xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 404849bb)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 
54 #include <asm/io.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
60 #include <asm/time.h>
61 #include <asm/prom.h>
62 #include <asm/irq.h>
63 #include <asm/div64.h>
64 #include <asm/smp.h>
65 #include <asm/vdso_datapage.h>
66 #ifdef CONFIG_PPC64
67 #include <asm/firmware.h>
68 #endif
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 #include <asm/smp.h>
74 
75 /* keep track of when we need to update the rtc */
76 time_t last_rtc_update;
77 extern int piranha_simulator;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
82 #endif
83 
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86 
87 #define XSEC_PER_SEC (1024*1024)
88 
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94 #endif
95 
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 u64 tb_to_xs;
101 unsigned tb_to_us;
102 unsigned long processor_freq;
103 DEFINE_SPINLOCK(rtc_lock);
104 EXPORT_SYMBOL_GPL(rtc_lock);
105 
106 u64 tb_to_ns_scale;
107 unsigned tb_to_ns_shift;
108 
109 struct gettimeofday_struct do_gtod;
110 
111 extern unsigned long wall_jiffies;
112 
113 extern struct timezone sys_tz;
114 static long timezone_offset;
115 
116 void ppc_adjtimex(void);
117 
118 static unsigned adjusting_time = 0;
119 
120 unsigned long ppc_proc_freq;
121 unsigned long ppc_tb_freq;
122 
123 u64 tb_last_jiffy __cacheline_aligned_in_smp;
124 unsigned long tb_last_stamp;
125 
126 /*
127  * Note that on ppc32 this only stores the bottom 32 bits of
128  * the timebase value, but that's enough to tell when a jiffy
129  * has passed.
130  */
131 DEFINE_PER_CPU(unsigned long, last_jiffy);
132 
133 void __delay(unsigned long loops)
134 {
135 	unsigned long start;
136 	int diff;
137 
138 	if (__USE_RTC()) {
139 		start = get_rtcl();
140 		do {
141 			/* the RTCL register wraps at 1000000000 */
142 			diff = get_rtcl() - start;
143 			if (diff < 0)
144 				diff += 1000000000;
145 		} while (diff < loops);
146 	} else {
147 		start = get_tbl();
148 		while (get_tbl() - start < loops)
149 			HMT_low();
150 		HMT_medium();
151 	}
152 }
153 EXPORT_SYMBOL(__delay);
154 
155 void udelay(unsigned long usecs)
156 {
157 	__delay(tb_ticks_per_usec * usecs);
158 }
159 EXPORT_SYMBOL(udelay);
160 
161 static __inline__ void timer_check_rtc(void)
162 {
163         /*
164          * update the rtc when needed, this should be performed on the
165          * right fraction of a second. Half or full second ?
166          * Full second works on mk48t59 clocks, others need testing.
167          * Note that this update is basically only used through
168          * the adjtimex system calls. Setting the HW clock in
169          * any other way is a /dev/rtc and userland business.
170          * This is still wrong by -0.5/+1.5 jiffies because of the
171          * timer interrupt resolution and possible delay, but here we
172          * hit a quantization limit which can only be solved by higher
173          * resolution timers and decoupling time management from timer
174          * interrupts. This is also wrong on the clocks
175          * which require being written at the half second boundary.
176          * We should have an rtc call that only sets the minutes and
177          * seconds like on Intel to avoid problems with non UTC clocks.
178          */
179         if (ppc_md.set_rtc_time && ntp_synced() &&
180 	    xtime.tv_sec - last_rtc_update >= 659 &&
181 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
182 	    jiffies - wall_jiffies == 1) {
183 		struct rtc_time tm;
184 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
185 		tm.tm_year -= 1900;
186 		tm.tm_mon -= 1;
187 		if (ppc_md.set_rtc_time(&tm) == 0)
188 			last_rtc_update = xtime.tv_sec + 1;
189 		else
190 			/* Try again one minute later */
191 			last_rtc_update += 60;
192         }
193 }
194 
195 /*
196  * This version of gettimeofday has microsecond resolution.
