 {
1122 	unsigned long a, b, c, d;
1123 	unsigned long w, x, y, z;
1124 	u64 ra, rb, rc;
1125 
1126 	a = dividend_high >> 32;
1127 	b = dividend_high & 0xffffffff;
1128 	c = dividend_low >> 32;
1129 	d = dividend_low & 0xffffffff;
1130 
1131 	w = a / divisor;
1132 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1133 
1134 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1135 	x = ra;
1136 
1137 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1138 	y = rb;
1139 
1140 	do_div(rc, divisor);
1141 	z = rc;
1142 
1143 	dr->result_high = ((u64)w << 32) + x;
1144 	dr->result_low  = ((u64)y << 32) + z;
1145 
1146 }
1147