197  */
198 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
199 {
200 	unsigned long sec, usec;
201 	u64 tb_ticks, xsec;
202 	struct gettimeofday_vars *temp_varp;
203 	u64 temp_tb_to_xs, temp_stamp_xsec;
204 
205 	/*
206 	 * These calculations are faster (gets rid of divides)
207 	 * if done in units of 1/2^20 rather than microseconds.
208 	 * The conversion to microseconds at the end is done
209 	 * without a divide (and in fact, without a multiply)
210 	 */
211 	temp_varp = do_gtod.varp;
212 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
213 	temp_tb_to_xs = temp_varp->tb_to_xs;
214 	temp_stamp_xsec = temp_varp->stamp_xsec;
215 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
216 	sec = xsec / XSEC_PER_SEC;
217 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
218 	usec = SCALE_XSEC(usec, 1000000);
219 
220 	tv->tv_sec = sec;
221 	tv->tv_usec = usec;
222 }
223 
224 void do_gettimeofday(struct timeval *tv)
225 {
226 	if (__USE_RTC()) {
227 		/* do this the old way */
228 		unsigned long flags, seq;
229 		unsigned int sec, nsec, usec, lost;
230 
231 		do {
232 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
233 			sec = xtime.tv_sec;
234 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
235 			lost = jiffies - wall_jiffies;
236 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
237 		usec = nsec / 1000 + lost * (1000000 / HZ);
238 		while (usec >= 1000000) {
239 			usec -= 1000000;
240 			++sec;
241 		}
242 		tv->tv_sec = sec;
243 		tv->tv_usec = usec;
244 		return;
245 	}
246 	__do_gettimeofday(tv, get_tb());
247 }
248 
249 EXPORT_SYMBOL(do_gettimeofday);
250 
251 /* Synchronize xtime with do_gettimeofday */
252 
253 static inline void timer_sync_xtime(unsigned long cur_tb)
254 {
255 #ifdef CONFIG_PPC64
256 	/* why do we do this? */
257 	struct timeval my_tv;
258 
259 	__do_gettimeofday(&my_tv, cur_tb);
260 
261 	if (xtime.tv_sec <= my_tv.tv_sec) {
262 		xtime.tv_sec = my_tv.tv_sec;
263 		xtime.tv_nsec = my_tv.tv_usec * 1000;
264 	}
265 #endif
266 }
267 
268 /*
269  * There are two copies of tb_to_xs and stamp_xsec so that no
270  * lock is needed to access and use these values in
271  * do_gettimeofday.  We alternate the copies and as long as a
272  * reasonable time elapses between changes, there will never
273  * be inconsistent values.  ntpd has a minimum of one minute
274  * between updates.
275  */
276 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
277 			       u64 new_tb_to_xs)
278 {
279 	unsigned temp_idx;
280 	struct gettimeofday_vars *temp_varp;
281 
282 	temp_idx = (do_gtod.var_idx == 0);
283 	temp_varp = &do_gtod.vars[temp_idx];
284 
285 	temp_varp->tb_to_xs = new_tb_to_xs;
286 	temp_varp->tb_orig_stamp = new_tb_stamp;
287 	temp_varp->stamp_xsec = new_stamp_xsec;
288 	smp_mb();
289 	do_gtod.varp = temp_varp;
290 	do_gtod.var_idx = temp_idx;
291 
292 	/*
293 	 * tb_update_count is used to allow the userspace gettimeofday code
294 	 * to assure itself that it sees a consistent view of the tb_to_xs and
295 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
296 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
297 	 * the two values of tb_update_count match and are even then the
298 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
299 	 * loops back and reads them again until this criteria is met.
300 	 */
301 	++(vdso_data->tb_update_count);
302 	smp_wmb();
303 	vdso_data->tb_orig_stamp = new_tb_stamp;
304 	vdso_data->stamp_xsec = new_stamp_xsec;
305 	vdso_data->tb_to_xs = new_tb_to_xs;
306 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
307 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
308 	smp_wmb();
309 	++(vdso_data->tb_update_count);
310 }
311 
312 /*
313  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
314  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
315  * difference tb - tb_orig_stamp small enough to always fit inside a
316  * 32 bits number. This is a requirement of our fast 32 bits userland
317  * implementation in the vdso. If we "miss" a call to this function
318  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
319  * with a too big difference, then the vdso will fallback to calling
320  * the syscall
321  */
322 static __inline__ void timer_recalc_offset(u64 cur_tb)
323 {
324 	unsigned long offset;
325 	u64 new_stamp_xsec;
326 
327 	if (__USE_RTC())
328 		return;
329 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
330 	if ((offset & 0x80000000u) == 0)
331 		return;
332 	new_stamp_xsec = do_gtod.varp->stamp_xsec
333 		+ mulhdu(offset, do_gtod.varp->tb_to_xs);
334 	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
335 }
336 
337 #ifdef CONFIG_SMP
338 unsigned long profile_pc(struct pt_regs *regs)
339 {
340 	unsigned long pc = instruction_pointer(regs);
341 
342 	if (in_lock_functions(pc))
343 		return regs->link;
344 
345 	return pc;
346 }
347 EXPORT_SYMBOL(profile_pc);
348 #endif
349 
350 #ifdef CONFIG_PPC_ISERIES
351 
352 /*
353  * This function recalibrates the timebase based on the 49-bit time-of-day
354  * value in the Titan chip.  The Titan is much more accurate than the value
355  * returned by the service processor for the timebase frequency.
356  */
357 
358 static void iSeries_tb_recal(void)
359 {
360 	struct div_result divres;
361 	unsigned long titan, tb;
362 	tb = get_tb();
363 	titan = HvCallXm_loadTod();
364 	if ( iSeries_recal_titan ) {
365 		unsigned long tb_ticks = tb - iSeries_recal_tb;
366 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
367 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
368 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
369 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
370 		char sign = '+';
371 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
372 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
373 
374 		if ( tick_diff < 0 ) {
375 			tick_diff = -tick_diff;
376 			sign = '-';
377 		}
378 		if ( tick_diff ) {
379 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
380 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
381 						new_tb_ticks_per_jiffy, sign, tick_diff );
382 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
383 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
384 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
385 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
386 				tb_to_xs = divres.result_low;
387 				do_gtod.varp->tb_to_xs = tb_to_xs;
388 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
389 				vdso_data->tb_to_xs = tb_to_xs;
390 			}
391 			else {
392 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
393 					"                   new tb_ticks_per_jiffy = %lu\n"
394 					"                   old tb_ticks_per_jiffy = %lu\n",
395 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
396 			}
397 		}
398 	}
399 	iSeries_recal_titan = titan;
400 	iSeries_recal_tb = tb;
401 }
402 #endif
403 
404 /*
405  * For iSeries shared processors, we have to let the hypervisor
406  * set the hardware decrementer.  We set a virtual decrementer
407  * in the lppaca and call the hypervisor if the virtual
408  * decrementer is less than the current value in the hardware
409  * decrementer. (almost always the new decrementer value will
410  * be greater than the current hardware decementer so the hypervisor
411  * call will not be needed)
412  */
413 
414 /*
415  * timer_interrupt - gets called when the decrementer overflows,
416  * with interrupts disabled.
417  */
418 void timer_interrupt(struct pt_regs * regs)
419 {
420 	int next_dec;
421 	int cpu = smp_processor_id();
422 	unsigned long ticks;
423 
424 #ifdef CONFIG_PPC32
425 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
426 		do_IRQ(regs);
427 #endif
428 
429 	irq_enter();
430 
431 	profile_tick(CPU_PROFILING, regs);
432 
433 #ifdef CONFIG_PPC_ISERIES
434 	get_paca()->lppaca.int_dword.fields.decr_int = 0;
435 #endif
436 
437 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
438 	       >= tb_ticks_per_jiffy) {
439 		/* Update last_jiffy */
440 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
441 		/* Handle RTCL overflow on 601 */
442 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
443 			per_cpu(last_jiffy, cpu) -= 1000000000;
444 
445 		/*
446 		 * We cannot disable the decrementer, so in the period
447 		 * between this cpu's being marked offline in cpu_online_map
448 		 * and calling stop-self, it is taking timer interrupts.
449 		 * Avoid calling into the scheduler rebalancing code if this
450 		 * is the case.
451 		 */
452 		if (!cpu_is_offline(cpu))
453 			update_process_times(user_mode(regs));
454 
455 		/*
456 		 * No need to check whether cpu is offline here; boot_cpuid
457 		 * should have been fixed up by now.
458 		 */
459 		if (cpu != boot_cpuid)
460 			continue;
461 
462 		write_seqlock(&xtime_lock);
463 		tb_last_jiffy += tb_ticks_per_jiffy;
464 		tb_last_stamp = per_cpu(last_jiffy, cpu);
465 		timer_recalc_offset(tb_last_jiffy);
466 		do_timer(regs);
467 		timer_sync_xtime(tb_last_jiffy);
468 		timer_check_rtc();
469 		write_sequnlock(&xtime_lock);
470 		if (adjusting_time && (time_adjust == 0))
471 			ppc_adjtimex();
472 	}
473 
474 	next_dec = tb_ticks_per_jiffy - ticks;
475 	set_dec(next_dec);
476 
477 #ifdef CONFIG_PPC_ISERIES
478 	if (hvlpevent_is_pending())
479 		process_hvlpevents(regs);
480 #endif
481 
482 #ifdef CONFIG_PPC64
483 	/* collect purr register values often, for accurate calculations */
484 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
485 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
486 		cu->current_tb = mfspr(SPRN_PURR);
487 	}
488 #endif
489 
490 	irq_exit();
491 }
492 
493 void wakeup_decrementer(void)
494 {
495 	int i;
496 
497 	set_dec(tb_ticks_per_jiffy);
498 	/*
499 	 * We don't expect this to be called on a machine with a 601,
500 	 * so using get_tbl is fine.
501 	 */
502 	tb_last_stamp = tb_last_jiffy = get_tb();
503 	for_each_cpu(i)
504 		per_cpu(last_jiffy, i) = tb_last_stamp;
505 }
506 
507 #ifdef CONFIG_SMP
508 void __init smp_space_timers(unsigned int max_cpus)
509 {
510 	int i;
511 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
512 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
513 
514 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
515 	previous_tb -= tb_ticks_per_jiffy;
516 	for_each_cpu(i) {
517 		if (i != boot_cpuid) {
518 			previous_tb += offset;
519 			per_cpu(last_jiffy, i) = previous_tb;
520 		}
521 	}
522 }
523 #endif
524 
525 /*
526  * Scheduler clock - returns current time in nanosec units.
527  *
528  * Note: mulhdu(a, b) (multiply high double unsigned) returns
529  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
530  * are 64-bit unsigned numbers.
531  */
532 unsigned long long sched_clock(void)
533 {
534 	if (__USE_RTC())
535 		return get_rtc();
536 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
537 }
538 
539 int do_settimeofday(struct timespec *tv)
540 {
541 	time_t wtm_sec, new_sec = tv->tv_sec;
542 	long wtm_nsec, new_nsec = tv->tv_nsec;
543 	unsigned long flags;
544 	long int tb_delta;
545 	u64 new_xsec, tb_delta_xs;
546 
547 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
548 		return -EINVAL;
549 
550 	write_seqlock_irqsave(&xtime_lock, flags);
551 
552 	/*
553 	 * Updating the RTC is not the job of this code. If the time is
554 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
555 	 * is cleared.  Tools like clock/hwclock either copy the RTC
556 	 * to the system time, in which case there is no point in writing
557 	 * to the RTC again, or write to the RTC but then they don't call
558 	 * settimeofday to perform this operation.
559 	 */
560 #ifdef CONFIG_PPC_ISERIES
561 	if (first_settimeofday) {
562 		iSeries_tb_recal();
563 		first_settimeofday = 0;
564 	}
565 #endif
566 	tb_delta = tb_ticks_since(tb_last_stamp);
567 	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
568 	tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
569 
570 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
571 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
572 
573  	set_normalized_timespec(&xtime, new_sec, new_nsec);
574 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
575 
576 	/* In case of a large backwards jump in time with NTP, we want the
577 	 * clock to be updated as soon as the PLL is again in lock.
578 	 */
579 	last_rtc_update = new_sec - 658;
580 
581 	ntp_clear();
582 
583 	new_xsec = 0;
584 	if (new_nsec != 0) {
585 		new_xsec = (u64)new_nsec * XSEC_PER_SEC;
586 		do_div(new_xsec, NSEC_PER_SEC);
587 	}
588 	new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
589 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
590 
591 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
592 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
593 
594 	write_sequnlock_irqrestore(&xtime_lock, flags);
595 	clock_was_set();
596 	return 0;
597 }
598 
599 EXPORT_SYMBOL(do_settimeofday);
600 
601 void __init generic_calibrate_decr(void)
602 {
603 	struct device_node *cpu;
604 	unsigned int *fp;
605 	int node_found;
606 
607 	/*
608 	 * The cpu node should have a timebase-frequency property
609 	 * to tell us the rate at which the decrementer counts.
610 	 */
611 	cpu = of_find_node_by_type(NULL, "cpu");
612 
613 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
614 	node_found = 0;
615 	if (cpu != 0) {
616 		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
617 						  NULL);
618 		if (fp != 0) {
619 			node_found = 1;
620 			ppc_tb_freq = *fp;
621 		}
622 	}
623 	if (!node_found)
624 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
625 				"(not found)\n");
626 
627 	ppc_proc_freq = DEFAULT_PROC_FREQ;
628 	node_found = 0;
629 	if (cpu != 0) {
630 		fp = (unsigned int *)get_property(cpu, "clock-frequency",
631 						  NULL);
632 		if (fp != 0) {
633 			node_found = 1;
634 			ppc_proc_freq = *fp;
635 		}
636 	}
637 #ifdef CONFIG_BOOKE
638 	/* Set the time base to zero */
639 	mtspr(SPRN_TBWL, 0);
640 	mtspr(SPRN_TBWU, 0);
641 
642 	/* Clear any pending timer interrupts */
643 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
644 
645 	/* Enable decrementer interrupt */
646 	mtspr(SPRN_TCR, TCR_DIE);
647 #endif
648 	if (!node_found)
649 		printk(KERN_ERR "WARNING: Estimating processor frequency "
650 				"(not found)\n");
651 
652 	of_node_put(cpu);
653 }
654 
655 unsigned long get_boot_time(void)
656 {
657 	struct rtc_time tm;
658 
659 	if (ppc_md.get_boot_time)
660 		return ppc_md.get_boot_time();
661 	if (!ppc_md.get_rtc_time)
662 		return 0;
663 	ppc_md.get_rtc_time(&tm);
664 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
665 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
666 }
667 
668 /* This function is only called on the boot processor */
669 void __init time_init(void)
670 {
671 	unsigned long flags;
672 	unsigned long tm = 0;
673 	struct div_result res;
674 	u64 scale;
675 	unsigned shift;
676 
677         if (ppc_md.time_init != NULL)
678                 timezone_offset = ppc_md.time_init();
679 
680 	if (__USE_RTC()) {
681 		/* 601 processor: dec counts down by 128 every 128ns */
682 		ppc_tb_freq = 1000000000;
683 		tb_last_stamp = get_rtcl();
684 		tb_last_jiffy = tb_last_stamp;
685 	} else {
686 		/* Normal PowerPC with timebase register */
687 		ppc_md.calibrate_decr();
688 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
689 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
690 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
691 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
692 		tb_last_stamp = tb_last_jiffy = get_tb();
693 	}
694 
695 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
696 	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
697 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
698 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
699 	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
700 	tb_to_xs = res.result_low;
701 
702 	/*
703 	 * Compute scale factor for sched_clock.
704 	 * The calibrate_decr() function has set tb_ticks_per_sec,
705 	 * which is the timebase frequency.
706 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
707 	 * the 128-bit result as a 64.64 fixed-point number.
708 	 * We then shift that number right until it is less than 1.0,
709 	 * giving us the scale factor and shift count to use in
710 	 * sched_clock().
711 	 */
712 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
713 	scale = res.result_low;
714 	for (shift = 0; res.result_high != 0; ++shift) {
715 		scale = (scale >> 1) | (res.result_high << 63);
716 		res.result_high >>= 1;
717 	}
718 	tb_to_ns_scale = scale;
719 	tb_to_ns_shift = shift;
720 
721 #ifdef CONFIG_PPC_ISERIES
722 	if (!piranha_simulator)
723 #endif
724 		tm = get_boot_time();
725 
726 	write_seqlock_irqsave(&xtime_lock, flags);
727 	xtime.tv_sec = tm;
728 	xtime.tv_nsec = 0;
729 	do_gtod.varp = &do_gtod.vars[0];
730 	do_gtod.var_idx = 0;
731 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
732 	__get_cpu_var(last_jiffy) = tb_last_stamp;
733 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
734 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
735 	do_gtod.varp->tb_to_xs = tb_to_xs;
736 	do_gtod.tb_to_us = tb_to_us;
737 
738 	vdso_data->tb_orig_stamp = tb_last_jiffy;
739 	vdso_data->tb_update_count = 0;
740 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
741 	vdso_data->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
742 	vdso_data->tb_to_xs = tb_to_xs;
743 
744 	time_freq = 0;
745 
746 	/* If platform provided a timezone (pmac), we correct the time */
747         if (timezone_offset) {
748 		sys_tz.tz_minuteswest = -timezone_offset / 60;
749 		sys_tz.tz_dsttime = 0;
750 		xtime.tv_sec -= timezone_offset;
751         }
752 
753 	last_rtc_update = xtime.tv_sec;
754 	set_normalized_timespec(&wall_to_monotonic,
755 	                        -xtime.tv_sec, -xtime.tv_nsec);
756 	write_sequnlock_irqrestore(&xtime_lock, flags);
757 
758 	/* Not exact, but the timer interrupt takes care of this */
759 	set_dec(tb_ticks_per_jiffy);
760 }
761 
762 /*
763  * After adjtimex is called, adjust the conversion of tb ticks
764  * to microseconds to keep do_gettimeofday synchronized
765  * with ntpd.
766  *
767  * Use the time_adjust, time_freq and time_offset computed by adjtimex to
768  * adjust the frequency.
769  */
770 
771 /* #define DEBUG_PPC_ADJTIMEX 1 */
772 
773 void ppc_adjtimex(void)
774 {
775 #ifdef CONFIG_PPC64
776 	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
777 		new_tb_to_xs, new_xsec, new_stamp_xsec;
778 	unsigned long tb_ticks_per_sec_delta;
779 	long delta_freq, ltemp;
780 	struct div_result divres;
781 	unsigned long flags;
782 	long singleshot_ppm = 0;
783 
784 	/*
785 	 * Compute parts per million frequency adjustment to
786 	 * accomplish the time adjustment implied by time_offset to be
787 	 * applied over the elapsed time indicated by time_constant.
788 	 * Use SHIFT_USEC to get it into the same units as
789 	 * time_freq.
790 	 */
791 	if ( time_offset < 0 ) {
792 		ltemp = -time_offset;
793 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
794 		ltemp >>= SHIFT_KG + time_constant;
795 		ltemp = -ltemp;
796 	} else {
797 		ltemp = time_offset;
798 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
799 		ltemp >>= SHIFT_KG + time_constant;
800 	}
801 
802 	/* If there is a single shot time adjustment in progress */
803 	if ( time_adjust ) {
804 #ifdef DEBUG_PPC_ADJTIMEX
805 		printk("ppc_adjtimex: ");
806 		if ( adjusting_time == 0 )
807 			printk("starting ");
808 		printk("single shot time_adjust = %ld\n", time_adjust);
809 #endif
810 
811 		adjusting_time = 1;
812 
813 		/*
814 		 * Compute parts per million frequency adjustment
815 		 * to match time_adjust
816 		 */
817 		singleshot_ppm = tickadj * HZ;
818 		/*
819 		 * The adjustment should be tickadj*HZ to match the code in
820 		 * linux/kernel/timer.c, but experiments show that this is too
821 		 * large. 3/4 of tickadj*HZ seems about right
822 		 */
823 		singleshot_ppm -= singleshot_ppm / 4;
824 		/* Use SHIFT_USEC to get it into the same units as time_freq */
825 		singleshot_ppm <<= SHIFT_USEC;
826 		if ( time_adjust < 0 )
827 			singleshot_ppm = -singleshot_ppm;
828 	}
829 	else {
830 #ifdef DEBUG_PPC_ADJTIMEX
831 		if ( adjusting_time )
832 			printk("ppc_adjtimex: ending single shot time_adjust\n");
833 #endif
834 		adjusting_time = 0;
835 	}
836 
837 	/* Add up all of the frequency adjustments */
838 	delta_freq = time_freq + ltemp + singleshot_ppm;
839 
840 	/*
841 	 * Compute a new value for tb_ticks_per_sec based on
842 	 * the frequency adjustment
843 	 */
844 	den = 1000000 * (1 << (SHIFT_USEC - 8));
845 	if ( delta_freq < 0 ) {
846 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
847 		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
848 	}
849 	else {
850 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
851 		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
852 	}
853 
854 #ifdef DEBUG_PPC_ADJTIMEX
855 	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
856 	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
857 #endif
858 
859 	/*
860 	 * Compute a new value of tb_to_xs (used to convert tb to
861 	 * microseconds) and a new value of stamp_xsec which is the
862 	 * time (in 1/2^20 second units) corresponding to
863 	 * tb_orig_stamp.  This new value of stamp_xsec compensates
864 	 * for the change in frequency (implied by the new tb_to_xs)
865 	 * which guarantees that the current time remains the same.
866 	 */
867 	write_seqlock_irqsave( &xtime_lock, flags );
868 	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
869 	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
870 	new_tb_to_xs = divres.result_low;
871 	new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
872 
873 	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
874 	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
875 
876 	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
877 
878 	write_sequnlock_irqrestore( &xtime_lock, flags );
879 #endif /* CONFIG_PPC64 */
880 }
881 
882 
883 #define FEBRUARY	2
884 #define	STARTOFTIME	1970
885 #define SECDAY		86400L
886 #define SECYR		(SECDAY * 365)
887 #define	leapyear(year)		((year) % 4 == 0 && \
888 				 ((year) % 100 != 0 || (year) % 400 == 0))
889 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
890 #define	days_in_month(a) 	(month_days[(a) - 1])
891 
892 static int month_days[12] = {
893 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
894 };
895 
896 /*
897  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
898  */
899 void GregorianDay(struct rtc_time * tm)
900 {
901 	int leapsToDate;
902 	int lastYear;
903 	int day;
904 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
905 
906 	lastYear = tm->tm_year - 1;
907 
908 	/*
909 	 * Number of leap corrections to apply up to end of last year
910 	 */
911 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
912 
913 	/*
914 	 * This year is a leap year if it is divisible by 4 except when it is
915 	 * divisible by 100 unless it is divisible by 400
916 	 *
917 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
918 	 */
919 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
920 
921 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
922 		   tm->tm_mday;
923 
924 	tm->tm_wday = day % 7;
925 }
926 
927 void to_tm(int tim, struct rtc_time * tm)
928 {
929 	register int    i;
930 	register long   hms, day;
931 
932 	day = tim / SECDAY;
933 	hms = tim % SECDAY;
934 
935 	/* Hours, minutes, seconds are easy */
936 	tm->tm_hour = hms / 3600;
937 	tm->tm_min = (hms % 3600) / 60;
938 	tm->tm_sec = (hms % 3600) % 60;
939 
940 	/* Number of years in days */
941 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
942 		day -= days_in_year(i);
943 	tm->tm_year = i;
944 
945 	/* Number of months in days left */
946 	if (leapyear(tm->tm_year))
947 		days_in_month(FEBRUARY) = 29;
948 	for (i = 1; day >= days_in_month(i); i++)
949 		day -= days_in_month(i);
950 	days_in_month(FEBRUARY) = 28;
951 	tm->tm_mon = i;
952 
953 	/* Days are what is left over (+1) from all that. */
954 	tm->tm_mday = day + 1;
955 
956 	/*
957 	 * Determine the day of week
958 	 */
959 	GregorianDay(tm);
960 }
961 
962 /* Auxiliary function to compute scaling factors */
963 /* Actually the choice of a timebase running at 1/4 the of the bus
964  * frequency giving resolution of a few tens of nanoseconds is quite nice.
965  * It makes this computation very precise (27-28 bits typically) which
966  * is optimistic considering the stability of most processor clock
967  * oscillators and the precision with which the timebase frequency
968  * is measured but does not harm.
969  */
970 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
971 {
972         unsigned mlt=0, tmp, err;
973         /* No concern for performance, it's done once: use a stupid
974          * but safe and compact method to find the multiplier.
975          */
976 
977         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
978                 if (mulhwu(inscale, mlt|tmp) < outscale)
979 			mlt |= tmp;
980         }
981 
982         /* We might still be off by 1 for the best approximation.
983          * A side effect of this is that if outscale is too large
984          * the returned value will be zero.
985          * Many corner cases have been checked and seem to work,
986          * some might have been forgotten in the test however.
987          */
988 
989         err = inscale * (mlt+1);
990         if (err <= inscale/2)
991 		mlt++;
992         return mlt;
993 }
994 
995 /*
996  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
997  * result.
998  */
999 void div128_by_32(u64 dividend_high, u64 dividend_low,
1000 		  unsigned divisor, struct div_result *dr)
1001 {
1002 	unsigned long a, b, c, d;
1003 	unsigned long w, x, y, z;
1004 	u64 ra, rb, rc;
1005 
1006 	a = dividend_high >> 32;
1007 	b = dividend_high & 0xffffffff;
1008 	c = dividend_low >> 32;
1009 	d = dividend_low & 0xffffffff;
1010 
1011 	w = a / divisor;
1012 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1013 
1014 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1015 	x = ra;
1016 
1017 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1018 	y = rb;
1019 
1020 	do_div(rc, divisor);
1021 	z = rc;
1022 
1023 	dr->result_high = ((u64)w << 32) + x;
1024 	dr->result_low  = ((u64)y << 32) + z;
1025 
1026 }
1027